
IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 1

Analysis, Classification and Comparison of
Scheduling Techniques for Software

Transactional Memories
Pierangelo Di Sanzo

Abstract—Transactional Memory (TM) is a practical programming paradigm for developing concurrent applications. Performance is a
critical factor for TM implementations, and various studies demonstrated that specialised transaction/thread scheduling support is
essential for implementing performance-effective TM systems. After one decade of research, this article reviews the wide variety of
scheduling techniques proposed for Software Transactional Memories. Based on peculiarities and differences of the adopted
scheduling strategies, we propose a classification of the existing techniques, and we discuss the specific characteristics of each
technique. Also, we analyse the results of previous evaluation and comparison studies, and we present the results of a new
experimental study encompassing techniques based on different scheduling strategies. Finally, we identify potential strengths and
weaknesses of the different techniques, as well as the issues that require to be further investigated.

Index Terms—Transactional Memory, Transaction Scheduling, Concurrent Applications, Performance Optimization.

F

1 INTRODUCTION

The recent proliferation of multi-core systems has ex-
acerbated the need for developing concurrent applications
allowing to exploit hardware parallelism. In this context,
Transactional Memory (TM) [1] emerged as an effective
programming paradigm, and has largely drawn the atten-
tion of both academia and industry. Retrieving the idea of
database transactions, the TM paradigm was born with the
aim of providing programmers with a level of abstraction to
hide the thread synchronization complexity. Traditionally,
programmers use mechanisms such as locks, semaphores or
monitors, to avoid interferences between concurrent threads
which execute code blocks performing shared data accesses
(e.g. critical sections). However, this kind of approach is
error-prone, and the correctness of the code is complex
to verify, particularly when fine-grained synchronization is
required for improving scalability. TM simplifies the devel-
opment of concurrent applications, allowing programmers
to use transactions to synchronize threads while accessing
shared data. At run-time, the TM implementation layer
ensures atomic and isolated executions of transactions, and
transparently implements fine-grained data access synchro-
nization.

Software Transactional Memories (STMs) [2] repre-
sent the implementation via software libraries of the TM
paradigm. After the release of the first popular STM, called
DSTM [3], which is dated back to 2003, TM appeared as
an interesting approach, encouraging a vast number of
research studies. Notably, various studies focus on schedul-
ing techniques for STMs. Indeed, STMs may suffer from
performance degradation due to transaction conflict rate. In
STMs, transactions are speculatively executed, and conflicts
on concurrent data accesses are resolved by aborting and

• P. Di Sanzo is with the Department of Computer, Control, and Manage-
ment Engineering, Sapienza University of Rome.
E-mail: disanzo@dis.uniroma1.it.

restarting one of the conflicting transactions. This specula-
tive approach allows the application performance to take
advantage of hardware parallelism of multi-core architec-
tures. On the other hand, when the conflict rate grows up,
the wasted time due to processing of aborted transactions
might increase to the point that the performance no longer
benefits from additional transaction parallelism. Even, this
phenomenon may lead to thrashing, a situation where the
performance drastically goes down due to the large amount
of wasted work caused by excessive transaction aborts.

Scheduling techniques aim at optimizing the perfor-
mance of TM applications by proactively controlling the
transaction concurrency. A specific component called sched-
uler, which is integrated in the TM system, implements
a scheduling strategy for deciding when a transaction, or
a thread executing transactions, is allowed to run. Over
the last decade, the variety of choices in the design of
scheduling techniques encouraged researchers to explore
many alternative solutions, leading to the development
of several and very different techniques. Today, literature
offers techniques based on various types of strategies,
such as feedback control strategies [4], [5], [6], [7], [8],
[9], prediction-driven strategies [10], [11], reactive strategies
[12], [13], [14], and strategies based on performance models
of STM applications [15], [16], [17], [18]. Some techniques
use transaction scheduling strategies [4], [10], [11], while
other techniques use thread scheduling strategies [5], [15].
Further, scheduling techniques differ in the target set of
transaction features [10], [19] and/or system performance
parameters of TM applications [4], [15], [20].

This article offers a detailed literature analysis, and it
classifies and compares scheduling techniques for STMs.
We provide a specific description of each technique, and
we discuss the outcomes of the existing evaluation and
comparison studies. Further, we present the results of a
new experimental study that we conducted to compare

0000–0000/00/$00.00 c© 2017 IEEE Published by the IEEE Computer Society

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 2

techniques that use the different scheduling strategies that
we identify in our classification. Finally, we identify the
potential strengths and weaknesses of the different types
of strategies, the limitations of the existing techniques and
the current open issues.

This article sums up the outcome of research work on
STMs also to support future research on scheduling tech-
niques for Hardware TM (HTM). Indeed, the TM hardware
support recently offered by some commercial processors (as
Intel Haswell processors [21]) is encouraging research also
on scheduling techniques for HTMs. Notably, even though
HTMs differ in some basic aspects from STMs, research
work on scheduling techniques for STMs can represent an
important reference point for HTMs too.

The rest of this article is structured as follows. Section
2 focuses on the background. In Section 3, we present a
classification of the scheduling techniques and we describe
the characteristics of the different classes. Section 4 presents
a literature analysis. In Section 5, we discuss the results
of the previous experimental studies that compare differ-
ent scheduling techniques. The results of our experimental
study are presented and analysed in Section 6. Section 7
reports the overall conclusions and the current open issues
about scheduling techniques for STMs. Finally, in Section 8,
we introduce and discuss the case of HTMs.

2 BACKGROUND

This section provides the reader with the background on the
TM programming paradigm and on scheduling techniques
in TMs. Then, we provide a brief overview of the most used
benchmark applications in literature studies on TMs.

2.1 The TM Programming Paradigm
As discussed, the TM programming paradigm originated
from the need of simplifying the development of concurrent
applications, where it is required to synchronize threads
while concurrently accessing shared data. TM provides pro-
grammers with a simple interface allowing to use transac-
tions as a synchronization construct. The programmer sim-
ply uses the notation ATOMIC{} (or a couple of statements
like TM BEGIN and TM END) to mark code blocks to be
executed as atomic and isolated transactions. The set of
shared data read (written) by a transaction is called read-set
(write-set). Two concurrent transactions conflict if the read-
set or the write-set of a transaction intersects the write-set
of the other transaction. Conflicts are automatically handled
in TM. STMs use specific mechanisms to detect conflicts,
such as read/write locks or read validation [22]. A conflict is
resolved by aborting and restarting one of the conflicting
transactions. The component in charge of resolving conflicts
is called Contention Manager (CM). STMs typically ensures
opacity [23], an isolation criterion that is stronger than ser-
alizability, which is the one traditionally used in database
systems.

2.2 Scheduling in TMs
Transactions that conflict and get aborted carried out wasted
work. Scheduling techniques use specific strategies to pre-
vent conflicts and, consequently, to reduce the amount of

wasted work. In the case of transaction scheduling strategies
(we refer to as transaction scheduling), the scheduler can
temporarily block the execution of transactions to prevent
potential conflicts. In the case of thread scheduling strategies
(we refer to as thread scheduling), the scheduler can change
the number of active threads executing transactions to op-
timize the transaction concurrency. Basically, as opposed
to conflict resolution, the scheduling approach is proactive
[10], since it aims at preventing conflicts rather than resolv-
ing them after they occurred.

Scheduling techniques for STMs use online strategies,
since the workload profile of a TM application may be
unknown in advance. Also, given that the workload profile
may change along the application execution, scheduling
techniques often rely on adaptive strategies, where the
scheduler is sensitive to variations, e.g., of the workload
profile and/or of some application performance parameters
(e.g. application throughput).

From a theoretical perspective, the scheduling problem
in TM has been principally studied to analyse the competitive
ratio [24], i.e. the worst-case ratio between the time for
executing a set of transactions with an online scheduler
and the time with an optimal, clairvoyant scheduler that
knows in advance all characteristics of the (future) workload
(such as start time, execution time and read-/write-sets
of all transactions). As an example, in [24] it has been
demonstrated that a lower bound for the competitive ratio
of a deterministic transaction scheduler is Ω(s), where s is
the number of shared data accessed by transactions. Subse-
quently, theoretical studies have been extended to the case
of some contention management and scheduling algorithms
(e.g. [10], [25], [26]). In some cases, the achieved results
have been used to understand theoretical limits of some
scheduling strategies (e.g. in [10]).

2.3 Benchmarks

Various benchmark applications for STMs exist, includ-
ing both Micro-benchmarks and Complex Benchmarks. Micro-
benchmarks are applications where transactions execute
simple operations on common data structures (e.g. insertion,
extraction and deletion of elements of a data structure).
Examples of micro-benchmarks include RBTree, Hash Ta-
ble, Sorted Linked List, RandomGraph and LFU-Cache.
Complex benchmarks mimic the behaviours of applications
where transactions execute more elaborated operations.
Some of the most popular complex benchmarks are: (i)
Lee-TM [27], an application which builds circuit maps for
printed boards using the Lee’s routing algorithm [28], (ii)
STAMP [29], a benchmark suite with eight applications in
different domains (Bayes - bayesian network, Genome -
gene sequencing, Intruder - network intrusion detection,
Kmeans - data clustering, Labyrinth - path routing in a
maze, Scca2 - efficient graph representation, Vacation - travel
reservations, and Yada - Delaunay mesh refinement), (iii)
STMBench7 [30], a benchmark derived from CAD/CAM
applications, where transactions read and update data struc-
tures consisting of a set of graphs and indexes.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 3

3 CLASSIFICATION AND FEATURES OF SCHEDUL-
ING TECHNIQUES

We classify scheduling techniques on basis of the adopted
type of scheduling strategy. A classification scheme is shown
in Figure 1. In the following, we describe the peculiarities of
the different types of techniques of our classification.

Heuristic-based Techniques. These techniques use
heuristic strategies, i.e. strategies based on methods (also
said heuristics) that aim at “guessing” the “right” decisions.
Thus, they do not guarantee to converge to the optimal
solution. However, given the number and the complexity of
factors involved in the scheduling problem, heuristic meth-
ods often represent a practical and low-overhead solution.
Heuristic-based techniques can be distinguished as follows:

• Feedback-driven techniques are based on feedback-driven
strategies and implement the typical closed-loop
scheme used for controlling the state or the output of
a dynamic system [31]. A target performance param-
eter of the application (e.g. transaction throughput
[7] or transaction commit ratio [6]) is routed back
as input to the scheduler and is used for deciding
the action to be performed. As an example, in the
thread scheduling technique proposed in [7], the
scheduler monitors the throughput of the application
and uses a strategy inspired by the hill climbing
search [32]. Specifically, it continuously increments or
decrements the number of active threads in order to
find the configuration ensuring the highest through-
put.

• Prediction-driven techniques use predictive strategies
for increasing the probability of making the right
decision. As an example, in [10] the scheduler makes
decisions on the basis of the predicted read-/write-
sets of transactions that are going to run. It relies
on the assumption of temporal locality of transaction
data access patterns, i.e. there is a high probability
that data sets that will be accessed by new transac-
tions reflect data sets accessed by recently executed
transactions.

• Reactive techniques adopt reactive strategies, where the
scheduler comes in action after that a transaction has
been aborted to avoid repeated conflicts. For example,
if a transaction a gets aborted due to a conflict with
a transaction b, the scheduler delays the re-start of
a until b completes. These types of strategies rely
on the assumption that data accessed by an aborted
transaction are likely the same that will be accessed
during the subsequent transaction re-execution. In
such a case, restarted transactions may likely conflict
with the same (still running) transactions with which
they have conflicted in the past. An example of
reactive technique is presented in [13], where the
scheduler changes the execution order of conflicting
transactions to serialize them after a conflict.

• Mixed heuristic-based techniques use mixed strategies
for taking advantage of different heuristics in front of
different transaction profiles. For example, the sched-
uler proposed in [19] uses a lightweight feedback-
driven technique when the average length of trans-
actions is below a given threshold. If the length over-

comes the threshold, it switches to a more complex
heuristic, which is based on the estimation of the
conflict probability between subsets of transactions.

Model-based Techniques. These techniques use strategies
based on performance models of the applications. These
models allow to calculate performance indicators of an
application (e.g. transaction throughput) depending on: (i)
a set of workload features (such as the transaction profiles),
and (ii) one or more parameters controlled by the scheduler.
An example of such a scheduling parameter is the maxi-
mum number of transactions [18] or threads [15] admitted
to concurrently run. At run-time, the scheduler uses the
performance model for what-if analysis purposes, i.e. to
estimate, based on the current workload profile, how the
performance of the application would change as a function
of the controlled parameter(s). This allows the scheduler
to find out the parameter configuration which is expected
to provide the best performance. Model-based techniques
can be distinguished on the basis of the nature of the
performance models, i.e:

• Machine Learning-based techniques use performance
models build on Machine Learning (ML) methods
[33]. A learning algorithm takes as input a dataset
which (partially) represents existing relations be-
tween the workload profile (input of the model) and
the target performance parameters (outputs of the
model). Then, the algorithm generates an instance of
a ML model allowing to calculate these parameters
as a function of inputs.

• Analytical Model-based techniques rely on performance
models built via mathematical equations (e.g. [34]),
which are solved at run-time to calculate the target
performance parameters.

• Mixed Model-based techniques use models built via
different modelling approaches. An example is the
technique presented in [35], which uses both an
analytical or a ML-based performance model.

Besides the scheduling strategy, there are other features it
is worth considering when analysing scheduling techniques
for STMs, such as the input features and the tuning features.

Input features. Scheduling techniques may use input
features to monitor at run-time the state of the system,
allowing to implement adaptive strategies. Typically, these
features include performance parameters of the application
(e.g. transaction commit rate, transaction execution time,
wasted processing time due to aborted transactions) and/or
specific information related to the workload profile (e.g.
read- and write-set of transactions).

Tuning features. Scheduling techniques may offer tun-
ing features, allowing the user to tune some parameters
which affect scheduling decisions. As an example, in some
techniques ([4], [10]) the user can set a reference thresh-
old for the transaction conflict ratio, based on which the
scheduler decides whether activating the scheduling policy
or not. Other techniques (e.g., [5]) require the user to set the
length of a sample interval for timing the gathering of run-
time statistics. Tuning features can be used by the user to
optimize the behaviour of the scheduler in front of different
workload profiles.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 4

Fig. 1. Classification of Scheduling Techniques.

4 OVERVIEW AND ANALYSIS OF SCHEDULING
TECHNIQUES

In this section, we present and discuss the scheduling tech-
niques proposed in literature. We follow the classification
scheme we introduced in Section 3. For each technique,
we also present the results of the experimental studies
that compare the performance of the scheduler with the
baseline. The latter refers to the base STM implementation
devoid of scheduling support, where the scheduler has been
integrated for experimental purposes. Experimental studies
that compare different techniques are discussed in Section
5. Relevant details about all scheduling techniques that we
mention are summarized at the end of this section in Table
1.

4.1 Feedback-driven Techniques

ATS. Adaptive Transactional Scheduling (ATS) [4], [36] is the
first transaction scheduling technique for STMs. ATS uses
the Contention Intensity (CI) as a feedback parameter. CI
is calculated individually for each thread using a dynamic
average. Specifically, upon the thread commits or aborts a
transaction, it is calculated as: CI = α·CIprev+(1−α)·CC,
where CIprev is the previous value of CI, and CC is set
equal to 0 (1) if the transaction commits (aborts). α has
a value between 0 and 1, and affects the weight of the
past transaction execution history of the thread. When CI
is above a given CI threshold, the scheduler serializes trans-
actions executed by the thread with respect to transactions
executed by other threads. Transactions to be serialized are
inserted in a global shared queue.
Experimental study. ATS was implemented in RSTM [37],
a C++ TM library supporting transactions on shared ob-
jects. Experiments were conducted on a 2-core and a 8-core
machine, using five micro-benchmarks: RBTree, HashTable,
LinkedList, RandomGraph and LFU-Cache. Each applica-
tion was run with up to 32 thread. CI threshold was set
equal to 0.5. With the 2-core machine, α was set equal to 0.3,
while, with the 8-core machine, equal to 0.5. These values
are the ones that provided the best average performance.
Average results, calculated over all runs of all applications,
show that with the 2-core machine ATS provides a speed-
up between 1.3 and 1.5 while changing the number of
concurrent threads. With the 8-core machine, the speed-up
is between 1.1 and 1.4. However, ATS does not provide
benefits for all applications. In the case of LinkedList, the
performance is penalized. Additionally, overall results show

that performance improves only when using more threads
than the number of available cores.

Ansari et al. 2008 and PoCC. The first thread scheduling
technique was proposed by Ansari et al. [5]. This technique
aims at controlling the Transaction Commit Ratio (TCR), i.e.
the fraction of committed transactions over the total number
of executed transaction runs. The scheduler changes the
number of active threads in order to keep TCR within a tar-
get range. A parameter named sample interval (SI) establishes
the length of a single step of the control loop executed by
the scheduler. For each step, the scheduler calculates TCR,
then decrements (increments) the number of active threads
if TCR is above the upper (below the lower) threshold of the
target range. The authors investigate four different policies.
The first policy (called SimpleAdjust) activates or deactivates
one thread per step and keeps SI fixed. The second policy
(ExponentialInterval) extends the first one by halving the SI
if TCR is out of the target range, otherwise SI is doubled.
The third policy (ExponentialAdjust) changes the number of
active threads proportionally to the difference percentage
between the TCR and the target threshold when TCR is
out of the target range. The last policy (ExponentialCombined)
combines ExponentialInterval and ExponentialAdjust.

In [6], Ansari et al. proposed another policy, P-only
Concurrency Control (PoCC), with the aim of improving
responsiveness and robustness of the scheduler in front of
TCR variations. PoCC uses a target value (setPoint) for TCR,
rather than a range. Further, the number of threads to be
activated/deactivated for each step changes proportionally
to the current number of active threads.
Experimental study. The proposed scheduler was imple-
mented in DSTM2 [3], a JAVA based STM which offers var-
ious contention management algorithms. The experimental
study with the four original policies was conducted using
Lee-TM. It was run on a 4 x dual-core machine, using 30%
and 60% as range thresholds and 20 seconds as initial value
of SI. Runs were executed with 1, 2, 4 and 8 threads. Results
show, on average, a speed-up between 1.14 (with Expo-
nentialInterval) and 1.18 (with ExponentialAdjust), a 0.76
speed-up as a worst case and 2.47 as a best case. PoCC has
been evaluated also with Genome, Kmeans, Vacations and
StepChange are. In this case, setPoint was set equal to 70%,
and SI = 1s. Results show that, for all execution scenarios,
PoCC provides a speed-up similar to the best policy among
the ones proposed in the previous study. With respect to the
best case when running the application with a static number
of threads, PoCC shows a slowdown equal to 5%. However,

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 5

results show that the main advantage of PoCC is the ability
to reduce variance of the application execution time over
multiple runs of the application (variance is reduced up to
31% with respect to the best case with the other policies).
Further, PoCC reduces the average resource usage (by 24%)
and the wasted work (by 16%) over the next best policy, i.e.
ExponentialCombined.

Chan et Al. 2011. The work presented in [7] proposes
a technique that controls the maximum number of transac-
tions, say m, allowed to concurrently run. When a thread
is going to run a new transaction, it stalls if there are m
running transactions. The authors present two alternative
policies to tune m. Throttle policy uses the transaction com-
mit ratio. At the end of each sample interval, it decrements
m if the ratio drops below a specific threshold. Conversely,
m is decremented when the ratio overcomes the threshold
and at least one thread has stalled during the previous
sample interval. Probe policy uses the transaction commit
rate (transaction throughput) and the hill climbing search
that we already mentioned in Section 3. Specifically, by
continuously incrementing and decrementing m it tries to
discover the value for which the throughput curve has a
peak.
Experimental study. The scheduler was implemented in
TinySTM. Experiments were conducted on top of a machine
with 2 x quad-core processors with hyper-threading, using
STAMP benchmark suite. By experimental results, there is
no significant performance improvement with respect to the
baseline when the number of threads is less or equal to
the number of physical cores, i.e. 8., except for one appli-
cation (Bayes). Really, for some applications the throughput
is penalized. On the other hand, with more threads than
physical cores (where generally the throughput curve drops
down due to contention on physical resources) the scheduler
reduces the performance loss. Average results over all sce-
narios demonstrate that Probe performs better than Throttle,
providing a performance improvement of 12.4% vs. 11.1%.

Weighted Adaptive Concurrency Control. More recently,
Ansari presented another TCR-based technique, Weighted
Adaptive Concurrency Control [8], a technique that selects
which thread have to be activated or deactivated depend-
ing on the their own TCR. Particularly, he introduced the
notion of expected TCR, i.e. the global TCR that would be
achieved when only threads of a given subset are active. The
author investigates four policies to find the subset with the
expected TCR as much as close to setPoint: 1) WBEST: this
policy sorts threads by individual TCR, then incrementally
selects threads to be deactivated (activated) starting from the
one with the lowest (higher) TCR, until the expected TCR
starts diverging from setPoint. 2) WFIT: is similar to WBEST,
except that it does not stop when the expected TCR starts
diverging, but also checks if by activating/deactivating
some other threads the expected TCR is closer to setPoint. 3)
WOPTIMAL: calculates the expected TCR that for all permu-
tations of inactive (active) threads, then actives (deactivates)
the set of thread for which the TCR is closest to setPoint.
4) WCOMPLETE: is similar to WOPTIMAL, except that it
explores all possible permutations of all threads (both active
and inactive).
Experimental study. The scheduler was implemented in
DSTM2. In addition to benchmark applications used in the

study on PoCC, two synthetic benchmarks, RBTree and
SkipList were used. The experimental study was executed
on top of a 2 x 8-core machine and varying the number of
initial threads between 2 and 16. By results, the proposed
techniques improved speed-up over 10% in the most of the
experimental scenarios, and in some cases up to 30%. No
one of the alternative policies performs definitively better
than others.

F2C2-STM. The study in [9] describes Flux-Based
Feedback-Driven Concurrency Control for STMs (F2C2-
STM), that uses a control algorithm similar to the one based
on the hill climbing search proposed by Chan et Al. 2011 [7].
However, F2C2-STM controls the number of active threads
rather then the number of transactions allowed to con-
currently run. Also, F2C2-STM introduces an initial phase
(inspired to slow-start phase of TCP congestion control),
where the application starts with 2 active threads, that are
exponentially incremented until the measured throughput
starts decreasing. Then, the number of active threads is
always incremented or decremented by 1.
Experimental study. F2C2-STM was implemented on
TinySTM. It was evaluated with STAMP on a 4 x 8-cores
machine. With the experimental setting used in this
study, Labyrinth, Genome and Ssca2 showed to be fully
scalable (i.e. the speed-up increases up to 32 concurrent
threads). With these applications, the performance with
F2C2-STM is on average slightly penalized. Intruder, Yada,
Kmeans and Vacation showed limited scalability (i.e. the
speed-up starts decreasing with less then 32 concurrent
threads). In this case, F2C2-STM clearly performs better,
avoiding performance loss due to high concurrency while
incrementing the number of concurrent threads. In these
scenarios, F2C2-STM improved performance with respect
to the best static configuration of the baseline by up to 10%.

Discussion As evidenced by our presentation, the pro-
posed feedback-driven techniques use quite simple strate-
gies, where decisions depend on a single input feature
(the feedback parameter) and/or some (tunable) thresholds.
Some of them differ only in a few details (e.g. Chan et Al.
2011 vs F2C2-STM). Nevertheless, we note that the simplic-
ity is an advantage of these techniques, since this reduces the
intrusiveness of the scheduler (e.g., few scheduler metadata
are required) and allows to keep the run-time overhead low.
This is favourable especially with low contention. Indeed,
in such a case, a scheduler can do little to improve the
performance. Rather, it should not cause slowdown due to
its overhead.

One point to note is that in the case of techniques that use
tunable thresholds (e.g. ATS and POCC) the effectiveness of
the scheduler may depend on the goodness of the selected
thresholds’ values, which in turn depends on the workload
profile of the application. As an example, a given TCR target
range may be suitable for some workload profiles, while it
may be sub-optimal in other cases. Accordingly, with these
techniques, the user should to be able to select the proper
configuration.

Some feedback-driven techniques rely on exploration-
based approaches, such as the hill climbing search in F2C2-
STM and the Probe policy in Chan et Al. 2011. One disadvan-
tage of these approaches is that the scheduler has to execute

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 6

continuous exploration steps. Exploration is still required
even after that the peak throughput has been found, since
the workload profile may change along the application
execution (e.g., see experimental data presented in [9]). The
results is that the scheduler may keep a sub-optimal setting
for a non-minimal time of the application execution due
to the exploration. This disadvantage could be partially
counteracted by dynamically regulating the duration of the
exploration step after the peak throughput is found. In any
case, this problem has not been addressed in any of the
above-mentioned studies.

4.2 Prediction-Driven Techniques

Shrink. Shrink [10] uses a heuristic strategy, supported by a
prediction scheme based on the temporal locality assumption
(that we already mentioned in Section 3). The read-set of
a transaction which is going to be executed by a thread is
predicted on the basis of data read by the last n executed
transactions by the same thread, where n represents the
locality window. Specifically, if a data item has been read
by the previous i-th transaction executed by the thread, a
parameter named confidence is incremented by a constant ci
(confidence constant). When confidence overcomes a threshold
(confidence threshold), the data item is added to the predicted
read-set. Write-set is predicted only for re-starting transac-
tions, and it is assumed to include data belonging to write-
set of the last aborted run of the transaction. Upon (re-
)starting, transactions are serialized if the predicted data sets
show that a potential conflict may occur with some concur-
rent transaction. To reduce the scheduler overhead with low
contention, Shrink comes in actions for a thread only when
its transaction success ratio is below a threshold (success
threshold). Further, Shrink takes advantage of a heuristic
called serialization affinity, according to which the probability
of serializing a transaction should be proportional to the
amount of contention. Thus, it activates the scheduling
policy with a probability proportional to the number of
transactions waiting to be serially executed.
Experimental study. Shrink was integrated in TinySTM and
SwissTM [38] and was evaluated using STAMP, STMBench7
and RBTree on a 4 x dual-core machine, running applica-
tions with up to 24 concurrent threads. The following setting
was used: n = 4, c1 = 3, c2 = 2, c3 = 1, confidence
threshold = 3 and success threshold = 0.5. The temporal locality
assumption was validated through a set of experiments
executed with STAMP and STMBench7. Results show an
average prediction accuracy of 70% for STAMP applica-
tions. For STMBench7, read-set prediction accuracy varies
between 30% (for write dominated workloads) and 80%
(for read dominated ones), and it is around 70% for write-
set. As regards performance, results show that, generally,
applications do not take advantage of Shrink when running
with a number of threads less or equal to the number
of cores. On the other hand, with more threads, Shrink
preforms better. In the case of SwissTM with STMBench7
and RBTree, it improves performance in some scenarios. For
TinySTM with STMBench7 and STAMP, Shrinks partially
prevents the performance loss of the baseline, that rapidly
drops down while incrementing the number of threads. In a
few cases, Shrink outperforms the peak performance of the

baseline. In the worst cases scenario for the baseline, where
the throughput drops down close to zero, Shrink improves
performance by up to 32 times.

SCA. Speculative Contention Avoidance (SCA) was pro-
posed in [11]. The presented study defines contention locality
the likelihood that an aborted transaction conflicts again
during the subsequent run. SCA relies on a mechanism
based on saturating counters, similarly to branch predictors
used in pipelined microprocessor [39]. In SCA, the saturat-
ing counters are used to estimate the contention locality,
thus for predicting whether a restarted transaction is likely
to conflict again. Each thread has a saturating counter
(SC) and a contention bit (CB). Two different prediction
polices are proposed. With the first policy (reset SC), when
a transaction aborts (commits), CB is set to 1 (0) and SC is
incremented by one (is set to zero). With the second policy
(decrement SC), SC is decremented by one when a transaction
aborts. A transaction is serialized upon starting if CB is
equal to 1 and SC is above a given threshold, that means
that the transaction is predicted to conflict.
Experimental study. SCA was incorporated in TL2 [22] and
was evaluated with Bayes, Kmeans, Labyrinth, Ssca2 and
Vacation. Experiments were executed only on top of a
simulated server with 2 x 8-core, running up 64 concurrent
threads. Six different configurations of SCA were used,
varying SC from 0 to 2, with both reset SC and decrement SC
policy. Threshold was set equal to 1. Results on prediction
accuracy over all experiments show that it varies from 25%
to 99%. As for performance results, only aggregate results
are presented, thus they not allow to verify the effectiveness
of the scheduler depending on the number of concurrent
threads. They show that SCA reduces the application execu-
tion time with respect to the baseline from 37% (for Bayes) to
82% (for Kmeans). Decrement SC policy generally performs
better than reset SC. However, the presents results

Heber et Al. In [40], the authors investigate how serializa-
tion influences performance of CMs in STMs. The presented
study analyses various optimization mechanisms to reduce
the phenomenon of mode oscillation, which may lead to
performance degradation due to continuous activations a
deactivations of transaction serialization. Also, the study in-
troduces a scheduling technique that serializes the execution
of a transaction after that it has been aborted k consecutive
times. Essentially, the rationale behind this technique is that
if a transaction is observed to conflict k consecutive times
then the probability to conflict again is predicted to be high.
Accordingly, it could be more convenient to execute the
transaction in isolation.
Experimental study. Since the study focuses on differentiated
aspects that can affect the performance of STMs, only a
few experimental data related to the proposed scheduling
technique are shown. The scheduler was implemented in
RSTM and was evaluated with CBench [40], RandomGraph
and Swarm [41], running up to 32 concurrent threads on a
8 x 4-core machine. Only results for the cases of k = 1 and
k = 100 are presented. In both cases, the proposed scheduler
performs better than the baseline with all benchmarks. Fur-
ther, results show that, on average, the scheduler achieves
better results with k = 1 rather than with k = 100.
Discussion Basically, prediction-driven techniques try to
exploit the knowledge gained by observing data access

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 7

patterns or conflict patterns of transactions. They use more
complex strategies with respect to feedback-driven tech-
niques. Anyway, the assumptions behind the proposed
prediction-driven techniques are based on empirical obser-
vations, and these may not be valid to the same extent
for any application. Indeed, the experimental results with
both Shrink and SCA show that the prediction accuracy
significantly changes across different applications. One fac-
tor that can negatively affect the prediction accuracy of
strategies based on the observation of the recent transaction
data access patterns is the frequency of write operations. In
fact, write operations often modify data structures traversed
by transactions. This may lead to variations of the access
patterns of transactions which access the modified data
structures right after. This phenomenon is also evidenced
in [10]. In conclusion, the proposed prediction-driven tech-
niques work well in the case of applications with read-
dominated workloads and/or with workload profiles that
change relatively slowly over time. Finally, we note that also
all the proposed prediction-driven techniques use tunable
parameters that affect the decision of the scheduler, and
that have to be configured by the user (e.g. Shrink uses six
different parameters).

4.3 Reactive Techniques

CAR-STM. CAR-STM [12] is a transaction scheduling tech-
nique that offers two policies. The first one, called Basic
Serializing Contention Management (BSCM), aims at reducing
the probability that two previously conflicted transactions
conflict again. The second one, called Permanent Serializing
Contention Management (PSCM), ensures that two conflicting
transactions never conflict again. With PSCM, if a trans-
action a conflicts with a transaction b, and a has started
after b, a gets aborted. Then a gets placed in a queue of
transactions that will be executed by the same thread that
was executing b. This reduces the probability that a conflicts
again with b. We note that a conflict between a and b is
still possible. Indeed, if b conflicts with a third transaction,
then b will be placed in a queue of transaction that will be
executed by another thread, hence it may conflict again with
a. To prevent such a situation, the second policy, PSCM,
marks a as a subordinate transaction of b. In this case, if
b is placed to another queue after a conflict with a third
transaction, also all b’s subordinate transactions are moved
to the same queue. CAR-STM also provides the option
to schedule transactions in a proactive way (i.e. without
waiting for the first conflict) by allowing the application to
provide the scheduler with information about conflict prob-
ability between transaction pairs. However, this shifts to
programmers the burden of developing applications aware
of transaction access patterns, thus its not a real advantage
offered by the scheduling technique itself.
Experimental study. CAR-STM was incorporated in RSTM
and was evaluated with STMBench7 on a 4 x 8-core ma-
chine, running up to 32 concurrent threads. Experimen-
tal results are presented only for 2 execution scenarios
of STMBench7 (read/write workload and write-dominated
workload). With these workload configurations, the baseline
shows poor scalability. CAR-STM shows, with both policies,
better performance than the baseline. BSCM policy performs

better. On average, it provides 4x throughput improvement.
CAR-STM also improves the system stability by reducing
standard deviation of both throughput and application exe-
cution time.

Steal-on-Abort. The idea of moving aborted transactions
to the queues of transactions to be processed by other
threads is also used in Steal-on-Abort [13]. This technique
uses two queues for each thread. The first one maintains
the new transactions to be processed by the thread. The
second queue is called steal queue. When a transaction a,
processed by a thread T, gets aborted due to a conflict
with a transaction b processed by a thread T ′, T ′ “steals”
transaction a from T and puts a in its own steal queue.
After T ′ completes the execution of b, transactions in the
steal queue of T ′ are moved to its own main queue. Steal-
on-Abort offers two strategies to move these transactions.
With Steal-Tail strategy, transactions are inserted at the tail of
the main queue. With Steal-Head strategy, they are inserted
at the head.
Experimental study. Steal-on-Abort was implemented in
DSTM2. It was evaluated with LinkedList, RBTree and
Vacation, running up to 8 concurrent threads on top of
a 4 x dual-core machine. Experiments were executed for
both strategies and with tree CMs, i.e. Aggressive, Polka
and Priority. By results across all experiments, Aggressive
takes advantage of steal-on-abort more than the other CMs,
showing a performance improvement from a minimum of
16x. With polka, performance improvement is lower. With
Priority, there are no benefits with any policy, and the
performance is penalized in some cases.

RelSTM. RelSTM [14] is a transaction scheduling tech-
nique which uses the second-hop conflict relation. Namely, if
a transaction b conflicts with a transaction a, and another
transaction c conflicts with b, then c becomes a second-hop
transaction of a. Each transaction is marked with a unique
Id. Upon a conflict, a transaction stores the Id of the op-
ponent transaction and all Ids of transactions the opponent
conflicted with (second-hop transactions). After an abort, a
transaction is serialized if the previous conflicting transac-
tion is still running, otherwise it stalls while the percentage
of second-hop transactions which are still running is over a
given threshold.
Experimental study. RelSTM was implemented in TinySTM,
and was evaluated with all applications of STAMP running
with up to 64 concurrent threads on a 4 x 16-core ma-
chine. The percentage threshold of second-hop transactions
was set equal to 30%. Results achieved by running up to
4 threads show that RelSTM improves performance with
respect to the baseline up to 1.42 for Bayes, and up to
1.7 for Kmeans. For Intruder, Labyrinth, Yada and Scca2,
on average, the performance is penalized. For the other
applications, the performance is quite similar to the baseline.
The improvement is more evident in scenarios with a high
number of threads, particularly for 32 and 64 threads, where
all applications, except Labyrinth, Scca2 and Kmeans, show
reduced execution time with respect to the baseline. For
Labyrinth, performance improves only in some scenarios,
while Scca2 and Kmeans show performance loss in all
scenarios.

Discussion. The peculiarity of reactive techniques is that
they act in response to conflict events, and provide the

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 8

advantage of reducing the number of repeated conflicts. On
the other hand, the approaches adopted by these techniques
in some cases are too pessimistic. For example, assume
that a transaction a is aborted due to a conflict with an-
other transaction entered in the commit phase, or due to
a read operation accessing data modified by a concurrent
transaction that has already committed. In these cases, if
a is immediately restarted, the probability that the other
transaction is still running is low or null. Accordingly, it
would be more convenient to quickly restart transaction a
along the same thread rather than to pay the processing cost
of moving a to the queue of another thread. Further, we note
that if an aborted transaction is immediately restarted along
the same thread, the transaction likely will be executed
by the same CPU-core (unless the thread is de-scheduled
by the operating system and/or moved to another CPU-
core). Thus, the transaction could take advantage of very
reduced latency to access data that were accessed along its
previous run and are still (valid) in the CPU-core private
level cache. Conversely, if the transaction is re-executed by
another CPU-core, these data likely will be not found in the
cache. This kind of phenomenon was studied also in the
context of database transactions [42]. Therefore, since the
difference of latency to access data in private level cache vs.
other memory levels is of one or two orders of magnitude,
moving the transaction to another thread could penalize
the performance in some cases. Definitely, the approaches
used by the proposed reactive techniques are generally more
fruitful in the case of high contention, where transactions are
subject to be aborted a number of times. In such a scenario,
these techniques can counteract the performance loss by
effectively reducing the transaction abort rate.

4.4 Mixed Heuristic-Based Techniques
LUTS. The technique presented in [19], called Lightweight
User-level Transaction Scheduler (LUTS), dynamically
changes the scheduling strategy depending on the transac-
tion length. LUTS uses a specific pool of threads in charge of
processing transactions, whose size is equal to the number
of available cores in the system. Transactions are grouped by
Id. All transactions generated by the same application code
block have the same Id. The strategy used by the scheduler
depends on the average execution time of the last hundred
committed transactions. If it is below a preconfigured time
threshold tc, LUTS uses the same strategy of ATS based on
contention intensity (CI). The difference is that LUTS keeps
values of CI per transaction Id, rather than per thread. When
the average duration of transactions is above the threshold,
LUTS uses a more complex heuristic. It uses data structures
for keeping information about conflict probabilites for each
transaction Id as a function of the set of active transactions
in the system. When a thread in the pool becomes available
to process a new transaction, the scheduler reads Ids of all
running transactions, and extracts from data structures in-
formation to select, among the ready-to-run transactions, the
one with the lowest conflict probability. Upon a transaction
aborts (commits), data structures are updated by decreasing
(increasing) the conflict probability of that transaction Id by
a given probability constant pc.
Experimental study. LUTS was integrated in TinySTM. It was
evaluated with STAMP and STMBench7, running up to 128

concurrent threads on a 4 x 10-core machine. The used
configuration is: CI threshold = 0.5, α = 0.75, pc = 0.1, tc
= 100k cycles. Concerning results with STAMP, in under-
loaded scenarios (up to 32 threads) LUTS does not improve
the performance with respect to the baseline, except with 16
and 32 threads with Genome and Intruder. With Scca2, the
performance degrades. When running more the 32 threads,
LUTS always performs better than the baseline, except with
Scca2. This may be due to the profile of transactions in Scca2,
given that they are very short and very similar, thus not al-
lowing to benefit from strategy switching that never occurs.
With STMBench7, the performance improvement is more
evident. In effect, the transaction profiles of STMBench7 are
very heterogeneous. LUTS achieves up to 10x speed-up. In
the worst case, the performance is equal to the baseline.

ProVIT. ProVIT [20] is another transaction scheduler
that uses two different strategies for short and long trans-
actions. However, differently from LUTS, ProVIT uses the
two strategies at the same time. Transactions with a given
Id are classified as short (long) transactions if the average
red-set size is below (above) a predefined threshold (VIT-
threshold). ProVIT regulates the number of short transactions
with the same Id that can concurrently run on the basis of
the wasted work (wwId). When a transaction with a given
Id commits, the wasted work is updated using the formula:
wwId = k · wwId,prev + (1 − k) · numRestarts, where
wwId,prev is the previous value of wwId, numRestarts
is the number of times a transaction is aborted before to
commit, and k is constant between 0 and 1. If wwId is below
a given threshold (RL-threshold), only one transaction with
that Id is allowed to run. Otherwise, the number of allowed
transactions is increased proportionally to the square of
the difference between wwId and RL-threshold. As regards
long transactions, ProVIT uses a fine-grained strategy for
preventing them from multiple aborts. ProVIT relies on the
assumption that, when a transaction aborts, data read by the
transaction represent a reliable prediction of the read-set of
the subsequent transaction re-execution. Hence, if aborted, a
long transaction becomes a Very Important Transaction (VIT)
and makes public its predicted read-set to other transac-
tions. A non-VIT transaction, upon committing, is allowed
to proceed only when its write-set does not intersect the
predicted read-set of any concurrent VIT transactions. When
such an intersection occurs between two concurrent VIT
transactions, the older one is allowed to commits as a first.
Experimental study. ProVIT was integrated in FlashbackSTM
[43], a word-based multi-version STM implemented in Java.
The experimental study was executed on top of a 4 x 12-
core machine, using STMBench7 and six STAMP applica-
tions (Genome, Intruder, KMeans, Labyrinth, SSCA2, and
Vacation) and running up to 48 concurrent threads. The
following configuration was used: k = 0.1, RL-threshold=4,
VIT-threshold=350. With STMBench7, in two out of three
presented scenarios, ProVIT performs better than the base-
line with more than 4-8 threads, and keeps the through-
put close to (and in a few cases slightly higher than) the
peak throughput achieved with the baseline. In all other
cases, the performance is comparable to the baseline. With
all STAMP applications, ProVIT generally overcomes the
performance of the baseline with more than 8-12 threads,
except for Labyrinth, for which the performance is similar.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 9

The baseline performs better than ProVIT only for Scca2 up
to 4 threads.

Discussion. Substantially, both the above-mentioned
mixed techniques are based on the idea of exploiting a
lightweight approach for short transactions, and a more
complex one, albeit more expensive, for long transactions.
Both techniques use a lightweight feedback-driven strategy
in the first case, and a prediction-based strategy in the
second case. The rationale is that with short transactions
the overhead introduced by a complex strategy could be
excessive. Rather, it could be more convenient to use a less
accurate strategy, but less expensive. In general, the goal of
mixed techniques is to take advantage of different strategies
that fit different workload profiles. Hence, a key aspect is
represented by the approach to decide at run-time when
using one or another strategy. Indeed, an improper selection
of the strategy may be counterproductive, leading even
to drastic loss of performance. Both in LUTS and in Pro-
VIT, the strategy is selected on the basis of preconfigured
thresholds that are used to differentiate short and long
transactions. Unfortunately, although the configuration of
these thresholds plays a key role for these techniques, an
effective approach to select the most suitable values has not
been discussed in any of the two studies. The values used in
the experiments of the two studies were selected by preven-
tively trying different values, and the ones that produced
the best results for the majority of the workloads have been
chosen. Further, data about sensitivity analysis have not
been presented. Ultimately, the effectiveness of these mixed
techniques still depends on the ability of the user to properly
configure the strategy selection mechanisms.

4.5 Machine Learning-based Techniques

SAC-STM. Self-Adjusting Concurrency STM (SAC-STM)
[15] is a thread scheduling technique that uses Artificial
Neural Network (ANN)-based performance models. An
ANN is a Machine Learning (ML) model [33] that can be
instantiated via a training process and allows to approximate
a function. The training process takes as input a data set
composed of samples which (partially) represent relations
between input and output of the function. SAC-STM uses
an ANN for estimating the average wasted time of trans-
actions (i.e. the average execution time of aborted runs
of transactions) as a function of the application workload
profile and the number of concurrent threads. Although
the training process uses only a few samples to build the
function, interpolation/extrapolation abilities of the ANN
are expected to allow to calculate the function for whichever
number of threads and workload profile. At run-time, the
scheduler executes a continuous loop to regulate the num-
ber of active threads. For each step in the loop, it executes
the following actions: 1) Collects workload samples over
the last n executed transactions for calculating the average
values of the input features of the ANN. 2) Uses the ANN
for estimating the expected transaction wasted times in
variation of k, for each k ≤ M , where k is the ANN input
feature representing the number of concurrent threads, and
M is the maximum number of threads. 3) Calculates, based
on the expected transaction wasted times, the expected
application throughput in variation of k. 4) Keeps active

k′ threads, where k′ is the number of threads for which the
throughput is estimated to be the highest one.
Experimental study. SAC-STM was integrated within
TinySTM. Experiments were executed with Genome, In-
truder, Kmeans on top of 2 x 8core machine, running up
16 concurrent threads. For the training process, 800 sam-
ples have been used, which were randomly selected along
64 runs of an application. Each sample includes averaged
values over 2000 consecutive transactions. By results, in low
contention scenarios (i.e between 2 and 4/6 threads where
the throughput with the baseline grows while increasing
the number of concurrent threads), the overhead intro-
duced by the scheduling mechanisms sometimes penalizes
performance of SAC-STM, with a slowdown between 0%
and 22%. On the other hand, in high contention scenarios
(where the performance with the baseline rapidly drops
down while increasing the number of threads) SAC-STM
keeps performance close to the best value achieved with the
baseline, independently of the number of threads. Also, in a
few cases, SAC-STM provides higher performance than the
peak performance of the baseline.

DSF-STM. SAC-STM has been improved in [16] with
a technique, called Dynamic Feature Selection (DSF)-STM,
that dynamically resizes the set of input features of the
ANN. DSF-STM aims at reducing the overhead for run-time
feature sampling, as well as the complexity of the function
to be approximated by the ANN. The proposed technique
discards an input feature if, along the application execution,
its variance goes below a given threshold. Further, for each
couple of features, DSF-STM discards one of them if their
correlation exceeds a given threshold. In the context of
ML, this approach is known as Correlation-based Feature
Selection [44]. After having discarded some feature, DSF-
STM changes the current ANN with another that has been
previously trained for the specific reduced set of features.
Discarded features are added again to the set if DSF-STM
detects that the ANN prediction error (i.e. the difference be-
tween the real throughput and the throughput estimated via
the ANN) overcomes another threshold. Experimental study.
DSF-STM was evaluated in the same experimental setting
of SAC-STM, using Intruder, Ssca2 and Vacation. Further,
the authors used a modified version of Vacation, where
the percentage of different transaction types dynamically
changes over time. Results show that DSF-STM effectively
reduces the scheduling overhead with respect to SAC-STM,
providing performance improvement independently of the
number of concurrent threads. The improvement varies
between 15% and 45%, depending on the application.

Discussion. The key aspect of the model-based tech-
niques, thus including ML-based techniques, is that the
scheduler makes decisions on the basis of estimations pro-
vided by a performance model of the application. Compared
to techniques in which decisions are made on the basis of
(generic) heuristics, the advantage of the model-based tech-
niques is that the model can embed more specific knowledge
about the application/system. In fact, the prevailing factor
influencing the effectiveness of a model-based technique is
the reliability of the model. To improve the model estimation
accuracy, the proposed ML-based techniques use a specific
model instance for each application. With this approach, it is
possible to instantiate reliable models for applications with

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 10

very different workload profiles. In fact, the experimental
results of SAC-STM are good in high contention scenarios
with all the applications. The drawback of these techniques
is that they represent a viable solutions providing that it
is possible to perform a specific training processes for any
application. This process may require a certain amount of
time, as well as may require specific user skills.

4.6 Analytical Model-based Techniques
CSR-STM. Concurrency Self-Regulating STM (CSR-STM)
[17] is an analytical model-based thread scheduling tech-
nique. The basic scheduling scheme is similar to the one
used in SAC-STM, where the number of active threads k
is regulated on the basis of estimations of the application
throughput in variation of the k. However, rather than
ANNs, CSR-STM uses an analytical performance model for
estimating the transaction abort probability as a function of
the same set of input features of SAC-STM. The analytical
model is parametric, allowing it to be customized for a
specific application and a given machine. Indeed, the model
parameters also enable to capture the effects due to different
hardware configurations. The values of these parameters
are estimated via regression analysis, using data collected
during an a priori sampling phase of the application.
Experimental study. CSR-STM was incorporated in TinySTM.
Kmeans, Yada and Vacation were used for the experimental
evaluation study, which was executed on a 2 x 8 core ma-
chine, running up 16 concurrent threads. Authors presents a
preliminary evaluation study for assessing the model accu-
racy depending on the amount of samples collected during
the a priori profiling phase of the application. Results shows
that with 80 random samples, totally collected with 2 and 4
concurrent threads, the model calculates the abort probabil-
ity spanning from 2 to 16 concurrent threads with an error
between 2.1% and 18.9%. When samples are collected with
2, 4, 8 and 16 threads, the error is bounded to 2.6%. As for
performance assessment, CSR-STM notably provides better
performance results that the baseline in high contention
scenarios. However, with respect to the peak throughput
of the baseline, sometimes there is a slightly degradation
while increasing the number of threads. In low contention
scenarios, the overhead introduced by the scheduler slightly
penalizes the performance of CSR-STM with respect to the
baseline.

MCATS. Markov Chain Based Transaction Scheduling
(MCATS) uses a performance model based on a Markov
Chain [45]. The scheduler controls the maximum number
m of transactions allowed to concurrently run. The Markov
Chain captures the evolution of the system state, which
is represented by the number of threads concurrently ex-
ecuting transactions (including both running and blocked
transactions). A state transition in the Markov Chain occurs
upon a thread commits a transaction or starts a new one.
The model does not require an a priory sampling phase
of the application. Indeed, at run-time, the scheduler runs
a continuous loop, where, for each step, it (re-)instantiates
the model on the fly by calculating transition rates of the
Markov Chain. These rates are derived by estimating four
parameters, which represent the input features of the model,
including (i) the average execution time of committed trans-
actions, (i) the average wasted time of transactions, (iii) the

transaction conflict ratio and (iv) the average execution time
of non transactional code blocks. Then, at the end of each
step, the scheduler calculates by the model the expected
system throughput as a function of m, and select the values
of m that maximizes the throughput.
Experimental study. MCATS was incorporated in TinySTM
and was evaluated on top of a 16-core machine. The study
on the model prediction accuracy shows that the throughput
prediction error with Intruder, Yada and Vacation is below
10%. The results achieved with the same applications show
that in low contention scenarios, performance with MCATS
is slightly penalized due to scheduling overhead. On the
other hand, in high contention scenarios, this technique
works effectively, being able to preserve in many cases a
performance level close to the peak performance of the
baseline.

Discussion. Similarly to ML-based techniques, also an-
alytical model-based techniques take advantage of perfor-
mance models of the applications. Nevertheless, the analyt-
ical models used by the proposed techniques require less
onerous workload sampling phases compared to the ML-
based ones. This may represent a significant benefit, since
it may allow to instantiate the model on the fly while the
application runs (as for MCATS), thus avoiding (costly)
training processes to be performed in advanced.

However, by the analysis of the experimental results, the
techniques that use ML models seem to behave, on aver-
age, better than the analytical model-based counterparts.
Thus, the currently available model-based techniques offer
a trade-off between affordability of the model instantiation
process and model efficiency. We will discuss in more detail
pros and cons of the ML-based and the analytical approach
in the next section, after the presentation of a mixed model-
based technique.

4.7 Mixed Model-based Techniques

AML. Analytical/Machine Learning (AML) Scheduling
Technique was presented in [35]. It is a mixed model-based
technique that uses the analytical performance model of
CSR-STM and the ML model of SAC-STM. AML Scheduling
Technique tries to take the best of the two models, i.e.
the lightweight workload profiling phase of the analytical
model, and the high performance estimation accuracy of the
ANNs. Thus, to reduce the duration of the a priori profiling
phase, the scheduler initially exploits the analytical model,
since it requires to collect smaller sets of samples. Also,
the analytical model is used to generate virtual samples to
cover a larger subset of the input feature domain. Along-
side, additional samples are collected during the application
execution. Then, real and virtual samples are joined within
a single extended data set, which is used for training the
ANN. After this step, the scheduler uses the ANN in place
of the analytical model. In addition to reduce the duration of
the initial profiling phase, this mixed approach also allows
to speed-up the instantiation of the ANN, that provides
more reliable performance estimations after being trained
with the extended set of samples.
Experimental study. AML Scheduling Technique was evalu-
ated in the same experimental context of SAC-STM, using
Intruder, Kmeans, Yada and Vacation. Results about the

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 11

evaluation of the prediction error demonstrate that, when
using a few samples, the analytical model is more accurate
than the ML-model. This trend reverses while increasing
the number of samples. In any case, the mixed AML-
based technique always provides smaller prediction error.
Regarding performance, results show that the AML-based
technique always ensures the peak throughout of the best of
the two models, and, generally, the time to reaches the peak
performance is notably reduced.

Discussion. AML Scheduling Technique is the only
technique relying on a mixed model-based approach. The
rationale behind this technique is tied to pros and cons of
the ML models against the analytical approach. ML models
generally require a lot more samples than analytical models
to be instantiated, and can provide good prediction accuracy
within the sub-domain of sample values in the training set
[46]. Conversely, analytical models require a reduced num-
ber of samples, and can provide reliable results also outside
of the sub-domain of the sample values. The drawback is
that analytical models typically rely on approximations or
assumptions aimed at simplifying the model development
(or at making it feasible). Thus, the models may become un-
reliable in those scenarios where the approximations or the
assumptions are not sufficiently adequate. Another point to
note is that, in AML Scheduling Technique, the use of the
analytical model is twofold. It is used as a predictor and
for speeding up the instantiation of the ML model. Overall,
AML Scheduling Technique proves the potential advantages
of a mixed model-based approach. However, this kind of
approach is still poorly explored.

5 OVERVIEW OF PREVIOUS PERFORMANCE COM-
PARISON STUDIES

In this section we focus on results of comparison studies
carried out by authors of some scheduling techniques we
presented in Section 4. For each technique, we report in
Table 1 the list of the other techniques (if any) it was
compared with.

Feedback-driven techniques that use TCR as a feedback
parameter have been compared in [6], [8]. The reported
experimental results (which compare PoCC, the four control
policies described in [5] and the four policies of Waisted
Adaptive Concurrency Control described in [8]) demon-
strate that there is not a policy that definitively improves the
performance more than the other ones for all applications.
Basically, as we pointed out in Section 4.1, the advantage
of PoCC compared to other policies is mainly the reduced
variance of the application execution time. This suggests
that the dynamics of TCR variations change remarkably
depending on the application, and it is complex to optimize
the behaviour of a scheduler through a single TCR-based
heuristic policy for whichever application.

In [10], the authors present a few comparison results of
Shrink with ATS. Data show that noteworthy differences
in performance exist only in the case of read-dominated
workload as long as the number of threads overcomes the
number of cores. In these scenarios, Shrink performs better
than ATS. The feedback-driven scheduler proposed by Chan
et Al. is compared with Shrink and ATS in [7]. By results
with all STAMP applications, no one wins in all cases.

Further, also in the presented experimental scenarios, all
techniques improve performance only when the number of
threads overcome the number of cores.

Some interesting results come from the experimental
study in [9]. In this study, experiments are executed on
a machine with more cores (i.e. 32 cores) with respect to
previous studies. Authors compare F2C2-STM with ATS and
Shrink. Results demonstrate that, with limited-scalability
applications, ATS and Shrink can improve performance also
in some scenarios where the number of threads is less then
the number of cores. On the other hand, in some cases
(e.g. with Kmeans), they never perform better than the
baseline. Ultimately, with limited-scalability application, the
feedback-driven technique F2C2-STM performs generally
better than ATS and Shrink.

LUTS has been compared with ATS and Shrink in [19].
Again, experiments executed with all STAMP applications
show that no one wins in all cases. The mixed heuristic-
based technique used by LUTS, which is optimized for
short/long transaction-mixed workloads, does not achieve
better results than the other techniques. The authors as-
cribe this result to the low transaction diversity of trans-
action profiles in STAMP applications. Conversely, with
STMBench7, which is characterized by highly differenti-
ated transaction profiles, experiments with various data
structure sizes (small, medium, big, and huge) show that
LUTS outperforms ATS and Shrink, ensuring more than 2x
throughput improvement in the most of cases. However,
results related to Shrink appear partially in contrast with
the ones presented in [10] for scenarios of STMBench7. For
example, in [10] Shrink never provides lower performance
than the baseline with 8 concurrent threads. Conversely,
this does not hold true in [19], which shows that Shrink
provides lower performance in all cases with 8 threads.
We observe that, in both studies, authors use the same
Shrink implementation on TinySTM and the same values
of tuning parameters. Thus, these results suggest that the
hardware architecture, which is different in the two studies
(see Section 4 for details), can significantly impact on the
effectiveness of a scheduling technique.

In [20], ProVIT has been compared with CAR, ATS
and Shrink, using FlashbackSTM as a baseline. For exe-
cution scenarios of STMbench7 with long transactions (in-
cluding read-dominated, read-write and write-dominated
workloads), ProVIT outperforms other techniques, although
it generates higher abort rate. This result reveals that the
other schedulers are too pessimistic with these kinds of
workloads, i.e. they serialize too many transactions that oth-
erwise would not conflict. For scenarios with short transac-
tions, ProVIT equates other techniques with read-dominated
workloads, while outperforms them while increasing the
percentage of write operations. Results of this study for ATS
and Shrink for scenarios of STMbench7 with long trans-
actions are in accordance with the study in [19], showing
that both techniques, as well as CAR, perform worse than
the baseline. On the other hand, with short transactions,
they perform better than the baseline while increasing the
contention level. In the case of STAMP applications, ProVIT
still performs better than any other technique, except that
for some configurations of Ssca2.

As concerns model-based techniques, we already dis-

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 12

TABLE 1
Summary table of strategies, features and evaluation studies of scheduling techniques

Technique Transaction/
Thread

Scheduling

Strategy Input
features

Tuning
parameters

Evaluation Studies
Integrated

within
(baseline)

Evaluated
with

(benchmarks)

Compared
with

AML
Thread
scheduling

Mixed
Model-
based

- Execution times of transactions
and non-transactional code blocks
- Transaction read-/write-set

- Sample interval TinySTM
STAMP (Intruder, Kmeans,
Yada, Vacation)

CSR-STM
SAC-STM

ATS
Transaction
scheduling

Feedback-
driven

- Contention
Intensity

- Weight for calculating CI
- CI threshold

RSTM
RBThree, HashTable, LinkedList,
RandomGraph, LFU-Cache

-

Ansari 2014
Thread
scheduling

Feedback-
driven

- Transaction Commit Ratio (TCR)
- Target TCR value
- Initial sample interval

DSTM2
Lee-TM, Genome,
Kmeans, Vacations, StepChange,
RBTree, SkipList

PoCC

Ansari et al. 2008
Thread
scheduling

Feedback-
driven

- Transaction Commit Ratio (TCR)
- Target TCR range
- Sample interval

DSTM2 Lee-TM -

CAR-STM
Transaction
scheduling

Reactive
- Transaction abort probabilities
(optional, provided by user)

RSTM STMBench7 -

Chan et Al 2011
Transaction
scheduling

Feedback-
driven

- Transaction Commit Ratio
or
- Transaction Commit Rate

- Sample interval
- Min. No. of transactions
per sample interval

TinySTM All STAMP applications
ATS
Shrink

CSR-STM
Thread
scheduling

Analytical
Model-
based

- Execution times of transactions
and non- transactional code blocks
- Transaction read-/write-set

- Sample interval TinySTM STAMP (Kmeans, Yada, Vacation) -

DSF-STM
Thread
scheduling

Machine
Learning-
based

- Execution times of transactions
and non- transactional code blocks
- Transaction read-/write-set

- Variance threshold
- Correlation threshold
- Prediction error threshold

TinySTM STAMP (Intruder, Ssca2, Vacation) SAC-STM

F2C2-STM
Thread
scheduling

Feedback-
driven

- Transaction commit rate - Sample interval TinySTM STAMP (all applications)
ATS
Shrink

Heber et Al.
Transaction
scheduling

Prediction-
driven

RSTM
CBench,
RandomGraph,
Swarm

CAR-STM

LUTS
Transaction
scheduling

Mixed
Heuristic-
based

- Contention intensity (CI)
- Ids of conflicting transactions

- Weight for calculating CI
- CI threshold
- Conflict probability
increment
- Short/long transactions
threshold

TinySTM
STAMP (all applications),
STMBench7

ATS
Shrink

MCATS
Transaction
scheduling

Analytical
Model-
based

- Execution times of transactions
and non-transactional code blocks

- Sample interval TinySTM
ATS
Shrink

PoCC
Transaction
scheduling

Feedback-
driven

- Transaction Commit Ratio (TCR)

- Target TCR value
- Initial sample interval
- Min. No. of transactions
per sample interval

DSTM2
Lee-TM, STAMP (Genome,
Kmeans, Vacations),
StepChange

Four policies
proposed by
Ansari et Al.
2008

ProVIT
Thransaction
scheduling

Mixed
Heuristic-
based

- Transaction read/write-set
- Transaction wasted work (tcc)

- Weight for calculating tcc
- Restart limit (RL)-threshold
- VIT-threshold

FlashbackSTM

STAMP (Genome, Intruder,
KMeans, Labyrinth,
SSCA2, Vacation),
STMBench7

ATS
CAR
Shrink

RelSTM
Transaction
scheduling

Reactive
- Second-hop transactions
threshold

TinySTM STAMP (all applications) -

SAC-STM
Thread
scheduling

Machine
Learning-
based

- Execution times of transaction
and non-transactional code blocks
- Transaction read/write-set

- Sample interval TinySTM STAMP (Genome, Intruder, Kmeans) -

SCA
Transaction
scheduling

Reactive - Serializing threshold TL2
STAMP (Bayes, Kmeans,
Labyrinth, Ssca2, Vacation)

-

Shrink
Transaction
scheduling

Prediction-
driven

- Transaction Commit Ratio
- Transaction read-/wite-set

- Locality window size
- Confidence threshold
- Success threshold
- Confidence constants

SwissTM,
TinySTM

STAMP (all applications),
STMBench7, RBTree

ATS

Steal-on-Abort
Transaction
scheduling

Reactive DSTM2 LinkedList, RBTree, Vacation -

cussed in Section 4 experimental results presented in [16]
and [35] related to DFS-STM and AML, which were com-
pared with CSR-STM and SAC-STM. In addition to these
studies, MCATS was compared with ATS and Shrink in
[18]. Results are related to three different configurations
of three STAMP applications. With Vacation, all techniques
scale well and show similar performance. With Intruder and
Yada, MCATS significantly performs better than ATS and
Shrink, which do not efficiently counteract performance loss
in high contention scenarios.

In conclusion, we note that, although various compar-
ison studies exist in literature, they are quite fragmented
and are limited to few and restricted sets of scheduling
techniques. Furthermore, criteria that led to the choice of the
compared techniques are not always clearly explained. In
the next section we present a new study that we conducted
with a larger set of technique, which we compared under a

common experiment setting. By complementing the existing
results, our study allowed us to draw more general conclu-
sions, particularly from the perspective of the alternative
scheduling strategies.

6 EXPERIMENTAL STUDY

In our experimental study we selected six techniques, i.e.
ATS, SHRINK, SAC-STM, MCATS (for these techniques we
used the source code released by the authors) and other two
techniques (for which we used our implementations, since
the source code of the authors was not available), i.e. the
technique presented by Chan et Al. based on probe policy
[7], that we call PROBE-STM, and the technique presented
by Heber et Al. [40], that we call K-ABORT. We selected
this set of techniques in order to cover all basic types of
scheduling strategies of our classification scheme. The set
includes two feedback-driven techniques that we selected

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 13

in order to evaluate also the impact of the two different
feedback parameters that are typically used in feedback-
driven strategies. Specifically, PROBE-STM uses the transac-
tion throughput, which is a direct measure of the application
performance. Conversely, ATS uses the Contention Intensity
(which is similar to the transaction commit ratio), which
is a specific parameter of TM applications, but it is not a
direct measure of the performance of the application. All
schedulers of this study have been integrated in TinySTM
(baseline), and the source code is publicly available1.

In our study we focus on scenarios with “real” paral-
lelism, i.e. where the number of concurrent threads does
not exceed the number of cores. Indeed, in STMs, as
shown by results of various performance studies we already
discussed, having more concurrent threads than cores is
generally unfavourable. In fact, this condition causes per-
formance loss due to the to context-switching overhead.
Particularly, when threads are suspended while executing
transactions, the number of concurrent transactions, and
consequently the probability of aborting transactions, may
increase. Hence, it is generally more convenient preventing
this condition [47].

6.1 Experimental settings
We executed experiments with all STAMP applications on a
16-core HP ProLiant server, equipped with 2 x 8-core 2GHz
AMD Opteron 6128 processors, 64 GB of RAM and Linux
OS (kernel version 2.7.32-5-amd64). For each application,
we used three different configurations of input parameters,
each one giving raise to a different application workload
profile. Totally, we show results for 24 execution cases. As
for the configuration of tuning parameters, in ATS we set
α = 0.5, and in PROBE-STM each sample interval termi-
nates after the execution of 1000 consecutive committed
transactions. Further, we set k equal to 2 in K-ABORT, given
that this value provided, on average, the best results. For all
the other tuning parameters, we used the same values of the
experimental studies we presented in Section 4. In the case
of Labyrinth, we reduced the length of the sample interval
of MCATS and K-ABORT to terminate after the execution
of 50 consecutive committed transactions, since the total
number of executed transactions in Labyrinth is limited to
some hundreds.

Each data point that we show in the results was calcu-
lated as the average over the execution of eight application
runs. We observed that with eight runs the baseline pro-
vided stable results.

6.2 Analisys of results
All experimental results are reported in Figures 2 and 3.
We show the speed-up of the application, i.e. the ratio
between the application completion time when executed
with a scheduler with x concurrent threads (reported on x-
axis) and the application completion time when executed
with the baseline with a single thread.

Firstly, we analyse results of heuristic-based techniques.
In scenarios where the baseline scales quite well up to 16

1. All links to the source code of each scheduler implementation can
be found at http://www.dis.uniroma1.it/∼disanzo in Section ”Soft-
ware and Links”

threads (i.e. all configurations of Ssca2 and configuration 2 of
Vacation and Labyrinth Vacation) these techniques do not
cause a relevant performance degradation, except ATS with
Labyrinth. On average, ATS shows good performance with
Genome and Vacations, even when the performance of the
baseline quickly drops down due to high contention. In the
other cases, ATS shows poor results with respect to both the
baseline and the most of the other techniques. We remark
that the feedback-driven strategy used by ATS serializes
transactions when the Contention Intensity is above the
CI-threshold, whose value is selected by the user (in our
experiments, it was equal to 0.5). Essentially, the results
show that the performance is very sensitive to this value
while varying the workload profile. As a confirmation of
this, we observed that, for some configurations of Intruder,
the peak performance of the baseline is achieved when the
transaction abort probability is about 0.7, while, for other
configurations, when it is about 0.4. As such, the value of
CI-threshold equals to 0.5 is too conservative in some cases,
while it is too high in other cases. Ultimately, the strategy
used by ATS requires the choose of the right value of CI-
threshold for each specific workload profile.

The other feedback-driven technique of our study,
PROBE-STM, on average performs better than ATS. It
performs well with scalable workloads. Also, with some
limited-scalability workloads (including all configurations
of Genome and Yada, and Configuration 1 and 3 of Vacation),
PROBE-STM performs better than the baseline. In other
cases, the performance results are similar to the baseline,
excluding Configuration 1 of Kmeans and Configuration 2
of Labyrinth. Nevertheless, we observed that in scenarios
where the transactions commit ratio becomes highly vari-
able, which typically happens with high contention, PROBE-
STM often loses ground to other techniques. Highly variable
commit rate leads to continuous throughput fluctuations
along the application execution. This kind of “noise” on the
feedback parameter can reduce the effectiveness of the hill
climbing search strategy used by PROBE-STM, since it can
cause many (wrong) changes of searching direction. In this
case, the problem could be mitigated by incrementing the
length of the sample interval in a way to reduce the noise
due to high commit rate variability. On the other hand, this
may reduce the reactivity of the scheduler in the face of
changes of workload profiles.

The predictive strategy of Shrink improves the perfor-
mance only in some cases. Shrink performs well in scenarios
with scalable workload (e.g. Ssca2) and in some scenarios
with limited scalability (e.g. all configurations of Genome
and configurations 1 and 3 of Vacation). In some other cases
it performs very poorly (e.g. see Intruder and Kmeans).
Also, results show that, in general, the effectiveness of
the scheduler decreases when the contention increases (e.g.
see Yada with more than 8-10 concurrent threads). This
suggests that the accuracy of predictions decrease when the
thread parallelism increases. This would not be surprising,
given that the transaction execution dynamics become more
complex while increasing concurrency, and shows that a
prediction-driven technique is likely to be penalized in high
concurrency scenarios. In addition, we note that Shrink
exposes various tuning parameters. Similarly to ATS, the
different behaviour with different workload profiles sug-

http://www.dis.uniroma1.it/~disanzo

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 14

 1.5

 1.6

 1.7

 1.8

 1.9

 2

 2.1

 2.2

 2.3

 2.4

 2.5

 2 4 6 8 10 12 14 16

S
p

e
e

d
u

p

Concurrent threads

Ssca2 - Configuration 1
 input: -s20 -i1 -u1 -l3 -p3

TinySTM
SAC-STM
K-ABORT

SHRINK-STM
ATS-STM

MCATS
PROBE

 1.2

 1.3

 1.4

 1.5

 1.6

 1.7

 1.8

 1.9

 2

 2.1

 2 4 6 8 10 12 14 16

S
p

e
e

d
u

p

Concurrent threads

Ssca2 - Configuration 2
 input: -s18 -i1 -u1 -l3 -p3

TinySTM
SAC-STM
K-ABORT

SHRINK-STM
ATS-STM

MCATS
PROBE

 1.3

 1.4

 1.5

 1.6

 1.7

 1.8

 1.9

 2

 2.1

 2 4 6 8 10 12 14 16

S
p

e
e

d
u

p

Concurrent threads

Ssca2 - Configuration 3
 input: -s19 -i1 -u1 -l9 -p9

TinySTM
SAC-STM
K-ABORT

SHRINK-STM
ATS-STM

MCATS
PROBE

 0

 1

 2

 3

 4

 5

 6

 7

 2 4 6 8 10 12 14 16

S
p

e
e

d
u

p

Concurrent threads

Genome - Configuration 1
 input: -s64 -g24576 -n16777216

Tiny-STM
SAC-STM
K-ABORT

SHRINK
ATS

MCATS
PROBE

 0

 1

 2

 3

 4

 5

 6

 7

 2 4 6 8 10 12 14 16

S
p

e
e

d
u

p

Concurrent threads

Genome - Configuration 2
 input: -s96 -g16384 -n16777216

Tiny-STM
SAC-STM
K-ABORT

SHRINK
ATS

MCATS
PROBE

 0

 1

 2

 3

 4

 5

 2 4 6 8 10 12 14 16

S
p

e
e

d
u

p

Concurrent threads

Genome - Configuration 3
 input: -s32 -g32768 -n8388608

Tiny-STM
SAC-STM
K-ABORT

SHRINK
ATS

MCATS
PROBE

 1

 2

 3

 4

 5

 6

 7

 2 4 6 8 10 12 14 16

S
p

e
e

d
u

p

Concurrent threads

Vacation - Configuration 1
 input: -n2 -q60 -u90 -r32768 -t1048576

TinySTM
SAC-STM
K-ABORT

SHRINK
ATS

MCATS
PROBE

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 2 4 6 8 10 12 14 16

S
p

e
e

d
u

p

Concurrent threads

Vacation - Configuration 2
 input: -n2 -q90 -u98 -r1048576 -t2097152

TinySTM
SAC-STM
K-ABORT

SHRINK
ATS

MCATS
PROBE

 0

 1

 2

 3

 4

 5

 6

 7

 2 4 6 8 10 12 14 16

S
p

e
e

d
u

p

Concurrent threads

Vacation - Configuration 3
 input: -n4 -q60 -u90 -r32768 -t524288

TinySTM
SAC-STM
K-ABORT

SHRINK
ATS

MCATS
PROBE

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 2 4 6 8 10 12 14 16

S
p

e
e

d
u

p

Concurrent threads

Intruder - Configuration 1
 input: -a8 -l176 -n109187

TinySTM
SAC-STM
K-ABORT

SHRINK
ATS

MCATS
PROBE

 0

 0.5

 1

 1.5

 2

 2.5

 2 4 6 8 10 12 14 16

S
p

e
e

d
u

p

Concurrent threads

Intruder - Configuration 2
 input: -a20 -l16 -n32768

TinySTM
SAC-STM
K-ABORT

SHRINK
ATS

MCATS
PROBE

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 2 4 6 8 10 12 14 16

S
p

e
e

d
u

p

Concurrent threads

Intruder - Configuration 3
 input: -a20 -l256 -n262025

TinySTM
SAC-STM
K-ABORT

SHRINK
ATS

MCATS
PROBE

 0

 0.5

 1

 1.5

 2

 2.5

 2 4 6 8 10 12 14 16

S
p

e
e

d
u

p

Concurrent threads

Kmeans - Configuration 1
 input: -m10 -n10 -t0.05

Tiny-STM
SAC-STM
K-ABORT

SHRINK
ATS-STM

MCATS
PROBE

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2 4 6 8 10 12 14 16

S
p

e
e

d
u

p

Concurrent threads

Kmeans - Configuration 2
 input: -m5 -n5 -t0.00005

Tiny-STM
SAC-STM
K-ABORT

SHRINK
ATS-STM

MCATS
PROBE

 0

 1

 2

 3

 4

 5

 6

 7

 2 4 6 8 10 12 14 16

S
p

e
e

d
u

p

Concurrent threads

Kmeans - Configuration 3
 input: -m40 -n40 -t0.00005

Tiny-STM
SAC-STM
K-ABORT

SHRINK
ATS

MCATS
PROBE

 0

 0.5

 1

 1.5

 2

 2.5

 2 4 6 8 10 12 14 16

S
p

e
e

d
u

p

Concurrent threads

Labyrinth - Configuration 1
 input: -i random-x32-y32-z3-n64

TinySTM
SAC-STM
K-ABORT

SHRINK
ATS

MCATS
PROBE

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 2 4 6 8 10 12 14 16

S
p

e
e

d
u

p

Concurrent threads

Labyrinth - Configuration 2
 input: -i random-x32-y32-z3-n96

TinySTM
SAC-STM
K-ABORT

SHRINK
ATS

MCATS
PROBE

 0

 0.5

 1

 1.5

 2

 2.5

 3

 2 4 6 8 10 12 14 16

S
p

e
e

d
u

p

Concurrent threads

Labyrinth - Configuration 3
 input: -i random-x64-y64-z3-n64

TinySTM
SAC-STM
K-ABORT

SHRINK
ATS

MCATS
PROBE

Fig. 2. Speedup for Ssca2, Genome, Vacation, Intruder Kmeans and Labyrinth

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 15

 0.5

 1

 1.5

 2

 2.5

 2 4 6 8 10 12 14 16

S
p

e
e

d
u

p

Concurrent threads

Yada - Configuration 1
 input: -a15 ttimeu100000.2

TinySTM
SAC-STM
K-ABORT

SHRINK
ATS

MCATS
PROBE 0.5

 1

 1.5

 2

 2.5

 3

 2 4 6 8 10 12 14 16

S
p

e
e

d
u

p

Concurrent threads

Yada - Configuration 2
 input: -a15 ttimeu1000000.2

TinySTM
SAC-STM
K-ABORT

SHRINK
ATS

MCATS
PROBE

 0

 0.5

 1

 1.5

 2

 2.5

 2 4 6 8 10 12 14 16

S
p

e
e

d
u

p

Concurrent threads

Yada - Configuration 3
 input: -a20 ttimeu100000.2

TinySTM
SAC-STM
K-ABORT

SHRINK
ATS

MCATS
PROBE

 0

 1

 2

 3

 4

 5

 6

 7

 2 4 6 8 10 12 14 16

S
p

e
e

d
u

p

Concurrent threads

Bayes - Configuration 1
 input: -v32 -r2048 -n10 -p40 -i2 -e8 -s1

Tiny-STM
SAC-STM
K-ABORT

SHRINK
ATS

MCATS
PROBE

 0

 1

 2

 3

 4

 5

 6

 2 4 6 8 10 12 14 16

S
p

e
e

d
u

p

Concurrent threads

Bayes - Configuration 2
 input: -v32 -r8096 -n10 -p30 -i2 -e10 -s1

Tiny-STM
SAC-STM
K-ABORT

SHRINK
ATS

MCATS
PROBE

 0

 2

 4

 6

 8

 10

 2 4 6 8 10 12 14 16

S
p

e
e

d
u

p

Concurrent threads

Bayes - Configuration 3
 input: -v12 -r16384 -n20 -p20 -i2 -e20 -s1

Tiny-STM
SAC-STM
K-ABORT

SHRINK
ATS

MCATS
PROBE

Fig. 3. Speedup for Yada and Bayes

gests that a given parameter configuration can be suitable
in some cases, but not in other cases. Thus, also with Shrink,
specific tuning would be required for each execution case.

K-ABORT, which uses a reactive strategy, performs well
in scenarios with scalable workload and in some scenarios
with limited scalability, where it shows good performance
also with high contention. In effect, serializing aborted
transactions, such as used by reactive strategies, brings
benefit especially with high abort rate. K-ABORT performs
quite well with all configurations of Ssca2, Genome and
Vacation, and with configuration 1 and 3 of Intruder and
Kmeans. However, with Yada, Labyrinth and Bayes, there
are other techniques that, on average, perform better than
K-ABORT. We note that these three applications are char-
acterized by the presence of long transactions and by high
percentage of time spent while executing transactions [29].
With such a workload profile, serializing transactions lead
threads to stall for a long time, and this extremely reduces
the parallelism. In this case, the configuration with k = 2 is
too conservative. However, we observed that a higher value
of k penalizes performance with other applications.

As regards model-based techniques, SAC-STM shows
good results with scalable workloads, as well as in vari-
ous scenarios with limited scalability. The most of times it
ensures peak speed-up, also when the performance of the
baseline rapidly drops down due to high contention. Com-
pared to the other techniques, the strategy used by SAC-
STM takes advantage of the a-priory training (as discussed
in Section 4.5), which in advance provides the scheduler
with knowledge about relations between the workload pro-
file of a specific application and the parallelism level. Results
confirm that SAC-STM can achieve good performance also
in different execution scenarios. However, we note that
SAC-STM is not very efficient with few concurrent threads.
This is due to the implementation overhead of the scheduler,
which has to collect a number of samples at run-time for
calculating the values of the input features of the ML model.

Indeed, in almost all scenarios with 2-4 concurrent threads,
the speed-up with SAC-STM is (sometimes slightly) lower
than the baseline.

The other model-based technique, MCATS, performs
better than the baseline in various scenarios, particularly
with high concurrency. With scalable workloads, the per-
formance is penalized in a few cases (e.g. see Ssca2). With
limited-scalability workloads, the most of times MCATS
provides better results than ATS and SHRINK. Compared
to PROBE and K-ABORT, the results change depending on
the workload profile. However, MCATS is outperformed by
SAC-STM in the most of scenarios. We remark that, differ-
ently from SAC-STM, MCATS does not rely on an a-priory
training, but it exploits an analytical model that is cycli-
cally (re-)instantiated on-the-fly at run-time. Compared to
SAC-STM, MCATS requires a reduced set of input features
and much less samples to instantiate the model. Thus, the
model accuracy may be reduced and may be more affected
by workload fluctuations. Indeed, in our experiments we
observed that MCATS performs better when the workload
profile changes slowly (e.g with Vacation). Finally, we note
that MCATS performs poorly with Labyrinth, where we had
to reduce the length of the sample interval. This confirms
that fewer samples may be insufficient to capture the work-
load profile for instantiating the model. Thus, in the case
of applications executing very few transactions, the model-
based strategy of MCATS may be under-performing.

7 CONCLUSIVE ASSESSMENT AND OPEN CHAL-
LENGES

Our literature analysis demonstrates that a variety of
scheduling techniques for STMs exists. However, various
comparison studies, including the one presented in this arti-
cle, show that there is no a scheduling technique that defini-
tively performs better than the other ones for whichever
workload profile. We remark that the effectiveness over

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 16

a wide range of workload profiles and the ability to au-
tonomously adapt to workload variations are important
quality attributes for a scheduling technique. Anyway, ex-
perimental results reveal that the workload diversity repre-
sents a critical factor for the existing scheduling techniques.

As confirmed by our experiments, the existing heuristic-
based techniques show a variegated behaviour in terms of
performance with different applications, or when running
the same application with different input configurations.
Particularly, there is no a technique that demonstrated to
be effective for a wide range workload profiles. To this
purpose, tuning features offered by these techniques may be
helpful. However, the selection of the proper configuration
of the tuning parameters may be a non-trivial task, and may
require the user to preventively execute a number of appli-
cation runs to explore alternative parameter configurations.
Nevertheless, a given optimal configuration may become
sub-optimal if the workload profile changes. To cope with
this problem, a try to develop a self-tuning mechanism was
carried out in [4] for ATS. However, the proposed solution
partially solves the problem, since it introduces another
parameter that requires to be manually tuned.

Mixed heuristic strategies can help to cope with the prob-
lem of workload diversity, in particular when an application
includes transactions with different profiles. However, all
the proposed mixed heuristic-based techniques use tunable
thresholds to discriminate the transaction profiles to be
processed with different heuristics. Consequently, also these
techniques may require the user to preventively explore
alternative settings to find the best configuration of these
thresholds (e.g. see the discussion on experimental results
in [19], [20]). Nevertheless, once found an optimal value of
a threshold, it is not certain that it is suitable for whichever
transaction mix and/or application execution phase. Thus,
heuristic-based techniques still require additional effort
from the perspective of self-adaptivity.

Model-based techniques exhibit a more homogeneous
behaviour and increased ability to adapt to different exe-
cution scenarios. However, we remark that the technique
that achieves the best results, i.e. SAC-STM, uses a cus-
tomized model for each application, and which requires
to be instantiated in advance via a dedicated ML train-
ing process. Further, SAC-STM needs to collect samples
of various input features at run-time, and this generates
non-negligible overhead with low contention. Differently,
with MCATS, which uses a lightweight and application-
independent model that can be instantiated on-the-fly, the
performance results become more variegated. This shows
that model-based techniques should be further improved
to optimize the trade-off between model instantiation over-
head and their effectiveness over different workload pro-
files.

In conclusion, given that the existing scheduling tech-
nique offer differentiated qualities, the best choice depends
on factors linked to each specific context. On the one side,
ML-based techniques should be chosen when it is possible
to sustain the cost of (onerous) training processes. In return,
they can ensure high performance levels. On the opposite
side, reactive techniques do not require any training process,
neither manual tuning, but they are effective mainly with
high contention. Particularly, they represent a good choice

when it is necessary to cope with high contention peaks in
the workload (e.g. in the case of burstiness). As for the other
techniques, i.e analytical model-based, feedback-driven and
prediction-driven techniques, it is difficult to establish in
advance when one of these types of techniques is more
suitable than the others. Rather, the choice should be driven
by the quality attributes of each single technique depending
on the specific context requirements.

As a last observation, we remark that another potential
advantage offered by scheduling techniques is related to
energy efficiency. The study on STM systems presented
in [48] show that a relevant secondary effect when using
a scheduling technique may be the reduction of energy
consumption. In effect, since scheduling techniques aim at
reducing the wasted work, this can lead to a reduction of
the wasted energy. However, relations between performance
improvement and energy efficiency need to be further anal-
ysed and quantified.

8 THE CASE OF HTMS

In the introduction of this article, we mentioned that the
TM hardware support recently offered by some commercial
processors is encouraging research also on scheduling tech-
niques for HTMs. In this section, we focus on HTMs, with
the aim of discussing which results of studies on STMs may
support the development of scheduling techniques also for
HTMs.

Preliminary studies on scheduling techniques for HTMs
were conducted via simulated environments, due to the
lack of processors offering TM hardware support. Mostly,
the proposed techniques use prediction-based strategies. For
example, the technique in [49] implements a confidence-
based predictor that estimates the probability of future
conflicts between transactions by profiling patterns of past
transaction conflicts. The proposal in [50] uses a similar
approach and introduces a specialized Bloom filter to infer
future transaction behaviour in terms of memory accesses.
The technique in [51] keeps track of past conflicts in order
to group threads that execute transactions which have high
probability of conflict. Hence, threads belonging to same
group are not allowed to concurrently execute transactions.
The common feature of these techniques is that all of them
require custom extensions to the hardware architecture in
order to speed up operations executed by the scheduler.
Similarly, Steal-On-Abort was later re-designed for HTM,
and requires specific hardware extensions to support trans-
action queuing [52]. Unfortunately, the currently available
HTM implementations do not offer specialized hardware
as required by the above techniques. Differently, the tech-
nique presented in [53] was designed for existing HTMs
and was evaluated on top of Intel(R) Haswell processors
that currently offer HTM support. The scheduler uses a
lightweight probabilistic technique that gathers information
about the set of concurrently running transactions upon
abort and commit events. This information is used to select
the transactions to serialize to prevent future conflicts.

To understand which approaches and results of studies
on STMs can be helpful in the case of HTMs, it is worthy to
consider that STM and HTM implementations are very dif-
ferent in some aspects. Particularly, some factors that cause

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 17

transactions to be aborted in HTMs do not exist in the case
of STMs. Examples include aborts due to transactions data
footprint exceeding the cache capacity, and due to interrupts
generating user/kernel mode changes. In general, in HTMs,
transactions have to be relatively short to take advantage of
hardware processing capability, since long transactions may
require software fall-back path to be successfully processed.
Another aspect is that in HTMs it is more complex to trace
transaction conflicts, since they are transparently resolved
in hardware [53].

In practice, schedulers that use a number of metadata
to operate, that require fine-grained tracking of transac-
tion conflicts/data accesses, or that need precise informa-
tion about conflicting transactions [53], may not be eas-
ily adapted to existing HTMs. We note that techniques
like Shrink, CAR-STM, Steal-on-Abort and RelSTM, some
model-based techniques like SAC-STM and CSR-STM, and
some mixed techniques like LUTS and ProVIT, show at
least one of the above requirements. Thus, their porting to
HTMs could be complex, or even infeasible. Conversely,
most of the feedback-driven strategies (like ATS, PoCC,
F2C2 and Chan et Al. 2011, and the lightweight prediction-
based technique SCA) use a few metadata, do not require
fine-grained tracking, and do not need to identify couples
of conflicting transactions. Hence, they could be more easily
ported to current HTM implementations. Also, regarding
the analytical model-based technique MCATS, given that it
performs coarse-grained workload tracking, its porting to
HTMs may be more feasible with respect to the other model-
based techniques.

In any way, we remark that, given the number of factors
that differentiate STM from HTM implementations, most
of schedulers of the above-mentioned techniques should
be re-designed and optimized on the basis of the specific
characteristics of HTMs. This would be a necessary step to
understand their effectiveness also in the case of HTMs.

9 SUMMARY

In this article, we reviewed literature studies on scheduling
techniques for STMs. We pointed out the characteristics of
different scheduling strategies, based on which we derived
a classification of the existing techniques. Also, we analysed
previous experimental studies, and we discussed the results
of a comparison study of techniques based on alternative
scheduling strategies. By the experimental results, we iden-
tified advantages and drawbacks of the different techniques,
and we identified the issues to be further investigated.
Finally, we discussed the aspects that should be considered
when moving to the case of HTMs.

REFERENCES

[1] M. Herlihy and J. E. B. Moss, “Transactional memory: Architec-
tural support for lock-free data structures,” SIGARCH Comput.
Archit. News, vol. 21, no. 2, pp. 289–300, May 1993.

[2] N. Shavit and D. Touitou, “Software transactional memory,” in
Proceedings of the Fourteenth Annual ACM Symposium on Principles
of Distributed Computing, ser. PODC ’95. New York, NY, USA:
ACM, 1995, pp. 204–213.

[3] M. Herlihy, V. Luchangco, and M. Moir, “A flexible framework
for implementing software transactional memory,” in Proceedings
of the 21st Annual ACM SIGPLAN Conference on Object-oriented
Programming Systems, Languages, and Applications, ser. OOPSLA
’06. New York, NY, USA: ACM, 2006, pp. 253–262.

[4] R. M. Yoo and H.-H. S. Lee, “Adaptive transaction scheduling
for transactional memory systems,” in Proceedings of the Twentieth
Annual Symposium on Parallelism in Algorithms and Architectures,
ser. SPAA ’08. New York, NY, USA: ACM, 2008, pp. 169–178.

[5] M. Ansari, C. Kotselidis, K. Jarvis, M. Lujan, and I. Watson,
“Adaptive concurrency control for transactional memory,” in In
MULTIPROG 08: First Workshop on Programmability Issues for Multi-
Core Computers, 2008.

[6] M. Ansari, C. Kotselidis, K. Jarvis, M. Luján, C. Kirkham, and
I. Watson, “Advanced concurrency control for transactional mem-
ory using transaction commit rate,” in Proc. 14th Int. Euro-Par
Conference on Parallel Processing. Springer-Verlag, 2008, pp. 719–
728.

[7] K. Chan, K. Tin Lam, and C.-L. Wang, “Adaptive thread schedul-
ing techniques for improving scalability of software transactional
memory,” in Proceedings of the 10th IASTED-PDCN. ACTA Press,
2011, pp. 91–98.

[8] M. Ansari, “Weighted adaptive concurrency control for software
transactional memory,” J. Supercomput., vol. 68, no. 3, pp. 1027–
1047, Jun. 2014.

[9] K. Ravichandran and S. Pande, “F2c2-stm: Flux-based feedback-
driven concurrency control for stms,” in Parallel and Distributed
Processing Symposium, 2014 IEEE 28th International, May 2014, pp.
927–938.

[10] A. Dragojević, R. Guerraoui, A. V. Singh, and V. Singh, “Preventing
versus curing: avoiding conflicts in transactional memories,” in
Proc. 28th ACM Symposium on Principles of Distributed Computing.
ACM, 2009, pp. 7–16.

[11] E. Atoofian, “Speculative contention avoidance in software trans-
actional memory,” in Parallel and Distributed Processing Workshops
and Phd Forum (IPDPSW), 2011 IEEE International Symposium on,
May 2011, pp. 1417–1423.

[12] S. Dolev, D. Hendler, and A. Suissa, “Car-stm: scheduling-based
collision avoidance and resolution for software transactional mem-
ory,” in Proceedings of the twenty-seventh ACM symposium on Princi-
ples of distributed computing, ser. PODC ’08. New York, NY, USA:
ACM, 2008, pp. 125–134.

[13] M. Ansari, M. Luján, C. Kotselidis, K. Jarvis, C. Kirkham, and
I. Watson, “Steal-on-abort: Dynamic transaction reordering to re-
duce conflicts in transactional memory,” in Proceedings of the 4th
International Conference on High Performance Embedded Architectures
and Compilers, ser. HiPEAC ’09. Berlin, Heidelberg: Springer-
Verlag, 2009, pp. 4–18.

[14] D. Sainz and H. Attiya, “Relstm: A proactive transactional mem-
ory scheduley,” in Proceedings of the 8th ACM SIGPLAN Workshop
on Transactional Computing, ser. TRANSACT, 2013, 2013, pp. 1–8.

[15] D. Rughetti, P. Di Sanzo, B. Ciciani, and F. Quaglia, “Machine
learning-based self-adjusting concurrency in software transac-
tional memory systems,” in Proc. 20th Int. Symposium on Modeling,
Analysis and Simulation of Computer and Telecommunication Systems.
IEEE, 2012, pp. 278–285.

[16] ——, “Dynamic feature selection for machine-learning based con-
currency regulation in stm,” in Proceedings of the 2014 22Nd Eu-
romicro International Conference on Parallel, Distributed, and Network-
Based Processing, ser. PDP ’14. Washington, DC, USA: IEEE
Computer Society, 2014, pp. 68–75.

[17] P. Di Sanzo, F. Del Re, D. Rughetti, B. Ciciani, and F. Quaglia,
“Regulating concurrency in software transactional memory: An ef-
fective model-based approach,” in Self-Adaptive and Self-Organizing
Systems (SASO), 2013 IEEE 7th International Conference on, Sept
2013, pp. 31–40.

[18] P. Di Sanzo, M. Sannicandro, B. Ciciani, and F. Quaglia, “Markov
chain-based adaptive scheduling in software transactional mem-
ory,” in Proceedings of the 30th IEEE International Parallel and Dis-
tributed Processing Symposium, ser. IPDPS 2016. Washington, DC,
USA: IEEE Computer Society, 2016.

[19] D. Niccio, A. Baldassin, and G. Arajo, “Transaction scheduling
using dynamic conflict avoidance,” International Journal of Parallel
Programming, vol. 41, no. 1, pp. 89–110, 2013.

[20] H. Rito and J. a. Cachopo, “Adaptive transaction scheduling for
mixed transactional workloads,” Parallel Comput., vol. 41, no. C,
pp. 31–49, Jan. 2015.

[21] R. M. Yoo, C. J. Hughes, K. Lai, and R. Rajwar, “Performance
evaluation of intel transactional synchronization extensions for
high-performance computing,” in Proceedings of the International
Conference on High Performance Computing, Networking, Storage and

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 18

Analysis, ser. SC ’13. New York, NY, USA: ACM, 2013, pp. 19:1–
19:11.

[22] D. Dice, O. Shalev, and N. Shavit, “Transactional Locking II,” in
Proc. 20th Intl. Symp. on Distributed Computing, 2006.

[23] R. Guerraoui and M. Kapalka, “On the correctness of transactional
memory,” in Proceedings of the 13th ACM SIGPLAN Symposium on
Principles and practice of parallel programming. New York, NY, USA:
ACM, 2008, pp. 175–184.

[24] H. Attiya, L. Epstein, H. Shachnai, and T. Tamir, “Transactional
contention management as a non-clairvoyant scheduling prob-
lem,” in Proceedings of the Twenty-fifth Annual ACM Symposium on
Principles of Distributed Computing, ser. PODC ’06. New York, NY,
USA: ACM, 2006, pp. 308–315.

[25] G. Sharma, B. Estrade, and C. Busch, “Window-based greedy
contention management for transactional memory,” in Proceedings
of the 24th International Conference on Distributed Computing, ser.
DISC’10. Berlin, Heidelberg: Springer-Verlag, 2010, pp. 64–78.

[26] G. Sharma and C. Busch, “A competitive analysis for balanced
transactional memory workloads,” in Proceedings of the 14th
International Conference on Principles of Distributed Systems, ser.
OPODIS’10. Berlin, Heidelberg: Springer-Verlag, 2010, pp. 348–
363.

[27] I. Watson, C. Kirkham, and M. Lujan, “A study of a transactional
parallel routing algorithm,” in Proceedings of the 16th International
Conference on Parallel Architecture and Compilation Techniques, ser.
PACT ’07. Washington, DC, USA: IEEE Computer Society, 2007,
pp. 388–398.

[28] F. Rubin, “The lee path connection algorithm,” IEEE Trans. Com-
put., vol. 23, no. 9, pp. 907–914, Sep. 1974.

[29] C. Cao Minh, J. Chung, C. Kozyrakis, and K. Olukotun, “Stamp:
Stanford transactional applications for multi-processing,” in Proc.
4th IEEE Int. Symposium on Workload Characterization. IEEE, 2008,
pp. 35–46.

[30] R. Guerraoui, M. Kapalka, and J. Vitek, “Stmbench7: a benchmark
for software transactional memory,” SIGOPS Oper. Syst. Rev.,
vol. 41, pp. 315–324, March 2007.

[31] P. K. Janert, Feedback Control for Computer Systems. O’Reilly Media,
Inc., 2013.

[32] S. J. Russell and P. Norvig, Artificial Intelligence: A Modern Approach,
2nd ed. Pearson Education, 2003.

[33] T. M. Mitchell, Machine Learning, 1st ed. New York, NY, USA:
McGraw-Hill, Inc., 1997.

[34] P. Di Sanzo, F. Del Re, D. Rughetti, B. Ciciani, and F. Quaglia,
“Regulating concurrency in software transactional memory: An
effective model-based approach,” in Proceedings of the Seventh IEEE
International Conference on Self-Adaptive and Self-Organizing Systems,
ser. SASO. IEEE Computer Society, Sep. 2013.

[35] D. Rughetti, P. Di Sanzo, B. Ciciani, and F. Quaglia, “Analytical/ml
mixed approach for concurrency regulation in software transac-
tional memory,” in Cluster, Cloud and Grid Computing (CCGrid),
2014 14th IEEE/ACM International Symposium on, May 2014, pp.
81–91.

[36] R. M. Yoo and H.-H. S. Lee, “Adaptive transaction scheduling for
transactional memory systems,” Georgia Institute of Technology,
School of Electrical and Computer Engineering, Tech. Rep., 02
2007.

[37] V. J. Marathe, M. F. Spear, C. Heriot, A. Acharya, D. Eisenstat,
W. N. Scherer III, and M. L. Scott, “Lowering the overhead of non-
blocking software transactional memory,” University of Rochester,
Department of Computer Science, Tech. Rep. 893, March 2006.

[38] A. Dragojević, R. Guerraoui, and M. Kapalka, “Stretching transac-
tional memory,” SIGPLAN Not., vol. 44, pp. 155–165, June 2009.

[39] T.-Y. Yeh and Y. N. Patt, “Alternative implementations of two-
level adaptive branch prediction,” in Proceedings of the 19th Annual
International Symposium on Computer Architecture, ser. ISCA ’92.
New York, NY, USA: ACM, 1992, pp. 124–134.

[40] T. Heber, D. Hendler, and A. Suissa, “On the impact of serializing
contention management on stm performance,” J. Parallel Distrib.
Comput., vol. 72, no. 6, pp. 739–750, Jun. 2012.

[41] M. F. Spear, M. Silverman, L. Dalessandro, M. M. Michael, and
M. L. Scott, “Implementing and exploiting inevitability in software
transactional memory,” in Proceedings of the 2008 37th International
Conference on Parallel Processing, ser. ICPP ’08. Washington, DC,
USA: IEEE Computer Society, 2008, pp. 59–66.

[42] P. S. Yu, D. M. Dias, and S. S. Lavenberg, “On the analytical
modeling of database concurrency control,” J. ACM, vol. 40, no. 4,
pp. 831–872, Sep. 1993.

[43] H. Rito and J. Cachopo, “Flashbackstm: Improving stm perfor-
mance by remembering the past,” in Languages and Compilers
for Parallel Computing, ser. Lecture Notes in Computer Science,
H. Kasahara and K. Kimura, Eds. Springer Berlin Heidelberg,
2013, vol. 7760, pp. 266–267.

[44] I. Valença, T. Lucas, T. Ludermir, and M. Valença, “Selecting
variables with search algorithms and neural networks to improve
the process of time series forecasting,” Int. J. Hybrid Intell. Syst.,
vol. 8, no. 3, pp. 129–141, Aug. 2011.

[45] L. Kleinrock, Queueing Systems. Wiley Interscience, 1975, vol. I:
Theory, (Published in Russian, 1979. Published in Japanese, 1979.
Published in Hungarian, 1979. Published in Italian 1992.).

[46] D. Didona, F. Quaglia, P. Romano, and E. Torre, “Enhancing
performance prediction robustness by combining analytical mod-
eling and machine learning,” in Proceedings of the 6th ACM/SPEC
International Conference on Performance Engineering, ser. ICPE ’15.
New York, NY, USA: ACM, 2015, pp. 145–156.

[47] R. Ennals and R. Ennals, “Software transactional memory should
not be obstruction-free,” Technical Report IRC-TR–06–052, Intel
Research Cambridge Tech Report, Jan 2006, Tech. Rep., 2006.

[48] D. Rughetti, P. Di Sanzo, and A. Pellegrini, “Adaptive transac-
tional memories: Performance and energy consumption trade-
offs,” in Network Cloud Computing and Applications (NCCA), 2014
IEEE 3rd Symposium on. IEEE Computer Society, Feb 2014, pp.
105–112.

[49] G. Blake, R. G. Dreslinski, and T. Mudge, “Proactive transaction
scheduling for contention management,” in Proceedings of the 42Nd
Annual IEEE/ACM International Symposium on Microarchitecture, ser.
MICRO 42. New York, NY, USA: ACM, 2009, pp. 156–167.

[50] ——, “Bloom filter guided transaction scheduling,” in Proceedings
of the 2011 IEEE 17th International Symposium on High Performance
Computer Architecture, ser. HPCA ’11. Washington, DC, USA: IEEE
Computer Society, 2011, pp. 75–86.

[51] D. Choi, S. H. Kim, and W. W. Ro, “Conflict avoidance scheduling
using grouping list for transactional memory,” in Proceedings of the
2012 IEEE 26th International Parallel and Distributed Processing Sym-
posium Workshops & PhD Forum, ser. IPDPSW ’12. Washington,
DC, USA: IEEE Computer Society, 2012, pp. 547–556.

[52] M. Ansari, B. Khan, M. Luján, C. Kotselidis, C. Kirkham, and
I. Watson, “Improving performance by reducing aborts in hard-
ware transactional memory,” in Proceedings of the 5th International
Conference on High Performance Embedded Architectures and Compil-
ers, ser. HiPEAC’10. Berlin, Heidelberg: Springer-Verlag, 2010,
pp. 35–49.

[53] N. Diegues, P. Romano, and S. Garbatov, “Seer: Probabilistic
scheduling for hardware transactional memory,” in Proceedings of
the 27th ACM Symposium on Parallelism in Algorithms and Archi-
tectures, ser. SPAA ’15. New York, NY, USA: ACM, 2015, pp.
224–233.

Pierangelo Di Sanzo received a M.S. degree
and a Ph.D. degree in Computer Engineering
from Sapienza University of Rome. He was
an associate researcher at the Italian National
Interuniversity Consortium for Informatics, and
currently he is a postdoctoral researcher at the
Department of Computer, Control, and Man-
agement Engineering, at Sapienza University of
Rome. His research interests lie in the area of
concurrent programming and transactional sys-
tems, with special interest on performance anal-

ysis, modelling, optimization and energy efficiency.

	Introduction
	Background
	The TM Programming Paradigm
	Scheduling in TMs
	Benchmarks

	Classification and Features of Scheduling Techniques
	Overview and Analysis of Scheduling Techniques
	Feedback-driven Techniques
	Prediction-Driven Techniques
	Reactive Techniques
	Mixed Heuristic-Based Techniques
	Machine Learning-based Techniques
	Analytical Model-based Techniques
	Mixed Model-based Techniques

	Overview of Previous Performance Comparison Studies
	Experimental Study
	Experimental settings
	Analisys of results

	Conclusive Assessment and Open Challenges
	The case of HTMs
	Summary
	References
	Biographies
	Pierangelo Di Sanzo

