
Auto-tuning of Cloud-based In-memory Transactional Data Grids
via Machine Learning

Pierangelo Di Sanzo, Diego Rughetti, Bruno Ciciani and Francesco Quaglia
DIAG, Sapienza University, Rome, Italy

Abstract—In-memory transactional data grids have revealed
extremely suited for cloud based environments, given that
they well fit elasticity requirements imposed by the pay-as-
you-go cost model. Particularly, the non-reliance on stable
storage devices simplifies dynamic resize of these platforms,
which typically only involves setting up (or shutting down)
some data-cache instance. On the other hand, defining the
well suited amount of cache servers to be deployed, and the
degree of replication of slices of data, in order to optimize
reliability/availability and performance tradeoffs, is far from
being a trivial task. As a example, scaling up/down the size
of the underlying infrastructure might give rise to scarcely
predictable secondary effects on the side of the synchronization
protocol adopted to guarantee data consistency while sup-
porting transactional accesses. In this paper we investigate
on the usage of machine learning approaches with the aim
at providing a means for automatically tuning the data grid
configuration, which is achieved via dynamic selection of both
the well suited amount of cache servers, and the well suited
degree of replication of the data-objects. The final target
is to determine configurations that are able to guarantee
specific throughput or latency values (such as those established
by some SLA), under some specific workload profile/intesity,
while minimizing at the same time the cost for the cloud
infrastructure. Our proposal has been integrated within an
operating environment relying on the well known Infinispan
data grid, namely a mainstream open source product by the
Red Had JBoss division. Some experimental data are also
provided supporting the effectiveness of our proposal, which
have been achieved by deploying the data platform on top of
Amazon EC2.

I. INTRODUCTION

With the advent of cloud computing, we have experi-
enced the proliferation of a new generation of in-memory,
transactional data platforms, often referred to as NoSQL
data grids, among which we can find products such as Red
Hat’s Infinispan, VMware vFabric GemFire [25], Oracle
Coherence [16] and Apache Cassandra [13]. These platforms
well meet the elasticity requirements imposed by the pay-
as-you-go cost model. This is done by:
(i) relying on a simplified key-value data model (as op-

posed to the traditional relational model),
(ii) employing efficient in-memory replication mechanisms

to achieve data durability (as opposed to disk-based

This work has been partially supported by the Cloud-TM project (co-
financed by the European Commission through the contract no. 57784) and
by COST Action IC1001 EuroTM.

logging) and
(iii) offering facilities for dynamically resizing the amount

of hosts within the platform.

However, one aspect that still represents a core issue to
cope with is related to how to (dynamically) dimension and
configure the system in order to, e.g., match a predetermined
Service Level Agreement (SLA), while also minimizing
operating costs related to, e.g., renting the underlying virtu-
alized infrastructure. In particular, forecasting the scalability
trends of real-life, complex applications deployed on dis-
tributed transactional platforms is an extremely challenging
task. In fact, as also shown in [7], when the number
of nodes in the system grows, the performance of these
platforms exhibits strong non-linear behaviors, which are
imputable to the simultaneous, and often inter-dependent,
effects of contention affecting both physical (CPU, memory,
network) and logical (conflicting data accesses by concurrent
transactions) resources.

In this article we investigate on the usage of machine
leaning techniques, particularly neural networks, in order
to provide supports for auto-tuning in-memory transactional
data grids in cloud environments. This is achieved by
determining the well suited number of cache servers to
be deployed (1), and the well suited replication degree of
the data-objects maintained by the platform. Specifically,
our approach allows automatic determination of system
configurations that are able to satisfy some SLA, expressed
in terms of predetermined throughput and latency values for
a given application, possibly exhibiting variable workload
intensity (e.g. in terms of number of concurrent clients),
while minimizing at the same time the costs associated with
the virtualized infrastructure.

While machine learning has already been exploited in the
context of system tuning and optimization, to the best of
our knowledge its employment in the context of tuning of
in-memory data grids has been limited to capture contention
on physical resources, thus requiring to be complemented
via white-box analytical approaches in order to express per-
formance forecasts by also keeping into account contention
on logical resources, namely data contention (see, e.g., [7]).
Further, it has been exploited limitedly to the context of fully

1In conventional data grid terminology, a cache server is one server
instance maintaining a slice of the data hosted by the whole platform.

replicated systems, where each cache server keeps a copy
of the entire data set. In this article we take the different
approach where machine learning is used to predict the
system performance according to a pure black-box approach,
where no integration via analytical modeling is requested.
This gives rise to a highly general solution, not requiring
knowledge of the inner logic (e.g. concurrency control logic)
characterizing the data grid. Also, we cope with the general
case of partial data replication, where each cache server is
allowed to host a copy of a portion of the entire data set,
which is recognized as mandatory for the achievement of
significant scalability levels.

We have implemented our proposal by integrating it with
the open source Infinispan data grid platform [11], namely
a product by Red Had JBoss division, which represents the
mainstream in-memory data repository for applications run-
ning on top of the largely diffused JBoss application server.
Also, we have carried out a preliminary experimentation of
our proposal by relying on the Amazon EC2 public cloud
platform, whose outcoming results support the effectiveness
of the provided approach.

The remainder of this article is structured as follows. In
Section II we discuss related work. A brief recall on machine
learning, focused on neural networks, is provided in Section
III. The provided approach is illustrated in Section IV. The
experimental study is presented in Section V.

II. RELATED WORK

In the context of transactional data platforms in cloud
environments, machine learning techniques have been em-
ployed by several proposals aimed at dynamically resiz-
ing the amount of back-end database servers in multi-
tier environments [4], [8], [21], [26]. Typical objectives of
the resize entail both performance optimization and energy
consumption reduction. Compared to these proposals, we
target in-memory data platforms, as opposed to traditional
database technology which relies on stable storage. Also,
in the above solutions the performance optimization target
mostly deals with the processing of complex queries, as
for the case of, e.g., generation of dynamic Web contents
via reliance on relational data. Instead, our approach is
not biased towards read-only accesses, thus resulting more
general. Further, the proposals in [4], [8], [21], [26] deal
with full replication, while we cope with the more general
and scalable case of partial replication.

Control theory techniques are at the basis of several
works in the area of self-tuning of application performance.
These solutions often assume a linear performance model,
which is possibly updated adaptively as the system moves
from one operating point to another. For example, first-
order autoregressive models are used to manage CPU allo-
cation for Web servers [24]. Linear multi-input-multi-output
(MIMO) models have been applied to manage different kinds
of resources in multi-tier applications [17], as well as to

allocate the CPU resource for minimizing the interference
between VMs deployed on the same physical node [15].
Compared to these adaptive linear models, our machine
learning based approach is expected to accurately capture the
system behavior even in presence of non-linearities, and to
allow optimized resource allocation over the entire operating
space.

Less closely related approaches to our one can be found
in [10], [23], where machine learning schemes are used
to support automated resource provisioning in the context
of non-transactional applications, such as for the case of
MAP reduce applications (see [10]) or in the context of
virtualized infrastructure management, such as for the case
of additiona/deletion of VMs hosting generic applications
(see [23]).

The closest work to our approach is the one presented in
[7], where a mixed methodology based on both analytical
and machine learning predictors is provided with the aim
at auto-tuning in-memory transactional data grid systems.
However, as pointed out before, this approach requires
knowledge of specific data management algorithms (e.g. the
concurrency control algorithm adopted by the data platform)
in order to provide reliable predictions, while we rely on a
pure black-box approach where no knowledge about the in-
ternals of the in-memory data platform is requested. Further,
the work in [7] is tailored to the case of full data replication,
while our proposal is able to predict performance and auto-
tune the system configuration when also considering partial
data replication schemes.

III. NEURAL NETWORKS RECALL

A neural network is a machine learning method [14] pro-
viding the ability to approximate various kinds of functions,
including real-valued ones. Inspired to the neural structure
of the human brain, a neural network consists of a set
of interconnected processing elements which cooperate to
compute a specific function, so that, provided a given input,
the neural network can be used to calculate the output of
the function. By relying on a learning algorithm, the neural
network can be trained to approximate an unknown function
f exploiting a data set {(i,o)} (training set), which is
assumed to be a statistical representation of the function
f such that, for each element (i,o), o = f{i}+ δ, where δ
is a random variable (also said noise).

IV. SYSTEM ARCHITECTURE AND PERFORMANCE
PREDICTION SCHEME

A. Model of the Data Grid Platform

We consider a target data grid architecture that can be
modeled by the scheme provided in Figure 1. Particularly,
the system is composed by three types of entities, namely:

• cache servers, which are in charge of maintaining
copies of entire, or partial, data sets;

Figure 1. Reference architecture.

• a load balancer, which is in charge of allowing well
balanced distribution of the overall workload across the
cache servers;

• clients, which issue transactional data access and/or
manipulation requests ultimately intercepted by the load
balancer, and then redirected towards the appropriate
cache server.

We note that such an architectural model well maps
onto cloud based real system implementations, thus being
a realistic one. As an example, the load balancing facility is
already natively offered by public cloud providers, such as
Amazon EC2.

The cache servers run proper distributed protocols in order
to guarantee specific levels of isolation and data consistency
while supporting transactional data accesses. For instance,
the two-phase-commit protocol can be exploited in order to
guarantee atomicity while updating distributed replicas of
the same data-object, as it typically occurs in commercial
in-memory data platform implementations (see, e.g., [11]).

Also, in our model an individual transactional request
by any client can be mapped onto either a single put/get
operation of a data-object, or a more complex transactional
manipulation involving several put/get operations on mul-
tiple data-objects, which is demarcated via begin and end
statements.

The following notations are adopted in order to define
the target machine learning functions, and to describe the
auto-tuning process of the data grid platform:

• N , which denotes the number of clients.
• M , which denotes the number of cache servers operat-

ing within the platform.
• G, which denotes the adopted replication degree,

namely the number of copies of each data-object that
are distributed across the M cache servers. In our
approach we allow variations of G such that 1 ≤ G ≤
M , hence capturing scenarios entailing either full data
replication schemes, or partial ones. Also, G is the
unique parameter describing aspects specifically related

to data replication, which again provides independence
of our approach of specific implementation details
related to how the replicas of each individual data-
object are deployed onto the cache server (such as
when deploying replicated data according to consistent
hashing schemes [12]).

• rt, which denotes the response time.
• thr, which denotes the system throughput.

B. Objective Functions

The rationale behind our proposal is to exploit statistics
collected while the system operates in order to estimate
the following two functions, representing the fulcrum of
performance prediction:

thr = f(N,M,G) (1)

rt = g(N,M,G) (2)

where thr expresses the expected system throughput, while
rt expresses the expected system response time. We note
that, given the possibility of non-linearity (e.g. due to the ef-
fects of inter cache-server synchronization protocols adopted
to maintain data consistency within the distributed/replicated
system), it is difficult to a-priori hypothesize whether keep-
ing, e.g., the number of clients N fixed, the throughput or
the response time decreases while increasing the amount of
cache servers M .

The goal of our neural network based prediction scheme
is to provide approximations fA and gA of the functions f
and g. To this purpose, we collect a set of sample data used
to train the neural network, derived by observing the system
behavior during a training time interval. A training sample
includes the following quantities, each one expressing the
mean value over a given number of subsequent data access
operations (we use the apex k to indicate that they are related
to the training phase):

• the set of input parameter values for f and g, i.e., Nk,
Mk and Gk;

• the average system throughput thrk;
• the average system response time rtk.
Hence, once fixed the execution profile for the application

hosted on top of the data grid platform, a training sample
(i,o) is such that i = (Nk,Mk, Gk) and o = (thrk, rtk).

C. Platform Reconfiguration

Actual platform reconfiguration during operating phases
needs to be carried out according to specific rules actuated
by a proper controller, which takes in input combinations
involving a (sub)set of the below listed constraints:
C1 maximum expected value for the response time;
C2 maximum sustainable cost for the infrastructure (e.g.

expresses in terms of the maximum number of virtual
machines to be ranted to deploy different cache server
instances);

C3 minimum expected value for the system throughput;
C4 minimum value for the degree of replication of data-

objects, which translates into defining the maximum
degree of resilience to failures of individual cache
servers ultimately causing data loss (2).

Given a target combination of the above constraints passed
in input to the controller, such as (C2 AND C4), based on
the functions fA and gA estimated via the neural network,
the controller actuates a system reconfiguration aimed at
satisfying the target constraints’ combination, while also
minimizing or maximizing metrics not explicitly included
within the target combination. This is done by exploring
the output values provided by fA and gA over an admis-
sible input domain, as defined by the constraints. As an
example, once fixed the maximum sustainable cost, and the
minimum degree of replication of individual data-objects,
the controller will determine configurations that minimize
the expected response time or maximize the throughput.

One important aspect for constraint C4 relates to the
supports provided by current conventional data grid systems
in terms of management of the replication degree of the data-
objects. Specifically, most data grid products do not support
dynamic reconfiguration of the degree of data replication
G, which is instead considered in our machine learning
scheme, and represents one parameter that is object of
dynamic tuning by our controller. As we will show in the
experimental study provided in the next section, having
the possibility to dynamically control the replication degree
G represents a relevant facility. In fact, it infers higher
flexibility to the data grid platform in terms of its ability to
actually satisfy the target constraints. On the other hand, the
approach we provide is highly general, thus being applicable
also in contexts where G cannot be dynamically varied. The
only impact on the whole approach consists in excluding G
as input parameter to the functions f and g, thus leading to
the exclusion of Gk values as instances for the corresponding
training parameter.

V. EXPERIMENTATION

We have built an actual implementation of our architec-
tural proposal by relying on the Infinispan data grid platform,
and have carried out an experimentation on top of virtualized
infrastructures offered by Amazon EC2. In this section we
first provide an overview of Infinispan, then we present
the experimental test bed that has been used, including the
description of the adopted benchmarks. Finally, the actual
results are presented an discussed.

A. Infinispan Overview

Infinispan is a popular open source in-memory data grid,
which is developed by JBoss/Red Hat. Currently, it repre-

2Recall that, in the target architecture, data-objects are supposed to be
stored exclusively into main memory, thus representing volatile content that
gets lost in the event of failure of the cache server where they reside onto.

sents both the reference data platform and the clustering
technology for JBoss, which is the mainstream open source
J2EE application server.

Infinispan exposes a key-value store data model (NoSQL),
and maintains data entirely in-memory relying on replication
as its primary mechanism to ensure fault-tolerance and data
durability. As other recent NoSQL platforms, Infinispan opts
for weakening consistency in order to maximize perfor-
mance. Specifically, it does not ensure serializability [2],
but only guarantees the Repeatable Read ANSI/ISO isolation
level [1] (3). More in detail, Infinispan implements a non-
serializable variant of the multi-version concurrency control
algorithm, which never blocks or aborts a transaction upon
a read operation, and relies on an encounter-time locking
strategy to detect write-write conflicts. Write locks are first
acquired locally during the transaction execution phase,
which does not entail any interaction with remote cache
servers. At commit time, Two Phase Commit (2PC) [2]
is executed. During the first phase (also called prepare
phase), lock acquisition is attempted at all the cache servers
keeping copies of the data-objects to be updated, in order to
detect conflicts with transactions concurrently executing on
other cache servers, as well as for guaranteeing transaction
atomicity. If the lock acquisition phase is successful on
all nodes, the transaction originator broadcasts a commit
message, in order to apply the modifications on the remote
cache servers, and then commits locally.

In presence of conflicting concurrent transactions, the
lock acquisition phase (taking place either during the local
transaction execution or during the prepare phase) may fail
due to the occurrence of (possibly distributed) deadlocks.
Deadlocks are detected using a simple, user-tunable, timeout
based approach. In our experimental assessment, we con-
sider the scenario in which the timeout on deadlock detection
is set to the value zero, which is a typical approach for state
of the art in-memory transactional platforms [6] to achieve
deadlock freedom. In fact, distributed deadlocks represent
a major threat to system scalability, as highlighted by the
seminal work in [9]. We anyway remark that our machine
learning based method, being black-box, is independent of
specific internal configurations for the data grid, including
those related to deadlock detection and resolution.

Originally, the Infinispan platform offered facilities for
dynamically varying the number of cache servers, with no
possibility to vary the degree of replication of individual
data-objects, which was therefore statically defined at start-
up time. The actual supports for keeping the degree of

3Improvements of the isolation level towards Update-Serializability and
Snapshot-Isolation have been presented and evaluated within in-progress
versions in the context of the Cloud-TM research project - see [18].
However, these optimizations have not yet been included within the product
main-line, which is the reason for not considering the associated prototypes,
and focusing the experimentation on the evaluation of the effectiveness of
machine learning when employed in combination with current off-the-shelf
versions of Infinispan.

replication constant were based on a complete reshuffle of
the copies of the data-objects across the cache servers in
the event of server join/leave (e.g. in the event of server
crash/resume). Recent versions of this platform (namely,
version 5.2.0.Beta2) have included the possibility to dy-
namically change the degree of replication of data-objects,
which makes Infinispan perfectly match the general model
provided in Section IV-B, where the degree of replication
G is explicitly considered as a tunable parameter within the
machine learning based reconfiguration process. This has
been done via the introduction of an optimized state transfer
protocol which is able to create new copies of individual
data-objects (e.g. in order to put these copies on a newly
joining cache server), without the need for a complete re-
mapping of the whole set of objects across the platform.

B. Experimental Settings

To carry out the experimentation, we have decided to
rely on a configurable synthetic benchmark which we have
explicitly developed on top of the Infinispan data grid.
The choice towards an early experimentation based on
synthetic workloads, rather than common benchmarks, is
based on the idea of widening workload configurability. In
fact, known benchmarks such as TPC-C [22] only entails
rigid transaction profiles. We plan anyway to carry out an
experimentation with known benchmarks, such as YCSB
(Yahoo! Cloud Serving Benchmark) [5] or TPC-C, as a
future work.

In our synthetic benchmark application, the in-memory
distributed cache has been populated with a set of 10000
data-objects, each one being associated with:

• its key, which is used to identify the object;
• its payload, with variable size between 1 and 1024

bytes.

A client executes an interleaving of put and get operations
on the whole set of data-objects hosted by the distributed
cache. The ratio between the number of put and get opera-
tions is established using a fixed probability value, which can
be configured at start-up time. Each put operation modifies
a single data-object, while each get operation can read a list
of data-objects (hence it can be a query on a range of key
values). The size of this list varies, with uniform probability,
between 1 and 40 objects. The accesses of the client onto
the data-objects are uniformly distributed.

As for the implementation of the neural networks used to
estimate response time and throughput values, we relied on
fully connected networks, with three layers each. To train
the networks we used a back-propagation algorithm [20],
[3], [19]. We observed that a number of hidden layers equal
to one was a good trade-off between prediction accuracy and
learning time. In this case, the number of hidden nodes for
which the networks provided the best approximations was
on the order of 16.

Our synthetic benchmark application has been deployed
onto an Amazon EC2 cloud environment where a maximum
of 20 clients, and a maximum of 6 severs have been
included. We note that in our experimentation, each client
mimics the behavior of a front-end server, which accesses
the in-memory data layer hosted by the back-end servers. In
fact, each client continuously executes accesses to the data
layer with no think time between subsequent operations,
hence giving rise to a sustained workload, as if it was
concurrently handling multiple interactions by end-clients,
characterized by non-zero think time.

The off-line training of the networks has been performed
using 600 samples collected during the execution of a set of
runs of the benchmark carried-out by randomly varying the
number of clients, the number of server nodes and the degree
of replication of the data-objects. Each sample has been
obtained by averaging the values of 2000 subsequently exe-
cuted operations. Then, the trained networks have been used
at run-time for the estimation of throughput and response
time, for all the possible valid combinations of number of
servers and degree of data-object replication. Specifically,
after having observed the current number of clients, the con-
troller exploited the neural network to periodically identify
the best configuration (in terms of number of servers and
data replication degree), according to the given constraints,
to be actuated.

As an example, in Figure 2 the system throughput and the
average response time, as calculated by the trained networks
for a test case we refer to as Scenario C, which will be
presented in detail in the next section, are depicted for the
case of replication degree equal to 1.

Clients and servers were deployed onto small EC2 in-
stances equipped with 1.7 GB of memory and one virtual
core providing the equivalent CPU capacity of 1.0-1.2 GHz
2007 Opteron or 2007 Xeon processors. Each machine
runs Linux Ubuntu 10.04 with kernel 2.6.32-316-ec2. The
standard Amazon load balancer has been used to dispatch
to the server nodes the load generated by the client threads.

C. Results

We report in this section the experimental results achieved
when considering three different scenarios in term of con-
figuration of the synthetic benchmark application, and in
terms of constraints imposed to the neural network based
controller. In order to observe how the neural network based-
controller reacts with respect to changes of the number of
clients, in all the scenarios we varied such a number over
time according to the sequence of values 1,5,9,13,17,13,9,5.

1) Scenario A: In this scenario we consider a con-
figuration of the benchmark giving rise to limited data
contention across concurrent accesses. In particular, we set
the benchmark parameters in order to achieve 2% of update
operations (i.e. put operations). For this scenario, we impose
a constraint on the cost of the infrastructure, hence relying

 2 4 6 8 10 12 14 16 18 20 1
 2

 3
 4

 5
 6

 0

 0.4

 0.8

 1.2

 1.6

 2

 2.4

T
hr

ou
gh

pu
t (

op
er

at
io

ns
/m

se
c) Throughput - replication degree 1

Number of Clients

Number of Servers

T
hr

ou
gh

pu
t (

op
er

at
io

ns
/m

se
c)

 2 4 6 8 10 12 14 16 18 20 1
 2

 3
 4

 5
 6

 0

 20

 40

R
es

po
ns

e
tim

e
(m

se
c)

Response time - replication degree 1

Number of Clients

Number of Servers

R
es

po
ns

e
tim

e
(m

se
c)

Figure 2. Example outputs of trained neural networks.

on C2, while also targeting the maximization of the metric
associated with C3, namely the system throughput. C2
is actuated by allowing a maximum cost as imposed by
fixing the maximum amount of cache serves within the
infrastructure to 4.

The results for this test are shown in Figure 3, where
we report how the controller adjusts the actual number of
cache servers to be used, and the replication degree (graph
at the bottom left of the figure), in face of variations of
the number of clients (graph at the top left of the figure,
left vertical axis). In the same graph, we also show the
system throughput (right vertical axis). In order to validate
the choices actuated by the controller, in the same figure
(right side), we report the throughput we measured using
static configurations of the system, entailing a fixed number
of clients and servers (the replication degree is not explicitly
plotted given that, in all our tests, it always matches, in the
best case, the corresponding number of servers, which is
exactly the case for the replication degree selected by the
neural network based controller). By the data, we get that the
controller always provides dynamically tuned configurations
(while varying the number of clients) which are aligned
with the corresponding optimal static configurations when
considering whichever fixed amount of clients in the interval
between 1 and 17.

2) Scenario B: In this scenario we consider again a
configuration of the benchmark giving rise to limited data
contention across concurrent accesses, by still generating
2% of update operations. On the other hand, we impose a
constraint on the cost of the infrastructure, by again relying
on C2, while also targeting the minimization of the metric
associated with C1, namely the response time. At the same
time, we impose a minimum degree of replication of data-
objects, as proper of C4. Specifically, the controller operates
in order to satisfy (C2 AND C4), while optimizing the
response time. This time the maximum cost sustainable is
expressed in terms of maximum number of deployed cache

servers set to the value 3, while the minimum replication
degree to be guaranteed has been set to the value 2. The
results for this test are shown in Figure 4, where we report
the same curves as for the previous scenario, except for the
throughput curve, since in this scenario we are interested in
the response time, which is shown in the top-left graph (right
vertical axis). On the right of the same figure, we report the
response time we measured using static configurations, such
as for the throughput in the previous scenario. Also in this
scenario, the controller always actuates the optimal system
configuration while varying the number of clients, except for
the case with 5 clients, where the controller decided for 2
servers. By the results achieved with the static configuration,
we can see that the minimum response time for 5 clients
is achieved with 4 servers. However, response time values
achieved with 2 and 4 servers are very close to each
other. Hence, the non-optimal choice is likely related to the
variance of measurements at both training-time and run-time.
Finally, in this scenario we note that, by the results achieved
with the static configurations, the minimum response time
with 1 client is achieved with 1 server. However, due to the
setting of constraint C4 (i.e. minimum replication degree
equal to 2), the controller decides for using 2 servers.

3) Scenario C: In this scenario we move to a con-
figuration of the benchmark application entailing higher
contention, by generating 20% of update operations. For
this scenario, we impose again a constraint on the cost
of the infrastructure, hence relying on C2. Jointly, we
impose a constraint on the degree of replication of the data-
objects, as expressed by C4 (hence generating an actual
constraint in the form (C2 AND C4)), while targeting the
maximization of the metric associated with C3, namely the
system throughput. As for C2, we admit a maximum cost in
terms of maximum number of cache servers to be deployed
which has been set to the value 6. On the other hand, the
minimum degree of replication has been set to the value
2. Also in this case we observe that the controller always

 0

 5

 10

 15

 20

 0 10 20 30 40 50 60
 0
 0.2
 0.4
 0.6
 0.8
 1
 1.2
 1.4
 1.6

op
er

at
io

ns
/m

se
c

Scenario A

Client
Throughput

 0
 2
 4
 6
 8

 10

 0 10 20 30 40 50 60
 0
 2
 4
 6
 8
 10

Time (minutes)

Server
Replication Degree

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

T
hr

ou
gh

pu
t (

op
er

at
io

ns
/m

se
c)

Clients

Throughput vs. number of clients and number of servers

1-Server
2-Servers
3-Servers
4-Servers

Figure 3. Results for Scenario A.

 0

 5

 10

 15

 20

 0 10 20 30 40 50
 0
 2
 4
 6
 8
 10
 12
 14
 16
 18

m
se

c

Scenario B

Client
ResponseTime

 0
 2
 4
 6
 8

 10

 0 10 20 30 40 50
 0
 2
 4
 6
 8
 10

Time (minutes)

Server
Replication Degree

 2

 4

 6

 8

 10

 12

 14

 16

 18

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

R
es

po
ns

e
T

im
e

(s
ec

)

Clients

Response Time vs. number of clients and number of servers

1-Server
2-Servers
3-Servers
4-Servers

Figure 4. Results for Scenario B.

selects the best configuration, which maximizes the system
throughput while satisfying the constraints (due to space
limitation, we omit to explicitly show the results achieved
with the static configurations).

VI. CONCLUSIONS

In this article we have shown how pure machine learning
(black-box) schemes, in particular neural networks, can be
used in order to dynamically optimize run-time parame-
ters proper of transactional data grids. Specifically, with
our approach, the whole data platform can be automat-
ically reconfigured in terms of number of cache servers
deployed on top of the virtualized underlying infrastructure,
and degree of replication of the data-objects, in order to
maximize/minimize specific performance/cost metrics. We
have carried out a preliminary experimentation based on
a synthetic benchmark and a real system implementation
relying on the Infinispan data grid platform, which has been
run on top of Amazon EC2 virtual nodes. By the results,
the machine learning based approach results effective, thus

opening the possibility for its employment within in pro-
duction systems. Future work along this direction entails
evaluating the system with data-grid benchmarks and with
more traditional benchmarks (tailored for relational data
models), once set up their porting onto the key-value data
model properly offered by data grid platforms.

REFERENCES

[1] H. Berenson, P. Bernstein, J. Gray, J. Melton, E. O’Neil,
and P. O’Neil. A critique of ansi sql isolation levels.
In Proceedings of the 1995 ACM SIGMOD International
Conference on Management of Data, SIGMOD ’95, 1995.

[2] P. A. Bernstein, V. Hadzilacos, and N. Goodman. Concur-
rency control and recovery in database systems. Addison-
Wesley Longman Publishing Co., Inc., 1986.

[3] A. Bryson and Y. Ho. Applied Optimal Control: Optimization,
Estimation, and Control. Halsted Press book’. Taylor &
Francis, 1975.

[4] J. Chen, G. Soundararajan, and C. Amza. Autonomic provi-
sioning of backend databases in dynamic content web servers.

 0

 5

 10

 15

 20

 0 10 20 30 40 50
 0
 0.2
 0.4
 0.6
 0.8
 1
 1.2
 1.4
 1.6

op
er

at
io

ns
/m

se
c

Scenario C

Client
Throughput

 0
 2
 4
 6
 8

 10

 0 10 20 30 40 50
 0
 2
 4
 6
 8
 10

Time (minutes)

Server
Replication Degree

Figure 5. Results for Scenario C.

In Proceedings of the International Conference on Autonomic
Computing, ICAC ’06, pages 231–242, Washington, DC,
USA, 2006. IEEE Computer Society.

[5] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and
R. Sears. Benchmarking cloud serving systems with YCSB.
In Proc. of ACM Symposium on Cloud Computing, SoCC ’10,
pages 143–154. ACM, 2010.

[6] D. Dice, O. Shalev, and N. Shavit. Transactional locking ii.
In In Proc. of the 20th Intl. Symp. on Distributed Computing,
2006.

[7] D. Didona, P. Romano, S. Peluso, and F. Quaglia. Transac-
tional auto scaler: elastic scaling of in-memory transactional
data grids. In Proceedings of the 9th International Conference
on Autonomic Computing, ICAC ’12, pages 125–134, New
York, NY, USA, 2012. ACM.

[8] S. Ghanbari, G. Soundararajan, J. Chen, and C. Amza. Adap-
tive learning of metric correlations for temperature-aware
database provisioning. In Proceedings of the International
Conference on Autonomic Computing, ICAC ’07, pages 26–,
Washington, DC, USA, 2007. IEEE Computer Society.

[9] J. Gray, P. Helland, P. O’Neil, and D. Shasha. The dangers of
replication and a solution. In Proceedings of the 1996 ACM
SIGMOD International Conference on Management of Data,
SIGMOD ’96, 1996.

[10] H. Herodotou, F. Dong, and S. Babu. No one (cluster) size
fits all: automatic cluster sizing for data-intensive analytics.
In Proceedings of the 2nd ACM Symposium on Cloud Com-
puting, SOCC ’11, 2011.

[11] JBoss Infinispan. Infinispan Cache Mode.
https://docs.jboss.org/author/display/ISPN/Clustering+modes,
2011.

[12] D. Karger, E. Lehman, T. Leighton, R. Panigrahy, M. Levine,
and D. Lewin. Consistent hashing and random trees: dis-
tributed caching protocols for relieving hot spots on the world
wide web. In Proceedings of the twenty-ninth annual ACM
Symposium on Theory of Computing, STOC ’97, 1997.

[13] A. Lakshman and P. Malik. Cassandra: a decentralized
structured storage system. SIGOPS Oper. Syst. Rev., 44, 2010.

[14] T. M. Mitchell. Machine Learning. McGraw-Hill, New York,
1997.

[15] R. Nathuji, A. Kansal, and A. Ghaffarkhah. Q-clouds: man-
aging performance interference effects for qos-aware clouds.
In Proceedings of the 5th European Conference on Computer
Systems, EuroSys ’10, 2010.

[16] Oracle. Orache Coherence.
http://www.oracle.com/technetwork/middleware/co-
herence/overview/index.html, 2011.

[17] P. Padala, K.-Y. Hou, K. G. Shin, X. Zhu, M. Uysal, Z. Wang,
S. Singhal, and A. Merchant. Automated control of multiple
virtualized resources. In Proceedings of the 4th ACM Euro-
pean Conference on Computer Systems, EuroSys ’09, 2009.

[18] S. Peluso, P. Ruivo, P. Romano, F. Quaglia, and L. Rodrigues.
When scalability meets consistency: Genuine multiversion
update-serializable partial data replication. 2012 IEEE 32nd
International Conference on Distributed Computing Systems,
0:455–465, 2012.

[19] D. E. Rumelhart and R. J. W. Geoffrey E. Hinton. Learning
representations by back-propagating errors. Nature, 323.

[20] S. J. Russell, P. Norvig, J. F. Candy, J. M. Malik, and
D. D. Edwards. Artificial intelligence: a modern approach.
Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1996.

[21] R. Singh, U. Sharma, E. Cecchet, and P. Shenoy. Autonomic
mix-aware provisioning for non-stationary data center work-
loads. In Proceedings of the International Conference on
Autonomic Computing, ICAC ’10, pages 21–30, New York,
NY, USA, 2010. ACM.

[22] TPC Council. TPC-C Benchmark, Revision 5.11. Feb. 2010.

[23] L. Wang, J. Xu, M. Zhao, Y. Tu, and J. A. B. Fortes. Fuzzy
modeling based resource management for virtualized database
systems. In MASCOTS, 2011.

[24] Z. Wang, X. Zhu, and S. Singhal. Utilization and slo-based
control for dynamic sizing of resource partitions. In DSOM,
2005.

[25] WMware. VMware vFabric GemFire XX.
http://www.vmware.com/products/application-
platform/vfabric-gemfire/overview.html.

[26] P. Xiong, Y. Chi, S. Zhu, J. Tatemura, C. Pu, and
H. HacigümüŞ. Activesla: a profit-oriented admission control
framework for database-as-a-service providers. In Proceed-
ings of the 2nd ACM Symposium on Cloud Computing, SOCC
’11, New York, NY, USA, 2011. ACM.

