
Regulating Concurrency in Software Transactional Memory: An Effective
Model-based Approach

Pierangelo Di Sanzo, Francesco Del Re, Diego Rughetti, Bruno Ciciani, Francesco Quaglia
DIAG, Sapienza University of Rome

Abstract—Software Transactional Memory (STM) is recog-
nized as an effective programming paradigm for concurrent
applications. On the other hand, a core problem to cope
with in STM deals with (dynamically) regulating the degree
of concurrency, in order to deliver optimal performance. We
address this problem by proposing a self-regulation approach
of the concurrency level, which relies on a parametric analytical
performance model aimed at predicting the scalability of the
STM application as a function of the actual workload profile.
The regulation scheme allows achieving optimal performance
during the whole lifetime of the application via dynamic
change of the number of concurrent threads according to
the predictions by the model. The latter is customized for
a specific application/platform through regression analysis,
which is based on a lightweight sampling phase. We also
present a real implementation of the model-based concurrency
self-regulation architecture integrated within the open source
TinySTM framework, and an experimental study based on
standard STM benchmark applications.

I. INTRODUCTION

Software Transactional Memory (STM) [17] has emerged
as a promising paradigm aiming at simplifying the de-
velopment of parallel/concurrent applications. By relying
on the concept of atomic transaction, STM represents a
friendly alternative to traditional lock-based synchronization.
More in detail, code blocks accessing shared data can be
marked as transactions, thus demanding coherency of the
data access/manipulation to the STM layer, rather than to
any handcrafted synchronization scheme. The relevance of
the STM paradigm has significantly grown given that multi-
core systems have become mainstream platforms, so that
even entry-level desktop and laptop machines are nowadays
equipped with multiple processors and/or CPU-cores.

Even though one main target for STM is the simplification
of the software development process, another aspect that
is central for the success of the STM paradigm relates to
the actual level of performance it can deliver. As for this
aspect, STM needs to be complemented by schemes aimed at
allowing the overlying application to reach optimal speedup
values thanks to fruitful parallelism exploitation. This is-
sue arises since STM applications are prone to thrashing
phenomena (caused by excessive transaction rollbacks) in

This work has been partially supported by the Cloud-TM project (co-
financed by the European Commission through the contract no. 57784) and
by COST Action IC1001 EuroTM. The software produced as a result of
the research activity presented in this paper can be downloaded at the URL
http://www.dis.uniroma1.it/∼hpdcs/CSR-STM.tar

case the data access pattern tends to exhibit non-negligible
conflict among concurrent transactions and the degree of
parallelism in the execution is excessively high. On the other
hand, for too low parallelism levels, the achievable speedup
may still be suboptimal.

Recent approaches coping with this problem have been
targeted at selecting/controlling the degree of parallelism
by (dynamically) determining the well suited number of
concurrent threads to sustain application execution. Along
this path we can find solutions ranging from analytical
models [13], [4], to heuristic-based schemes [7], to machine
learning approaches [14]. On the other hand, all of the
proposed approaches exhibit some shortcoming. Classical
analytical approaches are in fact know to become unreliable
as soon as the assumptions they rely on (e.g. in terms of data
access distribution and/or distribution of the CPU time for
specific operations) are not met. Further, according to the
outcomes in [6], the transaction abort rate can be strongly
affected by the order according to which data are accessed
along the transaction execution path, which is typically
neglected by analytical models. On the other hand, even in
case the effects of such an ordering are captured analytically,
the actual exploitation of the performance model would
require detailed knowledge of the data access pattern for the
specific application, which may be unavailable or arduous to
build. As for heuristic and/or machine learning approaches,
they do not require specific (stringent) assumptions to be met
in relation to, e.g., the transactional profile of the application.
Hence, they exhibit the potential for high effectiveness in
generic application contexts, and for generic computing
platforms. On the other hand, these approaches may show
limited extrapolation capabilities, thus not being fully suited
for forecasting the performance that would be achieved with
levels of concurrency not belonging to the already explored
domain (e.g. the training domain in case of neural network
based approaches). Further, the time required for building
the knowledge base to be exploited by the machine learner
may be non-minimal, which may make the actuation of the
optimized concurrency configuration untimely.

In this article we tackle the issue of regulating the
concurrency level in STM via a model-based approach,
which differentiates from classical ones in that it avoids
the need for the STM system to meet specific assumptions
(e.g. in terms of data access pattern). Our proposal relies on
a parametric analytical expression capturing the expected

trend in the transaction abort probability (versus the degree
of concurrency) as a function of a set of features associated
with the actual workload profile. The parameters appearing
within the model exactly aim at capturing execution dy-
namics and effects that are hard to be expressed through
classical (non-parametric) analytical modeling approaches.
We derived the parametric expression of the transaction abort
probability via combined exploitation of literature results
in the field of analytical modeling and a simulation-based
analysis. Further, the parametric model is thought to be
easily customizable for a specific STM system by calculating
the values to be assigned to the parameters (hence by
instantiating the parameters) via regression analysis. The
latter can be performed by exploiting a set of sampling
data gathered through run-time observations of the STM
application. However, differently from what happens for the
training process in machine learning approaches, the actual
sampling phase (needed to provide the knowledge base
for regression in our approach) is very light. Specifically,
a very limited number of profiling samples, related to a
few different concurrency levels for the STM system, likely
suffices for successful instantiation of the model parameters
via regression. Finally, our approach inherits the extrapola-
tion capabilities proper of pure analytical models (although
it does not require their typical stringent assumptions to
be met, as already pointed out), hence allowing reliable
performance forecast even for concurrency levels standing
distant from the ones for which sampling was actuated.

A bunch of experimental results achieved by running
the STAMP benchmark suite [2] on top of the TinySTM
open source framework [11] are reported for validating the
proposed modeling approach. Further, we present the imple-
mentation of a concurrency self-regulating STM, exploiting
the proposed performance model, still relying on TinySTM
as the core STM layer, and we report experimental data for
an assessment of this architecture.

The remainder of this paper is organized as follows.
In Section II, literature results related to our proposal are
discussed. Section III is devoted to describing and validating
our STM performance model. The STM architecture entail-
ing self-regulation capabilities of the concurrency level is
presented and evaluated in Section IV.

II. RELATED WORK

Our proposal has relations with literature results in the
field of analytical modeling of concurrency control protocols
for transactional systems. These include performance models
for traditional database systems and related concurrency
control mechanisms (see, e.g., [18], [22]) and approaches
specifically targeting STM (see, e.g., [4]). Some of the litera-
ture analytical models rely on (stringent) assumptions on the
transaction data access pattern, such as uniformly distributed
accesses (e.g. [22], [10]) or the b-c access model (e.g. [18],
[19]). Differently from all these works, our proposal does not

assume any specific distribution for the data accesses, thus
being more general and exploitable in generic application
contexts. Other literature models are able to capture more
complex data access patterns by assuming Zipf-distributed
accesses [5] or phase-based accesses [6]. Compared to these
solutions, our proposal avoids the need for any detailed char-
acterization of the data access distribution. As a reflection,
the instantiation of the parameters appearing in our model
requires a lighter application sampling process than what
required to instantiate the actual data access distribution.

In [8] the authors propose a technique to approximate
the performance of the STM application when considering
different amounts of concurrent threads. The technique is
based on the usage of different types of functions, such
as polynomial, rational and logarithmic functions. The ap-
proximation process relies on sampling the speed-up of the
application over a set of runs, each one executed with a
different number of concurrent threads. After, the speed-
up forecasting function is instantiated by interpolating the
measurements. Compared to our proposal, a limitation of
this approach lies on that the workload profile of the
application is not taken into account while instantiating the
performance forecasting function. This may lead to reduced
reliability of the forecasting outcome, especially when the
workload profile of the application changes.

As for machine learning, it has been used in [20] for
selecting the best performing conflict detection and man-
agement algorithm. Conversely, it has been used in [3] to
select suitable mappings of threads to CPU-cores, allowing
performance improvements thanks to increased effectiveness
of the caching system. The goal of both these works is
different and orthogonal with respect to our one since we
focus on the regulation of the overall concurrency level
in the STM system. To the best of our knowledge, the
only machine learning based approach targeting this same
problem has been presented in [14]. Compared to this
solution, our proposal relies on a sampling process that
is lighter than the one required for building the machine
learning based performance model via training.

In [7] a black-box approach is proposed, based on the hill-
climbing heuristic scheme, which dynamically increases or
decreases the level of concurrency. Particularly, the approach
determines whether the trend of increasing/decresing the
concurrency level has positive effects on the STM through-
put, in which case the trend is maintained. Differently
from our proposal, no direct attempt to capture the relation
between the actual transaction profile and the achievable
performance (depending on the level of parallelism) is done.

Given that our model-based approach is ultimately aimed
at regulating concurrency so to avoid thrashing phenomena,
our proposal is related to pro-active transaction scheduling
schemes, which cope with the issue of performance degra-
dation due to excessive data contention [1], [21], [9]. These
solutions avoid scheduling the execution of transactions

whose associated conflict probability is estimated to be high.
The work in [1] presents a control algorithm that dynami-
cally changes the number of threads concurrently executing
transactions on the basis of the observed transaction conflict
rate (by decreasing/increasing the level of concurrency when
the conflict rate exceeds/undergoes some threshold). In [21],
incoming transactions are enqueued and sequentialized when
an indicator, referred to as contention-intensity (calculated as
a dynamic average depending on the number of aborted vs
committed transactions), exceeds a pre-determined thresh-
old. In [9], a transaction is sequentialized when a potential
conflict with other running transactions is predicted. The
prediction relies on the estimation of the expected transac-
tion read-set and write-set. The sequentializing mechanism
is activated only when the amount of aborted vs commit-
ted transactions exceeds a given threshold. Compared to
our model-based approach, all the above proposals do not
directly estimate the likelihood of transaction aborts as a
function of the level of concurrency. Rather, they attempt to
control the wasted time in an indirect manner via heuristics.

III. THE PARAMETRIC PERFORMANCE MODEL

As already hinted, we decided to exploit a model relying
on a parametric analytical expression which captures the
expected trend of the transaction abort probability as a
function of (1) a set of features characterizing the current
workload profile, and (2) the number of concurrent threads
sustaining the STM application. The parameters in the
analytical expression aim at capturing effects that are hard
to express through a classical (non-parametric) analytical
modeling approach. Further, they are exploited to customize
the model for a specific STM application through regression
analysis, which is done by exploiting a set of sampling data
gathered through run-time observations of the application.
In the remainder of this section we provide the basic
assumptions on the behavior of the STM application, which
are exploited while building the parametric analytical model.
Then the actual construction of the model is presented,
together with a model validation study.

A. Basic Assumptions

The STM application is assumed to be run with a number
k of concurrent threads. The execution flow of each thread
is characterized by the interleaving of transactions and non-
transactional code (ntc) blocks. This is the typical structure
for common STM applications, which also reflects the one
of widely diffused STM benchmarks (see, e.g., [2]). The
transaction read-set (write-set) is the set of shared data-
objects that are read (written) by the thread while running a
transaction. If a conflict between two concurrent transactions
occurs, then one of the conflicting transactions is aborted
and re-started (which leads to a new transaction run). After
the thread commits a transaction, it executes a ntc block,
which ends before the execution of the begin operation of
the subsequent transaction along the same thread.

B. Model Construction

The set P of features exploited for the construction of the
parametric analytical model, which are used to capture the
workload profile, consists of:

• the average size of the transaction read-set rss;
• the average size of the transaction write-set wss;
• the average execution time tt of committed transaction

runs (i.e. the average duration of transaction runs that
are not aborted);

• the average execution time tntc of ntc blocks;
• the read/write affinity rwa, namely the probability that

an object read by a transaction is also written by other
transactions;

• the write/write affinity wwa, namely the probability that
an object written by a transaction is also written by
other transactions.

Operatively, rwa can be calculated as the dot product
between the distribution of read operations and the distribu-
tion of write operations (both expressed in terms of relative
frequency of accesses to shared data objects). Similarly, wwa

can be calculated as the dot product between the distribution
of write operations and itself.

Our parametric analytical model expresses the transaction
abort probability pa as a function of the features belonging
to the set P , and the number k of concurrent treads supposed
to run the STM application. Specifically, it instantiates (in a
parametric manner) the function

pa = f(rss, wss, rwa, wwa, tt, tntc, k) (1)

Leveraging literature models proposing approximated per-
formance analysis for transaction processing systems (see
[22], [16]), we express the transaction abort probability pa
through the function

pa = 1− e−α (2)

However, while in literature results the parameter α is
expressed as the multiplication of parameters directly rep-
resenting, e.g., the data access pattern and the workload
intensity (such as the transaction arrival rate λ for the case
of open systems), in our approach we express α as the
multiplication of different functions that depend on the set of
features appearing in equation (1). Overall, our expression
for pa is structured as follows

pa = 1− e−ρ·ω·ϕ (3)

where the function ρ is assumed to depend on the input
parameters rss, wss, rwa and wwa, the function ω is
assumed to depend on the parameter k, and the function
ϕ is assumed to depend on the parameters tt and tntc.

We note that equation (2) has been derived in literature
while modeling the abort probability for the case optimistic
concurrency control schemes, where transactions are aborted
(and restarted) right upon conflict detection. Consequently,

this expression for pa and the variation we propose in equa-
tion (3) are expected to well match the STM context, where
pessimistic concurrency control schemes (where transactions
can experience lengthy lock-wait phases upon conflicting)
are not used since they would limit the exploitation of par-
allelism in the underlying architecture. More specifically, in
typical STM implementations (see, e.g., [11]), transactions
are immediately aborted right upon executing an invalid read
operation. Further, they are aborted on write-lock conflicts
either immediately or after a very short wait-time.

The model we propose in equation (3) is parametric
thanks to expressing α as the multiplication of parametric
functions that depend on a simple and concise representation
of the workload profile (via the features in the set P) and
on the level of parallelism. This provides it with the ability
to capture variations of the abort probability (e.g. vs the
degree of parallelism) for differentiated application profiles.
Particularly, different applications may exhibit similar values
for the featuring parameters in the set P , but may anyhow
exhibit different dynamics, leading to a different curve for
pa while varying the degree of parallelism. This is catchable
by our model via application-specific instantiation of the
parameters characterizing the functions ρ, ω and ϕ, which
can be done through regression analysis. In the next section
we discuss how we have derived the actual ρ, ω and ϕ
functions, hence the actual function expressing α.

C. Instantiating ρ, ω and ϕ

The shape of the functions ρ, ω and ϕ determining
α is derived in our approach by exploiting the results
of a simulation study. We decided to rely on simulation,
rather than using measurements from real systems, since
our model is aimed at capturing the effects associated with
data contention on the abort probability, while it is not
targeted at capturing the effects of thread-contention on
hardware resources. Consequently, the instantiation of the
functions appearing within the model has been based on an
“ideal hardware” simulation model showing no contention
effects. Anyway, when exploiting our data contention model
for concurrency regulation in a real system, a hardware
scalability model (e.g. a queuing network-based model) can
be used to estimate variations of the processing time, due
to contention effects on shared hardware resources, as a
function of the number of the concurrent threads. In the
final part of this paper, we provide some results that have
been achieved by exactly using our data contention model
and a hardware scalability model in a joint fashion.

The simulation framework we have exploited in this
study is the same used in [4] for validating an analytical
performance model for STM. It relies on the discrete-event
paradigm, and the implemented model simulates a closed
system with k concurrent threads, each one alternating the
execution of transactions and ntc blocks. The simulated
concurrency control algorithm is the default algorithm of

TinySTM (encounter time locking for write operations and
timestamp-based read validation). A transaction starts with
a begin operation, then it interleaves the execution of
read/write operations (accessing a set of shared data ob-
jects) and local computation phases, and, finally, executes a
commit operation. The durations of ntc blocks, transactional
operations and local computation phases are exponentially
distributed.

In the simulation runs we performed to derive and validate
the expression of α, we varied rss and wss between 0 and
200, rwa and wwa between 25 · 10−6 and 0.01, tt between
10 and 150 µsec, and tntc between 0 and 15·104 µsec. These
intervals include values that are typical for the execution of
STM benchmarks such as [2], hence being representative of
workload features that can be expected in real execution
contexts. Further, we varied k between 2 and 64 in the
simulations. Due to space constraints, we omit to explicitly
show all the achieved simulation results. However, the shown
results are a significative, although concise, representation of
the whole set of achieved results.

The construction of the analytical expressions for ρ, ω and
ϕ has been based on an incremental approach. Particulary,
we first derive the expression of ρ analyzing simulation
results while varying workload configuration parameters
affecting it, i.e. rss, wss, rwa, wwa, and keeping fixed other
parameters. After, we calculate the values of ρ from the ones
achieved for pa via simulation, which is done by using the
inverse function ρ = f−1(pa), once set ω = 1 and ϕ = 1.
After having identified a parametric fitting function for ρ, we
derive the expression of ω via the analysis of the simulation
results achieved while also varying k. Hence, we calculate
ω = f−1(pa), where we use for ρ the previously identified
expression, and where we set ϕ = 1. Therefore, we select a
parametric fitting function for ω. Finally, we use the same
approach to derive the expression of ϕ, which is done by
exploiting the simulation results achieved while varying all
the workload profile parameters and the level of concurrency
k, thus calculating ϕ = f−1(pa), where we use for ρ and ω
the previously chosen expressions.

To derive the expression of ρ, we initially analyzed via
simulation the relation between the values of pa and the
values of the parameters wss and wwa. In Figure 1 we
provide some results showing the values of ρ as calculated
through the f−1(pa) inverse function (like depicted above)
by relying on simulation data as the input. The data refer to
variations of wwa and to 3 different values of wss, while all
the other parameters have been kept fixed. We note that ρ
appears to have a logarithmic shape. Additionally, in order
to chose a parametric function fitting the calculated values of
ρ, we need to consider that if wwa = 0 then pa = 0. In fact,
no data contention ever arises in case of no write operations
within the transactional profile (which implies ρ = 0). Thus,
we approximated the dependency of ρ on wwa through the

following parametric logarithmic function

c · ln(a · wwa + 1) (4)

where a and c are the fitting parameters. The presence of
the +1 term in expression (4) is due to the above-mentioned
constraint according to which wwa = 0 implies ρ = 0.

After, we also considered the effects of the parameter wss
on ρ. To this aim, in Figure 2 we report the values of ρ,
derived from the simulation results, while varying wss and
for 3 different values of wwa. We remark the presence of
a flex point. Therefore, in this case, we approximated the
dependency of ρ on wss by using the function

e · (ln(b · wss + 1))d (5)

where b, d and e are fitting parameters, d being the one
capturing the flex. Assuming that the effects on the transac-
tion abort probability are multiplicative with respect to wwa

and wss (which is aligned to what literature models state
in term of the proportionality of the abort probability wrt
the multiplication of the conflict probability and the number
of operations, see, e.g., [22]), we achieved the following
parametric expression of ρ (vs wwa and wss), where d has
been used as the exponent also for expression (4) in order
to capture the effects of shifts of the flex point caused by
variations of wwa (as shown by the plots in Figure 2 relying
on simulation)

[c · (ln(b · wss + 1)) · ln(a · wwa + 1)]d (6)

where we collapsed the original parameters c and e within
one single parameters c. We validated the accuracy of the
expression (6) via comparison with values achieved through
a set of simulations, where we used different workload
profiles. The parameters appearing in expression (6) have
been calculated through regression analysis. Specifically, for
each test, we based the regression analysis on 40 randomly
selected workload profiles achieved while varying wwa and
wss. Then, we measured the average error between the
transaction abort probability evaluated via simulation and
the one predicted using for ρ the function in expression (6)
for a set of 80 randomly selected workload profiles. As an
example, in Figure 6, we depict results for the case with
k = 8. Along the x-axis, workload profiles are identify by
integer numbers and are ordered by the values of wss and
wwa. The measured average error in all the tests was 5.3%.

Successively, we considered the effects on the transaction
abort probability caused by read operations. Thus, we ana-
lyzed the relation between pa and the parameters rss, rwa

and wss. The parameter wss is included since contention
on transactional read operations is affected by the amount
of write operations by concurrent transactions. In Figure 4
we report simulation results showing the values of ρ while
varying rss and for 3 different values of rwa. In Figure
5, we report values of ρ achieved while varying rwa and
for 3 different values of rss. We note that the shape of the

curves are similar to the above cases, where we analyzed
the relation between pa and the parameters wwa and wss.
Thus, using a similar approach, and considering that pa is
also proportional to wss, we approximate the dependency
of ρ on rwa, wss and wwa using the following function

[e · (ln(f · rwa + 1)) · ln(g · rss + 1) · wss]z (7)

where e, f , g and z are the fitting parameters. The final
expression for ρ is then derived summing expressions (6) and
(7). The intuitive motivation is that adding read operations
within a transaction, the likelihood of abort due to conflicts
on original write operations does not change. However, the
added operations lead to an increase of the overall abort
probability, which we capture summing the two expressions.
Also in this case, we validated the final expression for ρ
via comparison with the values achieved through a set of
simulations, where we varied the workload profile. Similarly
to what done before, the regression analysis has been based
on 40 workload profiles, while the comparison has been
based on 80 workload profiles, all selected by randomly
varying wwa, wss, rwa, rss. The results for k = 8 are
reported in Figure 6. Along the x-axis, workload profiles are
ordered by values of rss, rwa, wss and wwa. The average
error we measured in all the tests was 2.7%.

Successively, in order to build the expression for ω, we
considered the effects of the number of concurrent threads,
namely the parameter k, on the abort probability. On the
basis of simulation results, some of which are reported in
Figure 7, we decided also in this case to use a parametric
logarithmic function as the approximation curve of ω vs k.
Clearly, the constraint needs to be accounted for that if k = 1
then ω = 0 (since the absence of concurrency cannot give
rise to transaction aborts). Thus, we approximate ω as

h · (ln(l · (k − 1) + 1), (8)

where h and l are the fitting parameters. Again, we validated
the out-coming function for pa, depending on ω (and hence
depending on modeled effects of the variation of k), using
the same amount of workload profiles as in the previous
studies, still selected by randomly varying wwa, wss, rwa,
rss and k. Some results are depicted in Figure 8 for
variations of k between 1 and 64. The average error we
measured in all the tests was 2.1%.

Finally, we built the expression of ϕ, which depends on
tt and tntc. To this aim, we note that if tt = 0 (which
represent the unrealistic case where transactions are executed
instantaneously) then ϕ must be equal to 0 (given that the
likelihood of concurrent transactions is zero). Additionally,
we note that tt can be seen as the duration of a vulnerability
window during which the transaction is subject to be aborted.
For longer fractions of time during which transactions are
vulnerable, higher probability of actual transaction aborts

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 0 0.002 0.004 0.006 0.008 0.01

ρ

wwa

ρ vs write-write affinity

wss=10
wss=30

wss=100

Figure 1: Variation of ρ with respect to
the write-write affinity

 0

 1

 2

 3

 4

 5

 6

 7

 0 50 100 150 200

ρ

wss

ρ vs write-set size

wwa=0.001
wwa=0.005
wwa=0.01

Figure 2: Variation of ρ with respect to
the write-set size

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 10 20 30 40 50 60 70 80

ab
or

t P
ro

ba
bi

lit
y

workload profile id

Transaction abort probability vs. workload profiles

Achieved by simulation
Predicted by the model

Figure 3: Simulated vs predicted abort
probability while varying wwa and wss

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 0 2e-05 4e-05 6e-05 8e-05 0.0001

ρ

rwa

ρ vs read-write affinity

rss=10
rss=30

rss=100

Figure 4: Variation of ρ with respect to
the read-write affinity

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 0 50 100 150 200

ρ

rss

ρ vs read-set size

rwa=0.000025
rwa=0.00003
rwa=0.0001

Figure 5: Variation of ρ with respect to
the read-set size

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 10 20 30 40 50 60 70 80

ab
or

t p
ro

ba
bi

lit
y

workload profile id

Transaction abort probability vs. workload profiles

Achieved by simulations
Predicted by the model

Figure 6: Simulated vs predicted abort
probability vs rwa, rss, wwa, wss

 0

 1

 2

 3

 4

 5

 6

 7

 0 10 20 30 40 50 60 70

ω

number of concurrent threads

ω vs number of concurrent threads

rss=24 wss=6, wwa=0.001 rwa=0.001
rss=18, wss=12, wwa=0.001, rwa=0.001
rss=36, wss=24, wwa=0.001, rwa=0.001

rss=36, wss=24,wwa=0.0001, rwa=0.0001

Figure 7: Variation of ω vs the number
of concurrent threads

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50 60 70 80

ab
or

t p
ro

ba
bi

lit
y

workload profile id

Transaction abort probability vs. workload profiles

Achieved by simulations
Predicted by the model

Figure 8: Simulated vs predicted abort
probability vs k, rwa, rss, wwa, wss

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

φ

θ

φ vs θ

rss=24 wss=6, wwa=0.00005 rwa=0.00005 k=6
rss=72, wss=18, wwa=0.0001, rwa=0.0001 k=6
rss=24, wss=6, wwa=0.0001, rwa=0.0001 k=12
rss=24, wss=6, wwa=0.0001, rwa=0.0001 k=6

Figure 9: Variation of ϕ with respect to
θ

can be expected. Thus we assume ϕ to be proportional to

θ =
tt

tt + tntc
(9)

We analyzed through simulation the relation between ϕ and
θ. Some results are shown in Figure 9, on the basis of which
we decided to approximate ϕ using the function:

m · ln(n · θ + 1) (10)

where m and n are the fitting parameters.
The expression of pa in equation (3) is now fully defined.

To validate it, we used the same approach that has been
adopted for the validation of each of the aforementioned
incremental steps. Some results, where we randomly selected

workload profiles, are shown in Figure 10. In all our tests,
we measured an average relative error of 4.8%.

D. Model Validation with Respect to a Real System

As a further validation step we compared the output
by the proposed model with real measurements taken by
running applications belonging to the STAMP benchmark
suite [2] on top of the open source TinySTM framework
[11]. Additionally, we evaluated the model ability to provide
accurate predictions while varying the amount of samples
used to perform the regression analysis, gathered through
observations of the behavior of the real system. Particularly,
we evaluated the extrapolation capability of the model,
namely its ability to forecast the transaction abort probability

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50 60 70 80

ab
or

t p
ro

ba
bi

lit
y

workload profile id

Transaction abort probability vs. workload profiles

Achieved by simulations
Predicted by the model

Figure 10: Simulated vs predicted abort probability while
varying all the workload profile parameters

that would be achieved when running the STM application
with concurrency levels (number of threads) not included in
the observed domain where regression samples were taken.

The presented results refer to three different benchmark
applications of the STAMP suite, namely Kmeans, Yada and
Vacation. As shown in [2], these applications are character-
ized by quite different workload profiles. This allowed us
to evaluate the model accuracy with respect to a relatively
wide workload configuration domain. All the tests have
been performed on top of an HP ProLiant server equipped
with two AMD OpteronTM6128 Series Processor, each one
having eight CPU-cores (for a total of 16 cores), and 32 GB
RAM, running Linux (kernel version 2.7.32-5-amd64).

For each application, we performed regression analysis
to calculate three different sets of values for the model
parameters, hence instantiating three models relying on
the proposed parametric analysis. Any regression has been
performed using one of three different sets of measure-
ments, each set including 80 samples. The first set included
samples gathered observing the application running with 2
and 4 concurrent threads. The second one included samples
gathered observing the application running with 2, 4 and 8
concurrent threads. Finally, the third one included samples
gathered observing the application running with 2, 4, 8
and 16 concurrent threads. This allowed us to evaluate the
extrapolation ability of the model, with respect to the number
of concurrent threads, while observing the application for
limited amounts of concurrency levels (say for 2, 3 or 4
different levels of concurrency). We performed, for each
application, the following tests. After setting up the model
instances, we executed a set of runs of the application
using different values for the application input parameters
(leading the same application to run with somehow different
workload profiles) and with a number of concurrent threads
spanning from 2 to 16. During each run, we measured the
average values of the workload profile features included in
the set P along different observation intervals having a pre-
established length, and we used them as the input to the
three instantiated models in order to compute the expected
abort probability for each observation interval. After, for

Observed concurrency levels for the regression analysis
application 2/4 threads 2/4/8 threads 2/4/8/16 threads

Vacation 2.166% (0,00089) 1.323% (0,00028) 1.505% (0,00032)
Kmeans 18.938% (0,09961) 2.086% (0,00100) 2.591% (0,00109)

Yada 2.385% (0,00029) 2.086% (0,00016) 2.083% (0,00022)

Table I: Abort probability prediction error (and its variance)

each instantiated model, we compared the predicted value
with the real one observed during the runs.

In Table I, we report the average value of the prediction
error (and its variance) for all the target benchmark applica-
tions, and for the three model instances, while considering
variations of the actual level of concurrency between 2 and
16. By the results, we note that, for the cases of Yada
and Vacation, it has been sufficient to execute regression
analysis with samples gathered observing the application
running with only 2 and 4 threads in order to achieve an
average prediction error bounded by 2.4% for any level
of concurrency between 2 and 16. When enlarging the
observation domain for the gathering of samples to be used
by regression, i.e. when observing the application running
also with 8 concurrent threads, we achieved for Yada a
slight error reduction. With Vacation, the reduction is more
accentuated. On the other hand, the prediction error achieved
for Kmeans with observations of the application running
with 2 and 4 concurrent threads was greater. However, such
an error drastically drops down when including samples
gathered with 8 concurrent threads in the data set for
regression. As for regression based on samples gathered with
2, 4, 8 and 16 threads, we note that the error marginally
increases in all the cases. We believe that this is due to
the high variance of the values of the transaction abort
probability we measured for executions with 16 concurrent
threads, which gives rise to variability of the results of the
regression analysis depending on the set of used observa-
tions. Overall, by the results, we achieved good accuracy
and effectiveness by the model since it can provide low
prediction error, for a relatively wide range of hypothesized
thread concurrency levels (namely between 2 and 16) by just
relying on observing the application running with 2, 4 and
(at worst also) 8 concurrent threads.

We conclude this section comparing the extrapolation
ability of our model with respect the neural network-based
model proposed in [14], which, similarly to ours, has been
targeted at the estimation of the STM performance (vs the
level of concurrency). To perform fair comparison, a same
set of observations has been provided in input to both the
models. Particularly, the reported results refer to the Yada
benchmark application, for which we provided a set of 80
observations (the same used for validating the model, as
shown above), related to executions with 2 and 4 concurrent
threads, in input to both our parametric model and the
neural network based model in [14]. As for the neural
network approach, we used a back-propagation algorithm

[15], and we selected the best trained network, in terms
of prediction accuracy, among a set of networks having a
number of hidden nodes spanning from 2 to 16, using a
number of algorithm iterations spanning from 50 to 1600.
In Figure 11, we show two dispersion charts, each one
representing the correlation between the measured values
of the transaction abort probability and the ones predicted
using the model (left chart) and the neural network (right
chart). These refer to concurrency levels spanning in the
whole interval 2-16. We remark that a lower prediction
error corresponds to a higher concentration of points along
the diagonal straight line evidenced in the graphs. We can
see that, in the case of the neural network, there is a
significantly wider dispersion of points compared to the
model we are proposing. In fact, the average prediction
error for the neural network is equal to 17.3%, while for
the model it is equal to 2.385%. This is a clear indication
of higher ability to extrapolate the abort probability by the
model when targeting concurrency levels for which no real
execution sample is available (and/or that are far from the
concurrency levels for which sampling has been actuated).
As a reflection, the parametric model we present provides
highly reliable estimations, even with a few profiling data
available for the instantiation of its parameters. Hence it is
suited for the construction of concurrency regulation systems
inducing low overhead and providing timely selection of
the best suited parallelism configuration (just because the
model needs a few samples related to a limited set of
configurations in order to deliver its reliable prediction on
the optimal concurrency level to be adopted). A concurrency
self-regulation architecture exploiting the parametric model
is presented and experimentally assessed in the next section.

IV. CONCURRENCY SELF-REGULATING STM

A. The Architecture

The architecture of the Concurrency Self-Regulating STM
(CSR-STM) is depicted in Figure 12. A Statistic Collector
(SC) provides a Control Algorithm (CA) with the average
values of workload profile parameters, i.e. rss, wss, rwa,
wwa, tt and tntc, measured by observing the application
on a periodic basis. Then, the CA exploits these values
to calculate, through the parametric model, the transaction
abort probability pa,k as predicted when using k concurrent
threads, for each k such that 1 ≤ k ≤ maxthread. The value
maxthread represents the maximum amount of concurrent
threads admitted for executing the application. We remark
that a number of concurrent threads larger then the number
of available CPU-cores typically penalizes STM perfor-
mance (e.g. due to costs related to context-switches among
the threads). Hence, it is generally convenient to bound
maxthread to the maximum number of available CPU-cores.
The set {(pa,k), 1 ≤ k ≤ maxthread} of predictions is used
by CA to estimate the number m of concurrent threads

which is expected to maximize the application throughput.
Particularly, m is identified as the value of k for which

k

wt,k + tt,k + tntc,k
(11)

is maximized. In the above expression: wt,k is the average
transaction wasted time (i.e. the average execution time spent
for all the aborted runs of a transaction); tt,k is the average
execution time of committed transaction runs; tntc,k is the
average execution time of ntc blocks. All these parameters
refer to the scenario where the application is supposed to
run with k concurrent threads.

We note that wt,k + tt,k + tntc,k is the average execu-
tion time between commit operations of two consecutive
transactions executed by the same thread when there are k
active threads. Hence, expression (11) represents the system
throughput. Now we discuss how wt,k, tt,k and tntc,k are
estimated. We note that wt,k can be evaluated by multiplying
the average number of aborted runs of a transaction and
the average duration of an aborted transaction run when
the application is executed with k concurrent threads. Thus,
the average number of aborted transaction runs with k
concurrent threads can be estimated as pa,k/(1−pa,k), where
pa,k is calculated through the presented model.

To calculate the average duration of an aborted transaction
run, and to estimate tt,k and tntc,k, while varying k, an
hardware scalability model has to be used. In the presented
version of CSR-STM, we exploited the model proposed in
[12], where the function modeling hardware scalability is

C(k) = 1 + p · (k − 1) + q · k · (k − 1) (12)

where p and q are fitting parameters, and C(k) is the
scaling factor when the application runs with k concurrent
threads. The values of p and q are again calculated through
regression analysis. Thus, assuming that, e.g., during the last
observation interval there were x concurrent threads and the
measured average transaction execution time was tt,x, CA
can calculate tt,k for each value of k through the formula
tt,k = C(k)/C(x) · tt,x.

Once estimated the number m of concurrent threads which
is expected to maximize the application throughput, exactly
m threads are kept active by CA during the subsequent
workload sampling interval.

B. Evaluation Study

In this section we present an experimental assessment
of CSR-STM, where we used Vacation, Kmeans and Yada,
which have been run on top of the same 16-core HP ProLiant
server exploited for previous experiments. All the tests we
present focus on the comparison of the execution time
achieved by running the applications on top of CSR-STM
and on top of the original version of TinySTM. Specifically,
in each test, we measured, for both CSR-STM and TinySTM,
the delivered application execution times while varying

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

pr
ed

ic
te

d

measured

Model prediction accuracy

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

pr
ed

ic
te

d

measured

Neural network prediction accuracy

Figure 11: Model and neural-network prediction accuracy Figure 12: CSR-STM architecture

maxthread between 2 and 16. For TinySTM, maxthread

corresponds to the (fixed) number of concurrent threads
exploited by the application. While, in the case of CSR-
STM, the application starts its execution with a number of
concurrent threads equal to maxthread. However, CSR-STM
may lead to changes of the number of concurrent threads
setting it to any value between 1 and maxthread.

For each application, we calculated the values of the
model parameters through regression analysis, using samples
gathered observing the application running with 2 and 4
concurrent threads for the cases of Vacation and Yada, and
including also observations with 8 concurrent threads for
the case of Intruder. As for the parameters appearing in
the hardware scalability model expressed in (12), regression
analysis has been performed by using, for each application,
the measured average values of the committed runs of
transactions, observed with 2, 4 and 8 concurrent threads.

We performed a number of runs using, for each appli-
cation, different values for the input parameters. Due to
space constraints, we only report results achieved with two
different workload profiles for each application, which are
shown in Figures 13, 14 and 15 for Vacation, Kmeans and
Yada, respectively. We explicitly report, according to the
input-string syntax established by STAMP, the values of the
input parameters used to run the applications.

Observing the results, the advantages of CSR-STM with
respect to TinySTM can be easily appreciated. For sys-
tem configurations where CSR-STM is allowed to use
a maximum number of threads (maxthread) greater then
the optimal concurrency level (as identified by the peak
performance delivered by TinySTM), it always tunes the
concurrency level to suited values. Thus it avoids the perfor-
mance loss experienced by TinySTM when making available
a number of CPU-cores exceeding the optimal parallelism
level. Particularly, the performance by TinySTM tends to
constantly degrade while incrementing the parallelism level.
Conversely, CSR-STM prevents this performance loss, pro-
viding a performance level which is, for the majority of the
cases, near to the best value, independently of the actual
number of available CPU-cores for running the application.

Obviously, when maxthread is lower then the optimum
concurrency level, CSR-STM can not activate the well suited
number of concurrent threads, which equals the optimal level
of parallelism. Thus, for these configurations, the perfor-
mance of CSR-STM is, in some cases, slightly reduced with
respect to TinySTM due to the overhead associated with the
components/tasks proper of the concurrency self-regulation
mechanism. As for the latter aspect, all the components
except SC (for which we measured a negligible overhead),
require a single (non-CPU-bound) thread. Thus, resource
demand is reduced, wrt the total application demand, of a
factor bounded by 1/k (when k CPU-cores are available).
Accordingly, the cases where CSR-STM provides lower per-
formance than TinySTM (e.g. when maxthread is less than
4 for Vacation and Kmeans), the advantage by TinySTM
progressively decreases vs maxthread.

V. SUMMARY

In this article we have presented a parametric analytical
model for determining the optimal level of concurrency
in STM applications. Instantiation of the parameters can
be actuated via a light regression process based on a few
samples related to the run-time behavior of the application.
Also, the model does not rely on any strong assumption
in relation to the application profile, hence being usable
in generic application contexts. It has been validated via
comparison with real data traced by running applications
from the STAMP benchmark suite on top of a 16-core HP
ProLiant machine. We also presented a concurrency self-
regulation architecture based on the model, which has been
integrated in the TinySTM open source framework, and
reported experimental data showing its ability to regulate
the concurrency level to well suited values.

REFERENCES

[1] M. Ansari, C. Kotselidis, K. Jarvis, M. Luján, C. Kirkham,
and I. Watson. Advanced concurrency control for transac-
tional memory using transaction commit rate. In Proc. 14th
Int. Euro-Par Conference, pages 719–728. 2008.

[2] C. Cao Minh, J. Chung, C. Kozyrakis, and K. Oluko-
tun. STAMP: Stanford transactional applications for multi-
processing. In Proc. 4th IEEE Int. Symposium on Workload
Characterization, pages 35-46. 2008.

 0

 20

 40

 60

 80

 100

 2 4 6 8 10 12 14 16

ap
pl

ic
at

io
n

ex
ec

ut
io

n
tim

e
(s

ec
.)

(max) concurrent threads

vacation
 input: -n4 -q60 -u90 -r32768 -t4194304 -p800000

TinySTM
CSR-STM

 0

 20

 40

 60

 80

 100

 2 4 6 8 10 12 14 16

ap
pl

ic
at

io
n

ex
ec

ut
io

n
tim

e
(s

ec
.)

(max) concurrent threads

vacation
 input: -n4 -q90 -u98 -r32768 -t4194304 -p400000

TinySTM
CSR-STM

Figure 13: Execution time for Vacation
with CSR-STM and TinySTM

 0

 1

 2

 3

 4

 5

 6

 7

 2 4 6 8 10 12 14 16

ap
pl

ic
at

io
n

ex
ec

ut
io

n
tim

e
(s

ec
.)

(max) concurrent threads

kmeans
 input: -m10 -n10 -t0,0005 -i random-n65536-d32-c16.txt

TinySTM
CSR-STM

 0

 2

 4

 6

 8

 10

 12

 14

 2 4 6 8 10 12 14 16

ap
pl

ic
at

io
n

ex
ec

ut
io

n
tim

e
(s

ec
.)

(max) concurrent threads

kmeans
 input: -m10 -n10 -t0,00005 -i random-n65536-d32-c16.txt

TinySTM
CSR-STM

Figure 14: Execution time for Kmeans
with CSR-STM and TinySTM

 2

 4

 6

 8

 10

 12

 14

 2 4 6 8 10 12 14 16

ap
pl

ic
at

io
n

ex
ec

ut
io

n
tim

e
(s

ec
.)

(max) concurrent threads

yada
 input: -a20 -i ttimeu100000.2

TinySTM
CSR-STM

 1

 2

 3

 4

 5

 6

 7

 2 4 6 8 10 12 14 16

ap
pl

ic
at

io
n

ex
ec

ut
io

n
tim

e
(s

ec
.)

(max) concurrent threads

yada
 input: -a30 -i ttimeu10000.2

TinySTM
CSR-STM

Figure 15: Execution time for Yada with
CSR-STM and TinySTM

[3] M. Castro, L. F. W. Goes, C. P. Ribeiro, M. Cole, M. Cintra,
and J.-F. Mehaut. A machine learning-based approach for
thread mapping on transactional memory applications. In
Proc. 18th Int. Conf. on High Perf. Comp., pages 1-10. 2011.

[4] P. di Sanzo, B. Ciciani, R. Palmieri, F. Quaglia, and P. Ro-
mano. On the analytical modeling of concurrency control
algorithms for software transactional memories: The case of
commit-time-locking. Perf. Eval., 69(5):187–205, 2012.

[5] P. di Sanzo, B. Ciciani, F. Quaglia, and P. Romano. A
performance model of multi-version concurrency control. In
Proc. 16th Int. Symp. on Modeling, Analysis and Simulation
of Computer and Telecomm. Systems, pages 41–50. 2008.

[6] P. di Sanzo, R. Palmieri, B. Ciciani, F. Quaglia, and P. Ro-
mano. Analytical modeling of lock-based concurrency control
with arbitrary transaction data access patterns. In Proc. 26th
Int. Conf. on Performance Eng., pages 69–78. 2010.

[7] D. Didona, P. Felber, D. Harmanci, P. Romano, and
J. Schenker. Identifying the optimal level of parallelism
in transactional memory systems. In Proc. Int. Conf. on
Networked Systems. 2013.

[8] A. Dragojević and R. Guerraoui. Predicting the scalability of
an stm a pragmatic approach. In Proc. 5th ACM Workshop
on Transactional Computing. 2010.

[9] A. Dragojević, R. Guerraoui, A. V. Singh, and V. Singh.
Preventing versus curing: avoiding conflicts in transactional
memories. In Proc. 28th ACM Symposium on Principles of
Distributed Computing, pages 7–16. 2009.

[10] S. Elnikety, S. Dropsho, E. Cecchet, and W. Zwaenepoel.
Predicting replicated database scalability from standalone
database profiling. In Proc. 4th ACM European Conference
on Computer Systems, pages 303–316. 2009.

[11] P. Felber, C. Fetzer, and T. Riegel. Dynamic performance
tuning of word-based software transactional memory. In Proc.
13th ACM Symposium on Principles and Practice of Parallel
Programming, pages 237–246. 2008.

[12] N. J. Gunther. Guerrilla capacity planning - a tactical
approach to planning for highly scalable applications and
services. Springer, 2007.

[13] Z. He and B. Hong. Modeling the run-time behavior of
transactional memory. In Proc. 18th Int. Symp. on Modeling,
Analysis and Simulation of Computer and Telecomm. Systems,
pages 307–315. 2010.

[14] D. Rughetti, P. di Sanzo, B. Ciciani, and F. Quaglia. Machine
learning-based self-adjusting concurrency in software transac-
tional memory systems. In Proc. 20th Int. Symp. on Modeling,
Analysis and Simulation of Computer and Telecomm. Systems,
pages 278–285. 2012.

[15] S. J. Russell, P. Norvig, J. F. Candy, J. M. Malik, and
D. D. Edwards. Artificial intelligence: a modern approach.
Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1996.

[16] I. K. Ryu and A. Thomasian. Performance analysis of
centralized databases with optimistic concurrency control.
Performance Evaluation, 7(3):195–211, 1987.

[17] N. Shavit and D. Touitou. Software transactional memory.
In Proc. 14th ACM Symposium on Principles of Distributed
Computing, pages 204–213. 1995.

[18] Y. C. Tay, N. Goodman, and R. Suri. Locking performance
in centralized databases. ACM Transaction on Database
Systems, pages 415–462, 1985.

[19] A. Thomasian. Concurrency control: methods, performance,
and analysis. ACM Comp. Surveys, pages 70–119, 1998.

[20] Q. Wang, S. Kulkarni, J. V. Cavazos, and M. Spear. Towards
applying machine learning to adaptive transactional memory.
In Proc. 6th Workshop on Transactional Computing. 2011.

[21] R. M. Yoo and H.-H. S. Lee. Adaptive transaction scheduling
for transactional memory systems. In Proc. 20th Symp. on
Parallelism in Algorithms and Archit., pages 169-178. 2008.

[22] P. S. Yu, D. M. Dias, and S. S. Lavenberg. On the analytical
modeling of database concurrency control. Journal of the
ACM, pages 831–872, 1993.

