
Adaptive Transactional Memories:
Performance and Energy Consumption Tradeoffs

Diego Rughetti
rughetti@dis.uniroma1.it

Pierangelo Di Sanzo
disanzo@dis.uniroma1.it

DIAG — Sapienza, University of Rome

Alessandro Pellegrini
pellegrini@dis.uniroma1.it

Abstract—Energy efficiency is becoming a pressing issue,
especially in large data centers where it entails, at the same time,
a non-negligible management cost, an enhancement of hardware
fault probability, and a significant environmental footprint. In this
paper, we study how Software Transactional Memories (STM)
can provide benefits on both power saving and the overall appli-
cations’ execution performance. This is related to the fact that
encapsulating shared-data accesses within transactions gives the
freedom to the STM middleware to both ensure consistency and
reduce the actual data contention, the latter having been shown
to affect the overall power needed to complete the application’s
execution.

We have selected a set of self-adaptive extensions to existing
STM middlewares (namely, TinySTM and R-STM) to prove
how self-adapting computation can capture the actual degree of
parallelism and/or logical contention on shared data in a better
way, enhancing even more the intrinsic benefits provided by
STM. Of course, this benefit comes at a cost, which is the actual
execution time required by the proposed approaches to precisely
tune the execution parameters for reducing power consumption
and enhancing execution performance. Nevertheless, the results
hereby provided show that adaptivity is a strictly necessary
requirement to reduce energy consumption in STM systems:
Without it, it is not possible to reach any acceptable level of
energy efficiency at all.

I. INTRODUCTION

The issue of reducing energy consumption in high-
performance multiprocessor systems is quickly becoming
pressing. Most of the effort is directed towards the reduction
of the environmental footprint of large data centers, the energy
consumption of which has increased along with performance
increase. This trend is not expected to come to a rest, as
business needs demand for an always increasing performance.
The United States host approximately 6,000 data centers,
which consumed roughly 61 billions kWh of energy in 2006,
about 1.5% of all U.S. electricity that year [1]. Overall,
energy inefficiency has effects on several sides, e.g. overall
management cost, heat waste, operating electronics failures
and environmental implications [2]. These joint aspects require
novel approaches to wisely exploit computing resources, to
tackle at the same time business’ high performance require-
ments, and energy saving. The problem is actually twofold: on
the one hand, hardware implementations and their organization
can provide a benefit. On the other hand, software optimization
can capture aspects related to the actual dynamic workload
which can in turn affect the hardware itself.

A large fingerprint on the overall power requirements
to execute applications on single-core processors is due to

memory accesses. On multicore architectures, this issue is
even exacerbated by the need for synchronization of shared
memory accesses. This means that both in uniprocessor and
multiprocessor architectures, the memory hierarchy is one of
the main sources of power dissipation [3], which therefore
goes hand in hand with the overall application’s performance,
as spending more time in synchronization has non-negligible
effects on both sides.

In this scenario, Software Transactional Memories (STM)
[4], [5] can be regarded as a building block for enhancing
performance while reducing the overall power consumption in
large data centers. In fact, they have been explicitly designed
to improve the overall performance of applications’ execution
by efficiently exploiting the available hardware parallelism,
by relying on speculative execution. At the same time, they
have been already shown to provide advantages in terms of
energy consumption over locks [3]. Additionally, as STM is the
technology already at the heart of several in-memory Cloud-
suited data platforms (e.g. [6]), where the encapsulation of
application code within transactions allows manipulating in-
memory application data according to specific isolation levels
across concurrent tasks, energy-efficient approaches can be
easily integrated within such platforms. STM are a program-
ming paradigm that borrows from the experience gained in
the Database Management Systems (DBMS) field to provide
the application programmer with synchronization facilities that
leverage from the definition of complex critical sections to en-
force correctness of multi-threaded applications. In particular,
by relying on the notion of atomic transactions, STM allow
the application programmer to access shared data structures
without the need for, e.g., traditional locking primitives.

Coherency of the data/access manipulation is therefore
demanded to the STM layer, rather than to any handcrafted
synchronization scheme demanded from the programmer. This
gives the possibility to implement optimized algorithms to
manage shared data accesses by means of proper transactions’
scheduling and/or proper selection of the number of parallel
threads involved in the execution, which can in turn provide
a non-negligible reduction in the overall power consumption.
This is strictly related to careful exploitation of the parallelism
exposed by the application, avoiding thrashing phenomena due
to excessive contention on logical resources. Two different
sets of orthogonal solutions have been provided in literature.
On the one hand, we find optimized schemes for transaction
conflict detection and management [7], [8], [9], [10], [11],
which aim at dynamically determining which threads need to
execute specific transactions, sequentializing the ones expected

to access the same data. Other proposals rely instead on pro-
active transaction scheduling and thread-level scheduling [12],
[13], where performance degradation is avoided by delaying
the scheduling of transactions with a high estimated con-
flict probability. This approach takes into account the non-
transactional code cost as well.

On the other hand, we find solutions which support per-
formance optimization by determining the optimal number
of threads to be used for running the application on top
of the STM layer [14], [15], [16]. This selection of the
best-suited level of concurrency is clearly orthogonal to the
aforementioned ones, being potentially usable in combination.
The key question, here, is how much energy or power is really
needed to get some computation done? It is easy to imagine
that there is a minimum amount of electrical energy needed
to perform a certain task, yet the benefit coming from STM’s
wiser usage of hardware resources can strictly depend on the
system architecture [3] and/or the runtime workload dynamics.

It is therefore predictable that self-adaptive solutions within
STM layers can provide even higher benefits. An adaptive soft-
ware [17] basically uses available information about changes
in its environment to improve its behavior over time. In
the context of STM, this has been realized in literature by
relying either on analytic methods, or on black-box Machine
Learning (ML) methodologies (e.g., [14]). The former have
the advantage of generally requiring a lightweight application
profiling to gather the data in support of the prediction model,
but provide slightly less accurate predictions. Additionally, in
some cases they require stringent assumptions to be met by the
real systems in order for its dynamics to be reliably captured.
On the contrary, ML methods usually require much expensive
(offline) profiling in order to build the knowledge base needed
to instantiate the performance prediction model, which may
make the actuation of the optimized concurrency configuration
untimely. Yet, they provide a more precise estimation of the
real performance trends, as shown in differentiated contexts.

In this paper we present an empirical study of various
implementations of STM layers, namely TinySTM [8] and R-
STM [18], configured with differentiated adaptive algorithms.
By this study, we show how different approaches are able either
to detect shared data access conflicts or to capture different
levels of intrinsic parallelism shown by applications taken
from the STAMP benchmark suite [19]. By the results, we
show that if STM layers do not offer adaptivity facilities,
it is definitely not possible to offer a good tradeoff level
between efficiency and power saving. A significant reduction
in the overall power consumption of a large data center
offering STM-based platforms, without sacrificing efficiency,
can be only obtained via adaptivity, which therefore becomes
an essential building block. We additionally show what is
the cost in terms of computing power required by these
solution to work, allowing a careful selection of the best suited
approach when configuring a data center. The remainder of this
paper is structured as follows. In Section II Related Work is
discussed. An overview of the reference STM architectures
and of the adaptive schemes used is presented in Section III.
Experimental data are shown in Section IV.

II. RELATED WORK

The works in [3], [5] address energy reduction in multi-
processor systems when STM are used in place of traditional
locks, one addressing micro benchmarks [3], and one address-
ing STAMP benchmarks [5] (in a configuration using only 8
concurrent threads). The works focus on energy consumption
issues due to accesses to shared memory, and show how
transactional memories can, in practice, provide advantages
in terms of enery consumption over locks. We complement
the results provided by both works, showing how different
levels of adaptiveness can capture aspects related to the system
architecture, contention level, and policy of conflict resolution,
so that STM layers can provide additional benefits over locks
due to their different internal implementations/configurations
without any need to alter the application-level code, even in
the case where the hardware setup offers a high number of
available cores.

The effects of shared data accesses on energy consumption
is analyzed as well in [20], where a variation of barrier
synchronization is used to reduce the energy required for
spinning on a barrier, by relying on a software predictor that
decides in which low power mode to place the CPU when
the barrier is hit. On the other hand, our proposal studies the
impacts on energy consumption in scenarios where alternatives
to the spin loop itself (i.e. STM) are used.

The work in [21] proposes a memory-aware resource
allocation algorithm that minimizes energy consumption by
reducing contention conflicts while maximizing performance.
A Min-Min resource allocation algorithm [22] is used upon
application scheduling, which computes completion time for
each job on each core, then selects the one with the minimum
completion time. The application with the overall minimum
completion time is then stuck to the core.

In [23] transactional memories are used as a means for
supporting consistency in the execution of applications when
running on system with reduced voltage supply close to
transistors’ operating threshold, or even below it, for energy
saving purposes. The authors study how transactional memo-
ries can be combined with different error detection mechanism
suitable for detecting yield losses, hard errors, erratic bits,
and soft errors, and propose an analytic model to select what
is the best scope of the transactions and the transactions’
granularity. Differently from this work, we empirically study
how transactional memories can provide benefits on energy
consumption when running applications on regularly-powered
processing units.

III. REFERENCE ARCHITECTURES AND CONFIGURATIONS

We hereby present a discussion of the STM implementa-
tions and the self-adaptative configurations that we have used
to carry on our empirical study.

A. TinySTM

The basic setup of TinySTM [8] (which we have used as
a baseline configuration for our evaluation) implements the
Encounter-Time Locking (ETL) algorithm. It is an algorithm
essentially based on locks, which are acquired (on a per-word
basis) whenever a write operation is to be performed on a
shared variable. In particular, TinySTM relies on a shared array

of locks, where each lock is associated with a portion of the
(shared) address space. Upon a write operation, the transaction
identifies which lock is covering the memory region which
will be affected by the write, and atomically reads its value.
A lock value is composed by an integer number, the least
significant bit of which tells whether the lock is currently
owned by a running transaction. The remaining bits specify the
current version number associated with that particular memory
region. The writing transaction, therefore, reads the lock bit
and determines whether that memory region is already owned
or not. In the positive case, the transaction checks whether the
lock its owned by the transaction itself. If it is so, the new
value is directly written, otherwise for a specified amount of
time the transaction gets into a waiting state. In the negative
case, an atomic compare-and-swap (CAS) operation is used to
try to acquire the lock. A failure in the CAS operation indicates
that the lock has been (concurrently) acquired by another
transaction, so the execution of the write operation falls into the
first aforementioned case. The current version number stored
in the lock is used upon read operations, to check whether
the memory region has been updated by other transactions. In
particular, before reading, the transaction checks whether the
lock is owned, then reads the counter value, then performs
the read operation, and then reads the counter value again. If
between the two counter reads its value is not changed, then
the read value can be regarded as consistent.

We have used TinySTM relying on the write-back scheme
for the propagation of memory updates. It buffers all the
updates in a write log, which, upon commit operation, is
flushed to memory. This approach reduces the abort time and
simplifies guaranteeing consistency of read operations. ETL
has two main advantages [8]: On the one hand, by detecting
conflicts early it can provide a transaction throughput increase,
reducing the amount of wasted work executed by transactions.
On the other hand, read-after-writes can be handled efficiently,
providing a non-negligible benefit whenever write sets are large
enough.

B. TinySTM Adaptive Configurations

1) SAC-STM [14]: this algorithm exploits a machine-
learning based controller which regulates the amount of active
concurrent threads along the execution of the application.
Specifically, a neural network [24] is trained in advanced to
learn existing relations between the average wasted transaction
execution time (i.e. the average time spent by a thread execut-
ing aborted transactions for each committed transaction) and:
(i) a set of parameters representing the current workload profile
of the application, and (ii) the number of active concurrent
threads. The set of workload profile parameters includes the
average transaction read-set/write-set size, the average exe-
cution time of committed transactions and non-transactional
code blocks, and two indices providing an estimation of the
probability that an object being read/written by a transaction
is also written by other concurrent transactions. The neural
network is exploited by the controller to estimate the opti-
mal number of concurrent threads to be kept active. This is
done by evaluating the expected throughput as a function of
the application’s current workload and the number of active
threads k, with 1 ≤ k ≤ maxthread, where maxthread
is a system configuration parameter denoting the maximum

number of concurrent threads which can be activated1. The
controller also exploits a neural network to predict the system’s
hardware scalability as a function of the number of active
concurrent threads, of the time spent in transactions, and of
the time spent in non-transactional code. The optimal number
of threads is periodically re-estimated. In more detail, at the
end of each workload sampling interval, during which all
workload profile parameters are evaluated on the basis of
statistics collected through runtime workload measurements,
the controller performs new throughput estimations and then
activates only a certain number of threads so that throughput
is expected to be higher. We note that, in order to train the
neural networks, SAC-STM requires an initial profiling phase,
where statistics (to be exploited as training data) have to be
collected while varying the workload profile and the number of
active threads. The effectiveness of the concurrency regulation
depends on the prediction accuracy of the neural networks,
which, in turn, depends on the availability of training data
providing a good coverage of the actual domain of the neural
networks’ input parameters.

2) SCR-STM [15]: this algorithm is similar to SAC-STM,
except that, in place of machine learning techniques, an
analytic model is exploited by the controller to regulate the
concurrency level. Particularly, a parametric analytic model
specifically built for estimating STM applications’ perfor-
mance is exploited to predict the average transaction’s wasted
time as a function of the same parameters as in the case
of SAC-STM. SCR-STM also exploits a parametric analytic
model for predicting the system’s hardware scalability. Both
parametric models must be instantiated via regression analysis,
where the parameters are estimated by exploiting statistics
collected while varying the workload profile and the number
of active threads. However, as it has been shown, SCR-STM
typically requires very few statistics to instantiate the models
with respect to neural networks in SAC-STM. On the other
hand, the accuracy of the machine-learning based prediction
of SAC-STM typically outperforms the analytic model-based
prediction of SCR-STM when there are a large number of
statistics providing good coverage of the actual domain of the
neural networks’ input parameters.

3) ATS-STM: this algorithm is based on Adaptive Transac-
tion Scheduling (ATS) [13], a transaction-scheduling algorithm
relying on runtime measurement of the Contention Intensity
(CI). It is a dynamic average along the application execution,
and is re-calculated whenever a transaction commits or aborts
using the equation CIn = α·CIn−1+(1−α)·CC, where CIn
is the current value of CI , CIn−1 is the previous one, α is the
weight coefficient and CC is equal to 1 if the last executed
transaction has been committed, 0 otherwise. The value of α
is in between 0 and 1, determining how much CI is affected
by past transactional history. Each thread maintains its own
contention intensity. Before starting a new transaction, if the
current value of CI exceeds a given threshold, then the thread
stalls and the transaction is inserted within a queue shared
by all threads. Otherwise, the threads immediately execute the
transaction. Transactions stored inside the queue are serialized
and executed according to the FIFO order.

1This is usually set to the total number of available processing units/CPU
cores available in the system.

4) Shrink [25]: is another transaction-scheduling algo-
rithm, which is based on temporal locality, i.e. on the fact
that consecutive transactions in a thread access the same data
objects. Similarly to ATS-STM, in Shrink the scheduler is
activated if the transaction success rate is below a given
threshold. Yet, rather than serializing all transactions, a con-
tention probability is evaluated on the read- and write-sets.
Specifically, before starting a new transaction, an estimation
of the probability of write contention among the entries in
the predicted read-/write-sets is computed. This is done by
checking if there is an intersection between the predicted write-
set of (predicted) concurrent transactions and the union of the
read-set and the write-set of the transaction to be executed.
In the positive case, the new transaction must be serialized.
The predicted read-set of starting transactions is the union of
the read-sets of the last n executed transactions, where n is a
configuration parameter called locality window. The predicted
write-set of a transaction includes all the data objects written
by the same transaction during previous executions (if any,
otherwise the write-set in assumed to be empty).

C. R-STM

Robust Adaptivity STM (R-STM) [18] is a transactional
memory middleware which allows adaptivity on two different
sides. On the one hand, it implements a coarse-grained adap-
tivity system, that allows to change the STM implementation
being used during the execution of the application. On the
other hand, once a particular STM implementation is selected,
it allows to fine tune the execution parameters for an active
transaction. The selection of a particular STM implementation
is realized in a fast, efficient way via four function pointers.
When a thread decides to start switching to a different imple-
mentation, all the threads wait until in-flight transaction either
commit or abort. Then, all per-thread function pointers allow-
ing the access to the current STM implementation’s TMRead,
TMWrite, and TMCommit functions are updated to reflect the
selection of the new implementation. Finally, a global function
pointer to TMBegin is updated as well, allowing a newly
starting transaction to benefit from the re-selection. Transitions
happen when a specific API is called at any point from the
application, when a Mutex transaction determines (at commit
time) that it was blocked for too long, or when transactions
abort too often. We have evaluated R-STM when using the
extension presented in [26], which bases its adaptivity on a ML
algorithm. This algorithm is based on offline training to learn
relationships between the overall application throughput and
features like shared memory accesses, non-transactional work,
and write frequency. A simple runtime, ProfileTM, is used to
monitor (via a hardware tick counter) transaction running time,
while preventing concurrent execution of transactions, via a
fair ticket lock. This allows a faster transactional run. Using
the information learnt during the training phase, R-STM selects
an initial algorithm taking as input the required semantics of
the application. During the execution, three events can trigger
the reevaluation of the STM algorithm being used, i.e. when
a new thread is spawn, when a thread aborts more than 16
times, or when a thread block for more than 2048 cycles when
attempting to start a new transaction. The reevaluation of the
STM algorithm is supported by switching again on ProfileTM,
and executing N consecutive transaction to dynamically refine
the adaptivity policy.

IV. EXPERIMENTAL DATA

In this section we present the results of an experimental
study carried out to compare performance results and power
consumption of a selection of applications from the STAMP
benchmark suite [19] on top of the above described STM im-
plementations and adaptive configurations. The experimental
setups have been hosted by an HP ProLiant server equipped
with two AMD OpteronTM 6128 Series Processor, each one
having eight hardware cores (for a total of 16 cores), and 32
GB RAM, running a Linux Debian 6 distribution with kernel
version 2.7.32-5-amd64. This hardware architecture has been
used to run only our transactional applications, mimicking a
scenario where dedicated hardware is used to carry on scien-
tific experiments without concurrent tasks being scheduled by
the operating system (and thus affecting the overall results).
The selected STAMP applications are kmeans, intruder and
yada.

intruder is an application which implements a signature-
based network intrusion detection systems (NIDS) that scans
network packets for matches against a known set of intrusion
signatures. In particular, it emulates Design 5 of the NIDS
described in [27]. Three analysis phases are carried on in
parallel: capture, reassembly, and detection. The capture and
reassembly phases are each enclosed by transactions, which are
relatively short and show a contention level which is either
moderate or high, depending on how often the reassembly
phase rebalances its tree. Overall, the total amount of time
spent in the execution of transactions is relatively moderate.
Therefore, we expect that the reduction of energy consumption
is relatively limited, while allowing us to evaluate how much
the overhead induced by the different self-adaptive solutions
impacts on the overall execution performance.

kmeans is a transactional implementation of a partition-
based clustering algorithm [28]. A cluster is represented by
the mean value of all the objects it contains, and during
the execution of this benchmark the mean points are up-
dated by assigning each object to its nearest cluster center,
based on Euclid distance. This benchmark relies on threads
working on separate subsets of the data and uses transactions
in order to assign portions of the workload and to store
final results concerning the new centroid updates. Given the
reduced amount of shared data structures being updated by
transactions, in this benchmark it is more likely to incur in
logical contention when a larger number of threads is used
for the computation. Therefore, this application benchmark is
a good candidate to study how changing workload dynamics
can affect both performance and energy consumption when
scaling up a transactional application.

yada implements Ruppert’s algorithm for Delaunay mesh
refinement [29], which is a key step used for rendering graphics
or to solve partial differential equations using the finite-element
method. This benchmark discretizes a given domain of interest
using triangles or thetraedra, by iteratively refining a coarse
initial mesh. In particular, elements not satisfying quality
constraints are identified, and replaced with new ones, which
in turn might not satisfy the constraints as well, so that a
new replacement phase must be undertaken. This benchmark
shows a high level of parallelism, due to the fact that elements
which are distant in the mesh do not interfere with each other,
and operations enclosed by transactions involve only updates

 0

 10

 20

 30

 40

 50

 60

SAC-STM R-STM SCR-STM

T
ra

in
in

g
T

im
e

(h
rs

)

Fig. 1. Training Time in hours, intruder benchmark

of the shared mesh representation and cavity expansion. The
overall execution time of this benchmark is relatively long,
showing a high duration of transaction operations and a
significantly higher number of memory operations. Overall,
this is a good candidate application to measure the impacts of
power consumption when transactional memory middlewares
must manage a very high level of logical contention.

Figure 1 reports the training time (averaged over 5 different
runs) related to the intruder benchmark for all the configura-
tions which actually rely on pre-computed values to support
the re-selection of the number of active threads (namely, SAC-
STM, R-STM, and SCR-STM). By the results, it is clear that
all the approaches require a non-negligible time (all in the
order of some hours) to explore all the possible configurations
in order to determine the values of the coefficients internally
used to perform the re-selection. Moreover, we note that SAC-
STM has a training time which is more that twice the one
required by SCR-STM. Nevertheless, results in Figures 3, 4,
and 5 (which will be discussed later) show that SAC-STM
is far more precise in the re-selection of the active threads
with respect to the other two configurations. We emphasize
that, given a particular application, training time is a cost
which is paid only once. Therefore, if one application is non-
desultorily used, the benefit gained by relying on SAC-STM
(in terms of both performance and energy efficiency) can
quickly repay the cost needed by actual training. As for the
configurations which do not rely on any pre-computed value
(namely SCR-STM, Shrink-STM, and ATS-STM), in Figure 2
we present results (related again to the intruder benchmark)
associated with the time required by these approaches to
schedule a transaction. This is, therefore, a per-transaction cost,
which affects the overall throughput depending on the actual
transactional workload, which can be very different depending
on the application’s configuration. While SCR-STM shows the
smallest overhead, we note that this approach requires as well
a training time, as discussed before. Therefore, if an applica-
tion’s configuration exhibits a very high transactional profile,
SCR-STM has to compensate both its training time and its
scheduling time to provide effective benefits on performance
and energy consumption.

In Figures 3, 4, and 5, we report measurements related
to per-transaction energy consumption (in joule/Transaction),
Throughput/Energy consumption ratio, and overall applica-

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

SCR-STM Shrink-STM ATS-STM

S
ch

ed
ul

in
g

T
im

e
(m

s)

Fig. 2. Scheduling Time (per transaction) in µs, intruder benchmark

0.0

1.0

2.0

3.0

4.0

5.0

6.0

 2 4 6 8 10 12 14 16
Maximum number of concurrent threads

TinySTM
SAC-STM
SCR-STM

R-STM
Shrink-STM

ATS-STM

 0 100

 1 10-5

 2 10-5

 3 10-5

 4 10-5

 5 10-5

 6 10-5

 7 10-5

 8 10-5

 2 4 6 8 10 12 14 16

Po
w

er
 c

on
su

m
pt

io
n

(jo
ul

e/
tra

ns
ac

tio
n)

Maximum number of concurrent threads

TinySTM
SAC-STM
SCR-STM

R-STM
Shrink-STM

ATS-STM

0.0 100

5.0 105

1.0 106

1.5 106

2.0 106

 2 4 6 8 10 12 14 16

tra
ns

ac
tio

ns
/s

ec
on

d

Maximum number of concurrent threads

TinySTM
SAC-STM
SCR-STM

R-STM
Shrink-STM

ATS-STM

Fig. 3. Experimental results for the intruder benchmark

0.0

5.0

1.0

1.5

2.0

2.5

3.0

 2 4 6 8 10 12 14 16
Maximum number of concurrent threads

TinySTM
SAC-STM
SCR-STM

R-STM
Shrink-STM

ATS-STM

 0 100

 1 10-5

 2 10-5

 3 10-5

 4 10-5

 5 10-5

 6 10-5

 7 10-5

 8 10-5

 9 10-5

 2 4 6 8 10 12 14 16

jo
ul

e/
tra

ns
ac

tio
n

Maximum number of concurrent threads

TinySTM
SAC-STM
SCR-STM

R-STM
Shrink-STM

ATS-STM

0.0 100

2.0 105

4.0 105

6.0 105

8.0 105

1.0 106

1.2 106

1.4 106

1.6 106

 2 4 6 8 10 12 14 16

tra
ns

ac
tio

ns
/s

ec
on

d

Maximum number of concurrent threads

TinySTM
SAC-STM
SCR-STM

R-STM
Shrink-STM

ATS-STM

Fig. 4. Experimental results for the kmeans benchmark

tion throughput, associated with the above-discussed STAMP
benchmarks. We have measured energy consumption by rely-
ing on the pTop tool [30], which has been modified to allow
on-file statistics logging. pTop estimates the energy consump-
tion of a specific application2 indirectly through its resource
utilization. For each resource (in our study we consider CPU
and memory only) the application’s energy consumption is
evaluated as function of its operating states (e.g., read or
write for the memory) and its transitions across different
operating frequency states. We have explicitly configured our

2In case of multiple applications being concurrently run on a single machine,
pTop is able to gather per-process data by relying on Linux kernel Performance
Counters [31] management architecture.

0.0

2.0

4.0

6.0

8.0

1.0

1.2

1.4

1.6

 2 4 6 8 10 12 14 16
Maximum number of concurrent threads

TinySTM
SAC-STM
SCR-STM

R-STM
Shrink-STM

ATS-STM

 0 100

 2 10-4

 4 10-4

 6 10-4

 8 10-4

 1 10-3

 2 4 6 8 10 12 14 16

jo
ul

e/
tra

ns
ac

tio
n

Maximum number of concurrent threads

TinySTM
SAC-STM
SCR-STM

R-STM
Shrink-STM

ATS-STM

0.0 100

5.0 104

1.0 105

1.5 105

2.0 105

2.5 105

 2 4 6 8 10 12 14 16

tra
ns

ac
tio

ns
/s

ec
on

d

Maximum number of concurrent threads

TinySTM
SAC-STM
SCR-STM

R-STM
Shrink-STM

ATS-STM

Fig. 5. Experimental results for the yada benchmark

benchmarks relying on input data which avoid both disk and
network usage during application’s steady state. The average
per-transaction energy consumption—which is an index of how
much power is required by the application benchmark to com-
plete the execution of a single transaction— is computed, on
the basis of the the current level of parallelism (i.e., the number
of active threads). The Throughput/Energy consumption ratio
is a measure to express the speedup per unit of energy,
when considering that the unit of energy for committing a
transaction is the one employed by the sequential run. Hence
these curves express a kind of iso-energy speedup. Clearly,
for the sequential run this curve has constant value equal to
1. Therefore, the higher the value, the higher performance

we are obtaining, without affecting energy consumption in
the overall execution. This iso-energy speedup measurement
can be regarded as well as an index useful for QoS-related
assessment. In fact, it enables the system administrator to
quantify how much energy can be saved (e.g., by downscaling
the frequency associated with specific CPU cores running a
transactional application) without violating the SLA entered
into by customers and the provider.

The first graph in Figure 3 presents per-transaction energy
consumption for the intruder benchmark. Despite the fact that
in this benchmark the time spent in transactions is relatively
small, we can see that the basic configuration of TinySTM
shows a consumption which is from 2 to 7 times larger
than the other approaches. SCR-STM and SAC-STM present
the best results, although they are based on two different
approaches (namely an analytic and a ML-based approach).
This is related to the fact that both approaches are able
to capture the best degree of parallelism exposed by the
application, and therefore stick to a number of thread which
is the optimal one (around 8 threads). At the same time, SAC-
STM is able to capture dynamics related as well to non-
transactional code. While this does not have a great impact
on the overall per-transaction energy consumption (we recall
that the time spent in transactions in intruder is very reduced),
it does on the overall throughput (see third graph in figure 3),
where SAC-STM offers the best performance. This is related
as well to the fact that SAC-STM has no requirements to
recalculate the scheduling of transactions, as discussed before.
Nevertheless, in the second graph of Figure 3 we see that
the best Throughput/Energy consumption is asymptotically
shown by SCR-STM, due to the fact that it takes into account
only measurements associated with transactional execution.
Additionally, SCR-STM’s analytic model is implemented in
a way that the number of running threads finally selected is
always floored down. This implies that the overall throughput
is slightly lower than SAC-STM’s, but energy consumption is
reduced as well. This reduction is to an extent higher than
the throughput’s, so that the ratio of SCR-STM is better than
SAC-STM’s. Additionally, near the optimum we note that a
small enhancement in performance produces a non-negligible
increase in power consumption. This aspect is well captured
by the analytic model included in SCR-STM’s implementation.
At the same time, we see that if the number of available
threads is set below the optimum (i.e., 8 threads), the best
ratio is shown by either ATS-STM or plain TinySTM. This
is related to the fact that if the number of threads is below
the optimum, then the contention on data is not yet the
most significant impact factor on the overall performance and
energy consumption. Therefore, approaches which are based
on simple analytic methods (e.g., ATS-STM), or no approaches
at all (e.g., standard TinySTM), which do not waste CPU
cycles to perform additional housekeeping operations.

As for the kmeans benchmark, the high level of contention
related to the reduced amount of shared data present in
the application and the overall variable workload offered by
the application, show more fluctuations on the mean energy
consumption levels, as presented in the first graph of Figure 4.
R-STM and ATS-STM are able to capture parallelism-related
dynamics up to a certain number of threads (namely 12), but
then fail to select the best-suited configuration. Plain TinySTM
presents an energy consumption level which basically grows

with the number of available threads, due to the fact that
the contention level (mostly) linearly grows. An interesting
behaviour is shown by Shrink-STM, which oscillates between
very good and very bad energy consumption levels. This is
due to the fact that Shrink-STM is a scheduling approach
which is based on temporal locality, which is a relevant factor
in kmeans. In fact, the number of shared variables is very
reduced, and it is very likely that consecutive accesses will
involve the same data. Nevertheless, this is the same for all the
active threads, and therefore when the contention grows, it is
not sure that a time-based approach can compensate between
the linkeliness of working on the same data and interfering
with other threads, hence the oscillating results. Again, SAC-
STM and SCR-STM show the best results in terms of energy
consumption, and Throughput/Energy consumption ratio, as
expressed by the plot in the second graph of Figure 4. This
has a direct impact on the overall throughput, as shown by
the third graph of Figure 4. Nevertheless, the best result (in
terms of performance) is shown by R-STM. This is because
R-STM implements a coarse-grain adaptivity system, which
is activated before a fine-grained system. Due to the variable
workload shown by kmenans, R-STM is able to execute a
more immediate change in execution dynamics which, while
requiring slightly more energy, is more aggressive with respect
to performance enhancement.

yada shows us the effects of an application whose exe-
cution is both long and with a high level of contention. By
the results in the first graph of Figure 5, we can see that the
overall per-transaction energy consumption is slightly higher
if compared to the previous application benchmarks. Yet, the
differences between the approaches is very reduced. In fact, if
independently of the number of active threads the contention
level is very high, different approaches can have a very reduced
impact on the overall execution. This is even more clear if
we see that SAC-STM, which is an approach able to detect
the effects of non transactional code as well, determines that
the best configuration for executing the application is using
only one thread. This does not prove as the best choice in
terms of energy consumption, but as it can be seen by the
third graph of Figure 5, it shows the best throughput. An
interesting behaviour is shown by R-STM, which, from a
certain number of concurrent threads, shows a performance and
an energy consumption level which are both very degraded.
This is related to the fact that R-STM selects the overall
transactional algorithm, rather than the parameters of a single
algorithm. Therefore, it always uses all the available threads. In
this scenario, with a very high contention, hardware contention
can affect the overall execution with non-negligible secondary
effects. In fact, hardware contention impacts the efficiency of
both transactional and non-transactional code, with sensible
effects on power consumption, related, e.g., to waiting time
on memory bus.

By all the results, we can gather an important general result.
In fact, we have (again!) shown that the impacts on both perfor-
mance and energy consumption is somewhat related, so that
a configuration which shows a reduced energy consumption
is more likely going to behave in a more performing way.
Nevertheless, we have also clearly shown that in differentiated
configuration (i.e. both when the execution dynamics vary the
contention level of the workload, and when the contention
level is stable, being high or low), transaction scheduling

mechanisms are not sufficient for capturing the intrinsic de-
gree of parallelism. Therefore, if service providers are really
concerned about energy consumption of hosted applications,
and their overall performance, adaptative solutions become
mandatory. Of course, they require more computing power
before the actual application is deployed, but in the long run
the benefits shown by these approaches can fully repay the
initial cost.

V. CONCLUSION AND FUTURE WORK

In this paper we have presented an empirical study of
the effects on execution performance and energy consumption
of different self-adapting solutions regulating transactions’
scheduling and proper selection of concurrent threads, on
top of different STM middlewares. By the results, we have
shown that adaptivity is an essential building block for creating
STM systems which are energy efficient and that can offer a
performance level which is better (or competitive) with other
existing approaches.

REFERENCES

[1] P. Kurp, “Green computing,” Communications of the ACM, vol. 51,
no. 10, pp. 11–13, Oct. 2008.

[2] P. Ranganathan, “Recipe for efficiency: Principles of power-aware
computing,” Communications of the ACM, vol. 53, no. 4, pp. 60–67,
Apr. 2010.

[3] T. Moreshet, R. I. Bahar, and M. Herlihy, “Energy reduction in
multiprocessor systems using transactional memory,” in Proceedings
of the 2005 International Symposium on Low Power Electronics and
Design, ser. ISLPED. IEEE Computer Society, 2005, pp. 331–334.

[4] N. Shavit and D. Touitou, “Software transactional memory,” in Proc.
of the 14th Annual ACM Symposium on Principles of Distributed
Computing. ACM Press, Aug. 1995.

[5] A. Gautham, K. Korgaonkar, P. Slpsk, S. Balachandran, and K. Veezhi-
nathan, “The implications of shared data synchronization techniques
on multi-core energy efficiency,” in Proceedings of the 2012 USENIX
Conference on Power-Aware Computing and Systems, ser. HotPower.
USENIX Association, 2012, pp. 1–6.

[6] P. Romano, L. Rodrigues, N. Carvalho, and J. Cachopo, “Cloud-TM:
harnessing the cloud with distributed transactional memories,” SIGOPS
Operating Systems Reviews, vol. 44, no. 2, pp. 1–6, Apr. 2010.

[7] D. Dice, O. Shalev, and N. Shavit, “Transactional Locking II,” in Proc.
of the 20th International Symposium on Distributed Computing, 2006,
pp. 194–208.

[8] P. Felber, C. Fetzer, and T. Riegel, “Dynamic performance tuning
of word-based software transactional memory,” in Proc. of the 13th
ACM SIGPLAN Symposium on Principles and practice of parallel
programming, ser. PPoPP. ACM, 2008, pp. 237–246.

[9] M. P. Herlihy and J. E. B. Moss, “Transactional memory: architectural
support for lock-free data structures,” in Proc. of the 20th annual
international symposium on computer architecture, ser. ISCA. ACM,
1993, pp. 289–300.

[10] M. F. Spear, L. Dalessandro, V. J. Marathe, and M. L. Scott, “A com-
prehensive strategy for contention management in software transactional
memory,” SIGPLAN Notices, vol. 44, no. 4, pp. 141–150, Feb. 2009.

[11] Y. Lev, V. Luchangco, V. J. Marathe, M. Moir, D. Nussbaum, and
M. Olszewski, “Anatomy of a scalable software transactional mem-
ory,” in Proc. of the 4th ACM SIGPLAN Workshop on Transactional
Computing, ser. TRANSACT. ACM, 2009.

[12] M. Ansari, C. Kotselidis, K. Jarvis, M. Luján, C. Kirkham, and
I. Watson, “Advanced concurrency control for transactional memory
using transaction commit rate,” in Proc. of the 14th international Euro-
Par conference on Parallel Processing, ser. Euro-Par. Springer-Verlag,
2008, pp. 719–728.

[13] R. M. Yoo and H.-H. S. Lee, “Adaptive transaction scheduling for trans-
actional memory systems,” in Proc. of the twentieth annual symposium
on Parallelism in algorithms and architectures, ser. SPAA. ACM,
2008, pp. 169–178.

[14] D. Rughetti, P. Di Sanzo, B. Ciciani, and F. Quaglia, “Machine learning-
based self-adjusting concurrency in software transactional memory sys-
tems,” in Proc. of the 20th IEEE International Symposium On Modeling,
Analysis and Simulation of Computer and Telecommunication Systems,
ser. MASCOTS. IEEE Comp. Soc., Aug. 2012, pp. 278–285.

[15] P. Di Sanzo, F. Del Re, D. Rughetti, B. Ciciani, and F. Quaglia,
“Regulating concurrency in software transactional memory: An effective
model-based approach,” in Proceedings of the Seventh IEEE Interna-
tional Conference on Self-Adaptive and Self-Organizing Systems, ser.
SASO. IEEE Computer Society, Sep. 2013.

[16] D. Didona, P. Felber, D. Harmanci, P. Romano, and J. Schenker,
“Identifying the optimal level of parallelism in transactional memory
applications,” in NETYS, ser. Lecture Notes in Computer Science.
Springer, 2013, pp. 233–247.

[17] M. Salehie and L. Tahvildari, “Self-adaptive software: Landscape and
research challenges,” ACM Transactions on Autonomous and Adaptive
Systems, vol. 4, no. 2, pp. 14:1–14:42, May 2009.

[18] M. F. Spear, “Lightweight, robust adaptivity for software transactional
memory,” in Proceedings of the 22nd ACM Symposium on Parallelism
in Algorithms and Architectures, ser. SPAA. ACM, 2010, pp. 273–283.

[19] C. Cao Minh, J. Chung, C. Kozyrakis, and K. Olukotun, “STAMP:
Stanford transactional applications for multi-processing,” in Proc. of
the IEEE International Symposium on Workload Characterization, ser.
ISWC, Sep. 2008.

[20] J. Li, J. F. Martinez, and M. C. Huang, “The thrifty barrier: Energy-
aware synchronization in shared-memory multiprocessors,” in Pro-
ceedings of the 10th International Symposium on High Performance
Computer Architecture, ser. HPCA. IEEE Computer Society, 2004,
pp. 14–.

[21] F. Pinel, J. E. Pecero, P. Bouvry, and S. U. Khan, “Memory-aware
green scheduling on multi-core processors,” in Proceedings of the
39th International Conference on Parallel Processing Workshops, ser.
ICPPW. IEEE Computer Society, 2010, pp. 485–488.

[22] O. H. Ibarra and C. E. Kim, “Heuristic algorithms for scheduling
independent tasks on nonidentical processors,” Journal of the ACM,
vol. 24, no. 2, pp. 280–289, Apr. 1977.

[23] A. Cristal, P. Felber, C. Fetzer, D. Harmanci, A. Sobe, O. Unsal, J.-T.
Wamhoff, and G. Yalcin, “Leveraging transactional memory for energy-
efficient computing below safe operation margins,” in Proceedings of
the 8th ACM SIGPLAN Workshop on Transactional Computing, ser.
TRANSACT. ACM, Mar. 2013.

[24] T. M. Mitchell, Machine Learning, 1st ed. McGraw-Hill, 1997.
[25] A. Dragojević, R. Guerraoui, A. V. Singh, and V. Singh, “Preventing

versus curing: Avoiding conflicts in transactional memories,” in Pro-
ceedings of the 28th ACM Symposium on Principles of Distributed
Computing, ser. PODC. ACM, 2009, pp. 7–16.

[26] Q. Wang, S. Kulkarni, J. V. Cavazos, and M. Spear, “Towards applying
machine learning to adaptive transactional memory,” in Proceedings of
the 6th ACM SIGPLAN Workshop on Transactional Computing, 2011.

[27] B. Haagdorens, T. Vermeiren, and M. Goossens, “Improving the per-
formance of signature-based network intrusion detection sensors by
multi-threading,” in Proceedings of the 5th International Conference
on Information Security Applications, ser. WISA. Springer-Verlag,
2005, pp. 188–203.

[28] J. C. Bezdek, Pattern Recognition with Fuzzy Objective Function
Algorithms. Norwell, MA, USA: Kluwer Academic Publishers, 1981.

[29] J. Ruppert, “A delaunay refinement algorithm for quality 2-dimensional
mesh generation,” Journal of Algorithms, vol. 18, no. 3, pp. 548–585,
1995.

[30] T. Do, S. Rawshdeh, and W. Shi, “pTop: A Process-level Power Profiling
Tool,” in Proceedings of the Workshop on Power Aware Computing and
Systems, ser. HotPower. ACM, Oct. 2009.

[31] B. Sprunt, “The basics of performance-monitoring hardware,” Micro,
IEEE, vol. 22, no. 4, pp. 64–71, 2002.

