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Abstract—In this paper we explore machine-learning based
approaches for dynamically selecting the well suited amount of
concurrent threads in applications relying on Software Trans-
actional Memory (STM). Specifically, we present an approach
that dynamically shrinks or enlarges the set of input features
to be exploited by the machine-learner. This allows for tuning
the concurrency level while also minimizing the overhead for
input-features sampling, given that the cardinality of the input-
feature set is always tuned to the minimum value that still
guarantees reliability of workload characterization. We also
present a fully fledged implementation of our proposal within
the TinySTM open source framework, and provide the results
of an experimental study relying in the STAMP benchmark
suite, which show significant reduction of the response time
with respect to proposals based on static feature selection.

I. INTRODUCTION

Software Transactional Memory (STM) [1] is recog-
nized as a means for simplifying the development of par-
allel/concurrent applications by providing a programmer-
friendly alternative to traditional lock-based synchronization.
On the other hand, one major aspect to cope with is related
to the determination of the well suited degree of concurrency
(in terms of number of threads), which allows the overlying
application to reach optimal speedup values thanks to fruitful
parallelism exploitation. Particularly, STM-based applica-
tions are prone to thrashing phenomena due to excessive
rollbacks of transactions in case the data access pattern tends
to exhibit non-negligible conflict among concurrent transac-
tions and the degree of concurrency in the execution is too
high. On the other hand, for too low parallelism levels, the
achievable speedup may be suboptimal. Recent approaches
coping with this issue have been targeted at determining the
number of threads which allows for exploiting the available
computing resources (namely the available CPU-cores) at
the maximum extend still avoiding thrashing phenomena,
which leads to optimize the level of parallelism in the
execution and the achievable speedup. Along this path we
can find solutions ranging from analytical models [2], [4], to
heuristic-based schemes [5], to machine learning approaches
[8].

In this article we focus on machine learning approaches,
which exhibit the advantage of not relying on (strict) as-
sumptions in the workload profile, as instead requested
by pure analytical solutions. At the same time they are
sufficiently powerful to express/predict the effects of the
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concurrency degree on performance by accounting for the
workload features in an accurate manner.

On the other hand, one drawback of machine learning
is related to the need for constantly monitoring the set
of selected input features to be exploited by the machine
learner. This may give rise to non-minimal overhead, espe-
cially when considering that STM applications may exhibit
fine-grain transactions, natively requiring a (very) reduced
amount of CPU cycles for finalizing their task. To cope
with this issue, we present an approach where the set of
input features exploited by the machine learning based per-
formance model is dynamically shrunk. In other terms, the
complexity of both the workload characterization model and
the associated performance model is (dynamically) reduced
to the minimum that still guarantees reliable performance
prediction. This leads to reducing the amount of feature
samples to be taken for performance prediction along any
wall-clock-time window, hence reducing the actual overhead
for performance prediction.

The present work builds on our previous proposal in [8],
which presents a Self-Adjusting-Concurrency STM (SAC-
STM) architecture, based on neural networks, implemented
within TinySTM [9], a popular open-source STM layer
written in C language. SAC-STM relies on monitoring a stat-
ically identified set of input features which may potentially
have an impact on performance (in relation to the degree
of concurrency). Hence, it represents a baseline which has
been only used as a demonstrator of the viability of machine
learning based approaches for concurrency regulation in
STM systems. Compared to SAC-STM, the proposal in
this paper provides a fully innovative methodology for the
dynamic selection of the input features to be monitored and
exploited by the performance model. Such a methodology
is of general use, hence being not limited to extend the
capabilities of SAC-STM. Specifically, it allows for design-
ing/constructing concurrency regulation architectures, suited
for integration with generic STM frameworks, which are
capable of providing minimal (or very reduced) overhead
levels.

We also present a real implementation of our proposal,
still integrated with TinySTM, and provide the results of an
experimental study based on the STAMP benchmark suite
[10]. By the data we show how the proposed approach can
reduce the execution time of the benchmark applications,
with respect to SAC-STM, by up to 60% when running the
applications on top of a 16-core HP Proliant machine

The remainder of this paper is structured as follows. In



Section II we discuss related work. A recap on SAC-STM
is provided in Section III. The innovative approach to the
dynamic selection of the input features to be sampled within
the machine learning scheme is described in Section IV,
together with the implementation within TinySTM. Section
V reports experimental data.

II. RELATED WORK

We focus in this section on solution explicitly targeted at
the identification/selection of the optimal concurrency level
in STM systems. The works in [4], [2], [6], [3] present
analytical models for the evaluation of the performance of
STM applications as a function of the number of concurrent
threads and other workload configuration parameters. The
approach we study in this paper is related to an orthogonal
methodology since is is based on (black-box) machine learn-
ing. Also, only a subset of the above works (e.g. [3]) provide
models able to predict the performance of STM systems
in case of applications exhibiting run-time changes in the
execution profile (e.g. in expected number of data objects
read/written by transactions). The approach we investigate
has this ability.

The proposal in [5] presents a black-box approach based
on the hill-climbing scheme in order to increase or de-
crease the level of concurrency within the system. Par-
ticularly, the approach determines whether the trend of
increasing/decresing the concurrency level has positive ef-
fects of the observed throughput, in which case the trend
is maintained. However, differently from our proposal, no
direct attempt to capture shifts in the transaction profile,
and its effects on performance (depending on the level of
parallelism) is done.

Finally, one work having close relations with the present
proposal is the one in [8], where the machine learning based
SAC-STM architecture has been exploited exactly for the
purpose of dynamically regulating concurrency within the
system. As hinted, this approach represents a baseline, which
does not entail solutions for minimizing the cost of the
machine learning based optimization process. Hence, it opti-
mizes the level of concurrency, while still not guaranteeing
the optimal performance since the housekeeping overhead
is not minimized. In this work we exactly tackle the later
aspect, hence the present proposal can be considered as
orthogonal and complementary to the one in [8].

III. OVERVIEW OF SAC-STM

SAC-STM relies on the Neural Network (NN) machine
learning method [7], which provides the ability to approxi-
mate various kinds of functions, including real-valued ones.
By relying on a learning algorithm, the NN can be trained
to approximate an unknown function f exploiting a data set
{(i,o)} (training set), which is assumed to be a statistical
representation of the function f such that, for each element
{(i,o)} ,o = f (i) + δ, where δ is a random variable.

The architectural organization of SAC-STM is depicted in
Figure 1. The native application layer embeds the STM layer,

Figure 1. SAC-STM architectural organization

which is in charge of processing STM transactions along any
of the active threads. Any transaction starts with a begin
operation and ends with a commit operation. During the
execution of the transaction, a thread can perform read/write
operations on shared data objects, and can execute code
blocks where it does not access shared data objects (e.g.
it accesses variables within its own stack). Read (written)
shared data objects are included in the transaction read-set
(write-set). If a conflict between two concurrent transactions
occurs, one of the conflicting transactions is aborted and re-
started. The execution flow of each thread is characterized by
the interleaving of transactions and non-transactional code
(ntc) blocks, as is typical of both real-life applications and
STM benchmarks [8].

The following three additional subsystems are included in
SAC-STM: A Statistics Collector (SC); A Neural Network
(NN); A Control Algorithm (CA). At the end of each sam-
pling interval, whose duration is configurable, CA periodi-
cally gets from SC a set of values characterizing the current
application workload, which are used as input features to
NN. On the basis of the input, NN can provide predictions
on the expected value of the transaction wasted time (i.e. the
average time spent executing aborted transaction instances),
as a function of hypothesized levels of concurrency (number
of threads) for the application execution. Particularly, CA
queries NN to get these predictions and determines the
number of threads that is expected to provide the highest
application throughput, and keeps active such a number of
threads during the subsequent workload sampling interval.

A. The Selected Input Features

As hinted, the set of input features selected by SAC-
STM for characterizing the workload, namely those that
are the object of the sampling process, is defined statically.
Particularly, the target features have been identified in such
a way to cover the set of workload-related parameters
that are typically accounted for by performance studies
of concurrency control protocols for transactional systems
(see, e.g., [11], [12]). In other words, the idea behind the
static feature selection process in SAC-STM is to exploit
a knowledge base (provided by the literature) related to
workload aspects that can, more or less relevantly, impact
the performance provided by concurrency control protocols.
This approach gave rise to selecting 6 workload-related input
features, for which SC provides the corresponding estimated



values. We list these features below:
• the average size of the transaction read-set rss;
• the average size of the transaction write-set wss;
• the average execution time tt of committed transac-

tions;
• the average execution time ntct of ntc code-blocks;
• the read/write affinity rwa, namely the probability that

an object read by a transaction is also written by other
transactions;

• the write/write affinity wwa, namely the probability that
an object written by a transaction is also written by
other transactions.

B. Performance Prediction and Concurrency Regulation
Performance prediction in SAC-STM is based on the

function wtime = f(rss, wss, rwa, wwa, tt, ntct, k), where
wtime is the average transaction wasted time when running
with k active threads. The goal of NN is to build a function
fN approximating f . To this end, NN is trained using
a set of samples collected by observing the application
workload and the transaction wasted time during an initial
training phase. Any training sample (i,o) is such that
i = (rsts, ws
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where we use the superscript t to indicate that they are
related to the training phase. At the end of each sampling
interval, SC provides to CA the values of rss, wss, rwa,
wwa, tt and ntct. Then, NN is exploited to calculate wtime

for each k such that 1 ≤ k ≤ maxthread, where maxthread
is the maximum amount of concurrent threads admitted for
executing the application.

Overall, the set {(wtime, k), 1 ≤ k ≤ maxthread} of pre-
dictions is used to estimate the number m of concurrent
threads which is expected to maximize the application
throughput. Particularly, m is identified as the value of
k for which k/(wtime + tt + ntct) is maximized, where
(wtime + tt + ntct) is the predicted average execution time
between commit operations of two consecutive transactions
along a same thread when there are k active threads.

IV. DYNAMIC FEATURE SELECTION

A. Rationale
Our rationale for the definition of an innovative approach

where, depending on the current execution profile of the
application, the set of input features to be sampled can
be dynamically shrunk, or enlarged towards the maximum
cardinality, is based on noting that:
A: some feature values may show small variance during a

given time window, and/or
B: some feature values may be statistically correlated (also

including the case of negative correlation) to the values
of other features during a given time window.

Particularly, we can expect that (significant) variations of
wtime, if any, do not depend on any feature exhibiting small
variance over the current observation window. On the other
hand, in case of existence of correlation across a (sub)set
of different features, the impact of variations of the values

of these features on wtime can be expected to be reliably
assessed by observing the variation of any individual feature
in that (sub)set. In these scenarios, it can be possible to
build an estimating function of wtime which, compared
to f , relies on a reduced number of input parameters.
Consequently, NN has to estimate a simpler fN function.
On the other hand, the relevance of excluding specific input
features lies on the potential for largely reducing the run-
time overhead associated with application sampling, as we
shall demonstrate later on in the paper.

For the reference set {rss, wss, rwa, wwa, tt, ntct}, it
comes out natural to think about the following expectations
in relation to the correlation of subsets of the input features:

• the size of the transaction read-set/write-set may be
correlated to the transaction execution time. In fact,
the number of read (write) operations executed by the
transaction directly contributes to the actual transaction
execution time. If this reveals true, tt and one feature,
selected between rss and wss, can be excluded;

• read-write and write-write conflict affinities may ex-
hibit correlation since they are both affected by the
distribution of the write operations executed by the
transactions. If this reveals true, rwa or wwa can be
excluded.

Overall, we have some expectation for the actual oc-
currence of the condition expressed by point B for at
least a subset of the input features. Further, depending on
the actual application logic, generic sets of features could
result correlated along some time window. Additionally,
still depending on the application logic, any of the features
in the set {rss, wss, rwa, wwa, tt, ntct} may exhibit small
variance along some time window, thus being candidate to
be excluded from the relevant set of input features.

To determine at what extent such an expectation ma-
terializes, and to observe whether the scenarios in points
A and B can anyhow materialize independently of the
initial expectation, we have performed an experimental study
relying on the complete suite of STM applications specified
by the STAMP benchmark [10]. Particularly, we report in
Table I data related to the observed correlation among the
different features. All data refer to serial executions of the
applications, which have been carried out on a single core of
a 16-core HP ProLiant NUMA machine equipped with two
2GHz AMD Opteron 6128 processors and 64GB of RAM.
This same platform has been exploited for experiments
whose outcomes are reported in the remainder of the paper.

We note that serial execution is adequate for the purpose
of this specific experimentation since it is only tailored to
determine workload features that are essentially independent
of the degree of concurrency in the execution. Specifi-
cally, given that correlation and variance are computed over
feature-samples, each one representing an average value
(over a set of individual samples taken along one observation
window entailing 4000 transactions in this experiment),
for the only parameters that can be potentially affected
by hardware contention (e.g. bus-contention) in case of



real parallelization, namely tt and ntct, the corresponding
spikes (if any) would be made relatively irrelevant by the
aggregation of the individual samples within the window
related average.

The data confirm that the rationale behind our proposal
can find justification in the actual behavior of STM appli-
cations, when considering the STAMP suite as a reliable
representation of typical STM applications’ dynamics. In
fact, by Table I, we can observe that the correlation between
rwa and wwa is higher than 0.8 for 4 applications (out of the
8 belonging to the STAMP suite), the correlation between
rss and tt is higher than 0.8 for 3 (out of 8) applications,
and the correlation between wss and tt is higher than 0.8
for 2 (out of 8) applications. Further, although not explicitly
reported in tabular form for space constraints, we observed
very reduced variance for rwa and/or wwa for many of the
applications, and reduced variance for rss and/or wss in a
few cases.

B. Pragmatic Relevance: Run-time Sampling Costs

The pragmatic relevance of an approach where the sam-
pled input features to be provided to the NN gets shrunk
to a minimal set, which is anyhow sufficient to capture the
workload characteristics, is clearly related to the possibility
to reduce the sampling overhead. An alternative approach to
reducing such an overhead would be to make an individual
thread (over a set of m concurrent threads) to take samples
and to provide statistical data while the application is run-
ning. This would delay the critical path execution of 1 out of
m threads. However, this approach exhibits two drawbacks
making it unsuitable for generic settings:

• The production frequency for the samples gets reduced.
Hence, catching any variation in the execution profile
of the application may occur untimely.

• STM applications may devote specific threads to run
specific transactions (e.g., for locality along the thread
execution and cache efficiency improvement [14]).
Hence, taking samples along a single thread does not
provide a complete picture of the application work-
load, even in case the sampling thread is dynamically
changed over time (e.g. in round-robin fashion).

Further, significant overhead reduction might be achieved via
the above approach only for values of m which are larger
than the optimal degree of concurrency for the specific ap-
plication. Overall, the typical scenario for reliable sampling
and workload characterization (and timely determination
of shifts in the workload) consists of taking samples for
evaluating the input features to be provided to NN along the
execution of all the active concurrent threads.

For this reference scenario, we have experimentally eval-
uated the sampling overhead for STAMP applications while
varying (a) the number of concurrent threads (between 1 and
16), and (b) the set of selected input features. The overhead
value has been computed as the percentage of additional
time required to complete the execution of the benchmark
application in case sampling is activated, compared to the

ssca2
tt ntct rss wss rwa wwa

tt 1 - - - - -
ntct 0,259 1 - - -
rss -0,166 0,190 1 - - -
wss -0,166 0,190 1 1 - -
rwa -0,024 -0,638 -0,136 -0,136 1 -
wwa -0,001 -0,629 -0,210 -0,210 0,992 1

intruder
tt ntct rss wss rwa wwa

tt 1 - - - - -
ntct 0,781 1 - - - -
rss 0,914 0,940 1 - - -
wss 0,577 0,924 0,848 1 - -
rwa 0,516 -0,377 -0,540 -0,330 1 -
wwa 0,023 -0,350 -0,269 -0,559 0,322 1

genome
tt ntct rss wss rwa wwa

tt 1 - - - - -
ntct 0,012 1 - - - -
rss 0,352 0,902 1 - - -
wss -0,742 0,492 0,158 1 - -
rwa -0,584 -0,202 -0,397 -0,422 1 -
wwa 0,040 -0,027 -0,009 -0,049 0,064 1

kmeans
tt ntct rss wss rwa wwa

tt 1 - - - - -
ntct 0,141 1 - - - -
rss 0,434 0,194 1 - - -
wss -0,524 0,106 0,481 1 - -
rwa -0,245 -0,729 0,072 0,177 1 -
wwa -0,072 -0,723 0,090 0,008 0,968 1

yada
tt ntct rss wss rwa wwa

tt 1 - - - - -
ntct 0,705 1 - - - -
rss 0,860 0,619 1 - - -
wss 0,828 0,617 0,946 1 - -
rwa -0,417 -0,183 -0,508 -0,552 1 -
wwa -0,400 -0,173 -0,491 -0,542 0,999 1

vacation
tt ntct rss wss rwa wwa

tt 1 - - - - -
ntct 0,989 1 - - - -
rss 0,507 0,520 1 - - -
wss 0,345 0,315 -0,487 1 - -
rwa -0,167 -0,179 0,811 0,657 1 -
wwa -0,572 -0,535 0,262 -0,954 -0,483 1

labyrinth
tt ntct rss wss rwa wwa

tt 1 - - - - -
ntct 0,993 1 - - - -
rss 0,992 0,991 1 - - -
wss 0,992 0,992 0,999 1 - -
rwa -0,521 -0,500 -0,495 -0,492 1 -
wwa -0,332 -0,277 -0,273 -0,267 0,714 1

bayes
tt ntct rss wss rwa wwa

tt 1 - - - - -
ntct 0,141 1 - - - -
rss 0,434 0,194 1 - - -
wss -0,524 0,106 0,481 1 - -
rwa -0,245 -0,729 0,072 0,177 1 -
wwa -0,072 -0,723 0,090 0,007 0,968 1

Table I
INPUT FEATURES CORRELATION FOR STAMP APPLICATIONS

time required for executing the application in case sampling
is not activated. The platform used for the experiments is
the same 16-core HP ProLiant machine exploited in the
study presented in Section IV-A. In Figure 2 we report the
overhead values for the case of the intruder application. For
the other STAMP applications we got results with similar
trends, hence for conciseness they are not explicitly reported.

One observation we can make when analyzing the results
is that, when considering the case of the maximum set of
sampled input features, the overhead tends to scale down
while the number of concurrent threads gets increased.
However, the most significant reduction of the overhead is
observed exactly for the cases where the set of input features
for which sampling is active gets shrunk. Particularly, when
shrinking the monitored features from 6 to 4 or 2, we get
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Figure 2. Sampling overhead for the Intruder benchmark while varying
the set of sampled features

up to 90% reduction of the overhead for smaller numbers
of concurrent threads (namely up to 6). This is highly
significative when considering that the optimal degree of
concurrency for intruder has been shown to be around 5/6
when running on the same hardware platform used in this
study [8]. In other words, the optimal parallelism degree
is achieved for a number of concurrent threads that does
not allow to afford the overhead due to sampling in case
no optimized scheme for shrinking the set of features to be
sampled is provided, which is exactly the target of this paper.

C. Shrinking vs Enlarging the Feature Set

As pointed out in previous sections, shrinking the set
of features to be provided in input to the neural network
based performance model can rely on run-time analysis of
variance and correlation. However, the application execution
profile may vary over time such in a way that excluded
features become again relevant. As an example, two generic
features x and y, which exhibited correlation in the past,
may successively start to behave in an uncorrelated manner.
Hence, the excluded feature (x or y), if any, should be re-
included within the input set, since both of them are again
relevant for reliably characterizing the workload.

Detecting this type of scenarios, in order to support the
dynamic enlarging of the feature-set cannot be based on run-
time input features analysis (e.g. analysis of the correlation),
since the feature that was excluded from the input set (for
overhead reductio purposes) has been no more sampled.
Hence, no fresh information for that feature is available
to detect whether variance and/or correlation with other
features have changed.

To overcome this problem, our proposal relies on evalu-
ating whether the current wasted-time prediction by NN is
of good quality or not (compared to the real one observed
at run-time during the successive observation window). In
case the quality is detected to be low, the input feature
set can be enlarged towards the maximum in order to
improve again workload characterization. In other words,
low quality prediction by NN is imputable in our approach
to the reliance on an input feature-set currently expressing

a wrong/not-complete characterization of the workload.
The index we have selected for determining the quality

of the prediction is the weighted root mean square error
(WRMS) of the NN wasted time prediction vs the corre-
sponding real (measured) value. To provide quantitative data
showing that WRMS can be considered as a reliable metric,
we have performed additional experiments where the effects
of concurrency regulation performed by the original version
of SAC-STM have been compared with the observed values
of WRMS. This experimentation has been carried out by
varying both the number of hidden nodes within the NN used
by SAC-STM and the number of iterations of the used NN
training algorithm. Variations of these parameters allowed
us to generate differentiated configurations where the NN
may exhibit differentiated prediction qualities.

The results by this experimentation are reported in Figure
3, still for the case of the intruder benchmark application.
However, also in this case, the data obtained with different
benchmarks show very similar trends. From the results, we
see how, when the execution time achieved by regulating
concurrency with SAC-STM is reduced, the corresponding
values of WRMS look very reduced. This tendency is noted
independently of the amount of hidden nodes, as soon as
at least a minimum amount of iterations of the learning
algorithm are carried out. Also, the value of WRMS tends
to decrease vs the number of iterations of the learning algo-
rithm. An exception is noted for the case of 32 hidden-nodes,
where some spikes are observed for both the benchmark
execution time and WRMS, in correspondence to some non-
minimal values for the number of iterations. This may be
attributed to over-fitting phenomena that may arise when the
number of hidden nodes in NN is excessively large. On the
other hand, with too low values of the number of hidden-
nodes, such as with 4 hidden nodes, the value of WRMS
tends to decrease slowly, which leads concurrency regulation
to become less effective in reducing the actual execution
time for the benchmark. However, the data show that for
configurations with reasonable amounts of hidden nodes,
the reliability of WRMS as the means for expressing the
relation between the quality of the waste of time prediction
by NN and the final performance achieved while regulating
concurrency on the basis of that prediction is actually
assessed.

D. The Actual Dynamic Feature Selection Architecture

To support dynamic selection of relevant features to be
sampled and exploited for concurrency regulation, we need
to rely on a set of NN instances (not a unique instance as
instead it occurs in SAC-STM), each one able to manage
different feature-sets and properly trained on that set. These
NN instances can be trained in parallel during the early
phase of application processing. Then a so called Parameter-
Scaling-Algorithm (PSA), implemented within an additional
module integrated in SAC-STM, can be exploited for dy-
namically scaling-up/down the set of features (also referred
to as parameters in the final architecture) to be taken into
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Figure 3. Relation between the final achieved performance and WRMS for intruder

account for concurrency regulation along the sub-sequent
execution window. Thus PSA is aimed at determining the
NN instance to be used in relation to the selected parameters’
set. The schematization of the architecture entailing dynamic
feature selection capabilities is shown in Figure 4.

To select the best suited NN instance, and hence the sub-
set of features that can be considered as reliably represen-
tative of the workload actual behavior, PSA performs the
following tasks: (1) It periodically (e.g. at the end of the
observation window) evaluates the quality of the prediction
by the currently in use instance of NN (representative of the
currently in use set of features) via estimation of WRMS; (2)
It periodically analyzes the statistics related to the currently
monitored features, to determine variance and correlation.

If the calculation of WRMS in point 2 gives rise to a value
exceeding a specific threshold, then PSA enlarges the set of
input features, to be exploited for concurrency regulation
in the subsequent observation window, to the maximum
set formed by the 6 features originally used in SAC-STM,
namely maxSet = {rss, wss, rwa, wwa, tt, ntct}. It then
issues configuration commands to SC, CA and NN in order
to trigger their internal reconfiguration, leading to work
with maxSet. This means that any query from CA while
performing concurrency regulation during the subsequent
observation window needs to be answered by relying on
the NN instance trained over maxSet.

On the other hand, in case the WRMS value computed
in point 1 does not exceed the threshold value, the analysis
in point 2 is exploited to determine whether the currently in
use set of features can be shrunk (and hence to determine
whether a scale-down of the set of sampled parameters can
be actuated). Particularly, if the variance observed for a
given feature is lower than a given threshold, the feature
is discarded from the relevant feature-set to be exploited in
the next observation window. Then for each couple of not
yet discarded features, PSA calculates their correlation and,
if another threshold is exceeded, one of them is discarded
too. The non-discarded features form the optimized (shrunk)
set of parameters to be exploited for concurrency regulation
in the subsequent observation window, which we refer to as
minSet. Then, similarly to what done before, PSA issues
configuration commands to SC, CA and NN in order to
trigger them for operating with minSet.

The values that have been used for configuring threshold
parameters and the length of the observation window for the

actual experimentation of the final architecture, whose out-
comes are reported in the next section, have been selected on
the basis of empirical observations. Procedures for autom-
atizing the configuration are planned as future work along
this same research path. Finally, in the new architecture in
Figure 4, all the tasks associated with concurrency control
regulation, which are performed by the modified versions of
SC, CA and NN, and by the added PSA module, are carried
out off the application critical path. Specifically, they are
executed along different, low priority threads, which spend
most of their time in the waiting state. Hence, intrusiveness
of these threads is extremely limited, as we will also show
in Section V via experimental data.

V. EXPERIMENTAL EVALUATION

In this section we present the results of an experimental
study aimed at evaluating the effectiveness of our proposal.
The provided data are related to experiments carried out
by still running applications from the STAMP benchmark
suite on top of the 16-core HP ProLiant machine that
has been exploited for the previous reported experiments.
As for STAMP, we selected three applications, namely in-
truder, ssca2 and vacation, since they exhibit quite different
execution profiles, hence being representative test cases.
Further, we also provide experimental data in relation to a
modified version of vacation, properly configured to stress
(and thus further evaluate) the innovative capabilities by the
architecture deriving from our proposal. In Figure 5 we list
the statically configured values for the platform parameters,
which have been used for the experiments.

In Figure 7 we show the results achieved with the in-
truder benchmark. In particular, we report the benchmark
execution time while varying the number of CPU-cores
allowed to be used for application execution. This is reflected
into a maximum value for the number of threads running
the application. In fact, in our study we adhere to the
common practice of avoiding the usage of more application
threads than the available CPU-cores, which is done in order
to avoid suboptimal execution scenarios for STM systems
characterized by excessive context-switch overhead [13]. We
note that the original version of TinySTM always exploits
all the allowed to be used CPU-cores, since it does not entail
any concurrency regulation scheme. On the other hand, both
SAC-STM (which is taken as a reference together with
TinySTM) and the new architecture we have provided, which
we refer to as Dynamic-Feature-Selection STM (DFS-STM)



Figure 4. Extended SAC-STM architecture

variance thresholds
ssca2 intruder vacation mod. vacation

rss 4 50 600 340
wss 2 3 16 3
rwa 5 · 10−5 0,018 6 · 10−6 10−4

wwa 5 · 10−5 2, 5 · 10−5 1, 2 · 10−4 10−4

correlation thresholds
ssca2 intruder vacation mod. vacation

all param. 0,85 0,85 0,85 0,85
variance and correlation analysis window

ssca2 intruder vacation mod. vacation
#transactions 4 · 105 4 · 105 2 · 105 4 · 105

concurrency regulation interval
ssca2 intruder vacation mod. vacation

#transactions 4000 4000 4000 4000

Figure 5. Parameters configuration for the performance tests

ssca2 intruder
DFS-STM 25% 18%
TinySTM 25% 09%

genome kmeans
DFS-STM 54% 23%
TinySTM 32% 18%

yada vacation
DFS-STM 23% 40%
TinySTM 19% 7%

labyrinth bayes
DFS-STM 32% 51%
TinySTM 23% 33%

Figure 6. Minimum achieved percent-
age of ideal speedup

in the rest of this study, actuate concurrency regulation.
Hence, they both lead the application to use a variable
amount of threads over time, which ranges from 1 to the
maximum value admitted for the specific experimentation
point. By the data, the TinySTM curve shows that the
benchmark reaches its minimum execution time with static
concurrency level set to 5. Beyond this value, data con-
tention brings the application to pay large penalties caused
by excessive transaction rollback. Thus, the performance
delivered by TinySTM rapidly decreases when running the
application assuming more than 5 CPU-cores. Conversely,
SAC-STM and DFS-STM provide the same performance
achievable with the optimal degree of concurrency for any
value of the maximum number of threads in the interval
[5-16]. Hence, they correctly regulate concurrency to the
optimal level, even when more CPU-cores are available.
However, by dynamically shrinking the set of input features
to be sampled, DFS-STM allows up to 30% reduction of
the benchmark execution time. Hence, it reveals effective in
significantly reducing the overhead associated with the static
feature-selection approach used by SAC-STM.

The performance data for scca2, reported in Figure 8,
look somehow different. Particularly, the TinySTM curve
reveals that no thrashing occurs, even when running the
application by relying on all the 16 available CPU-cores.
This means that, for this benchmark, concurrency regulation
cannot be expected to improve performance significantly.
However, the results show SAC-STM pays a relevant sam-
pling cost (with no particular revenue from the concurrency
regulation process, as hinted above), which leads it to deliver
performance from 87% to 60% worse than the one delivered
by TinySTM, depending on the maximum allowed number
of concurrent threads. Such an overhead is fully removed
by DFS-STM, which allows delivering the same identical
performance as TinySTM (still with no advantage from
concurrency regulation, for the reasons explained above).
We note that the overhead reduction, beyond indicating the
effectiveness of dynamically shrinking the set of features to
be sampled, also indicates null intrusiveness of the additional
tasks performed by DFS-STM, such as the execution of PSA.

Figure 9 shows the results for the standard version of
vacation. Also in this case we reach the optimum per-
formance with 5 threads. Beyond this value, TinySTM
exhibits rapidly decreasing performance, just for the reasons

explained above. Again, SAC-STM and DFS-STM allow
regulating the concurrency level to the best suited value.
However, SAC-STM shows significant overhead. Hence,
DFS-STM reduces the execution time by about 30%.

All the benchmark configurations that have been con-
sidered so far are characterized by phase-based execution
profiles, with very few changes along the executon. In order
to evaluate the DFS-STM with highly dynamic workloads,
the modified version of vacation has been exploited. Es-
sentially, vacation emulates a travel reservation system,
where customers can reserve flights, rooms and cars. The
fraction of transactions accessing each one of the three
types of items is fixed over time. This is representative
of scenarios where the popularity of the different types of
items does not change over time. We modified this feature
in order to emulate scenarios where the item popularity can
show significant changes according to a periodic basis. We
note that this kind of scenarios are prone to take place
in relation to real-life events (e.g. associated with relevant
promotional sales or new product launches). In the modified
version of vacation, the fractions of transactions accessing
the three types of items periodically changes. Specifically,
the fraction of transactions accessing car-items changes over
time according to the curve depicted in Figure 10. The
remaining fraction is equally split into transactions accessing
flight and room items.

For this workload, we show in Figure 10 how the number
of input features, selected by DFS-STM as relevant, changes
over time. These results refer to an execution where we
allow a maximum number of concurrent threads equal to
8. We note that, whenever the mix of transactions remains
quite constant over time (e.g. up to 17 seconds of the
execution, or in the interval between 22 and 27 seconds of
the execution), only two parameters (specifically tt and ntct)
are selected. Conversely, whenever the mix of transactions
rapidly changes (e.g. in the interval between 17 and 22
seconds of the execution, or between 27 and 32 seconds),
which leads to increase the variance and/or un-correlation of
some workload features, the number of parameters grows to
4 (specifically including tt, ntct, wss, rss). The throughput
achieved with both SAC-STM and DFS-STM is shown on
the right of Figure 10. Also in this case DFS-STM achieves
a remarkable performance improvement with respect to
SAC-STM. For completeness, the benchmark execution time
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Figure 7. Results for intruder
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Figure 8. Results for scca2
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Figure 9. Results for vacation
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Figure 10. Parameters and throughput variation over time for the modified vacation benchmark
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Figure 11. Execution time for the mod-
ified vacation benchmark

while varying the maximum number of concurrent threads
for the case of the modified vacation benchmark is depicted
in Figure 11, which again shows the relevant gain that can be
achieved by DFS-STM over SCA-STM thanks to the reduc-
tion of the overhead for supporting concurrency regulation.
Finally, in Figure 6 we report the minimum percentage of the
ideal speedup (over serial execution of the same application
on a single CPU-core) which is achieved by DFS-STM and
by TinySTM when considering variations of the number of
CPU-cores between 1 and 8. For all the applications of the
STAMP suite DFS-STM generally guarantees much higher
percentage values of the ideal speedup, which again indicates
its ability to efficiently control the parallelism degree by both
avoiding thrashing phenomena and inducing very reduced
feature sampling overhead.

VI. SUMMARY

We presented an innovative approach for dynamically
selecting the input features to be exploited by machine
learning based performance models aimed at supporting
concurrency regulation in STM systems. The approach relies
on runtime analysis of variance and correlation of workload
characterization parameters, and on feedback control on the
quality of performance prediction achieved with shrunk sets
of features. The final target is the reduction of the overhead
for sampling the features. A real implementation of the
proposal within the open source TinySTM framework has
been presented and evaluated.
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