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…

Single-threaded/process 
applications can not take 
advantage of such a hardware 
performance improvement.             
                         

• even more cores in a single processor

• even more processors in a single machine

Hardware performance continues to improve
mainly due to:

Recent Trend in Computer System Architectures

need for
multi-threaded/process applications

Nowadays multi-core/processor systems have become mainstream 
platforms
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The synchronization problem in concurrent applications: code sections accessing 
shared data may have to be synchronized (e.g. critical sections)

The Synchronization Problem

● pitfalls for programmers:  
deadlocks, livelocks, priority 
inversions, code composition is 
complex, scalability issues, …
● debug is complex

- using traditional synchronization 
techniques (i.e. locks, semaphores, 
monitors, …) is not easy
- fine-grained synchronization is a 
time-consuming task

Transactional Memories (TM):

● programming paradigm for multi-core/processor systems

● simplifies the development of parallel and concurrent 
applications

key idea: hide away synchronization issues by using 
transactions

application

STM layer

hardware
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Transactional Memories

…
elem_t* elemPtr;
…
TM_BEGIN();

long pop      = (long)TM_READ(queuePtr->pop);
long push     = (long)TM_READ(queuePtr->push);
long capacity = (long)TM_READ(queuePtr->capacity);

long newPop = (pop + 1) % capacity;
if (newPop == push) {
    elemPtr = NULL;
    } else {
        void** elements = (void**)TM_READ(queuePtr-> elements);
        elemPtr = (pair_t*) TM_READ(elements[newPop]);
        TM_WRITE(queuePtr->pop, newPop);
}

TM_END();
…
…

Using TM: code example
(queue pop)

transaction

The underlying transactional memory layer takes care of ensuring atomic and 
isolated executions of transactions
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Transactional Memories: How Many Threads?

concurrency level too low:
performance is

penalized due to limitation of 
parallelism and underutilization of 

hardware resources

concurrency level too high:
loss of performance  due

to excessive data contention 
and consequent transaction 

aborts and re-runs.

optimal
concurrency level
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Additionally, the optimal concurrency level may change depending 
on the application execution phase.

optimal concurrency level: 10

phase 1 phase 2 phase 3

optimal concurrency level: 8 optimal concurrency level: 14

The optimal concurrency depends on: 
application logic, workload profile, hardware architecture, ...

Identifying the optimal concurrency level...
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Goal:

enabling TM platforms to self-regulate the concurrency level

How:

1) a parametric performance model of TM applications is used to estimate  the 
throughput of an application as a function of the:

•  concurrency level (number of concurrent threads) 
•  the current workload profile of the application

2) regression analysis is exploited to customize the parametric performance model for 
a specific TM system (application + hardware platform)

3) a controller is integrated with the TM platform. At run-time, the controller exploits 
the customized model in order to decide, on basis of the observed workload profile, 
the number of concurrent threads to keep active 

Goal and Proposed Solution
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The parametric performance model estimates the transaction abort 
probability of transaction pa as a function of:

● the average size of the transaction read-set (rss)
● the average size of the transaction write-set (wss)
● the average execution time of committed transaction runs (tt)
● the average execution time of code blocks outside of transactions (tntc)
● the read/write affinity (rwa, i.e. the probability that an object read by a transaction is 
also written by other transactions)
● the write/write affinity (wwa, i.e. the probability that an object written by a transaction 
is also written by other transactions)
● the number of concurrent threads (k) 

The TM Parametric Performance Model
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Results from analytical modeling studies of transactional systems (e.g. [1,2]) :

where α is a  complex
function which is hard to
identify unless making 
strong assumptions on workload 
profile, operations' execution 
speed, data contention, etc

may cause high prediction 
error with real applications

Model Construction Approach
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Model Construction Approach

parametric function of
rss , wss, rwa, ,wwa,

Proposed approach:

- Simulation has been used to determine a parametric expression which 
captures the shape of the curve of the function pa depending on the the 
workload profile

- The parametric expression has been validated using data achieved by 
executing TM applications on real systems

Basic equation:

parametric function of
tt,, tntc,

parametric function
of k
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Case of ρ: expressing ρ as a function of wss and wwa

fitting function:

fitting parameters: a, b, c, d

Model Construction Approach
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fitting function:

Error evaluation with respect simulation data:

- fitting parameters (c, b, a, d) calculated through regression analysis (using 40 randomly 
selected workload profiles)
- average error (using 80 randomly selected workload profiles while varying wwa and wss): 
5.3%

Model Construction Approach
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expression of ρ:

expression of ω:

expression of Φ:

+

+

,  where

The same approach for ω and Φ, ... 

Finally

, where:

Model Construction Approach
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Final average error with respect to simulation data: 4.8%

Model Construction Approach
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Model Validation with a Real System

- Evaluation of the prediction error using STAMP benchmark suite [3]
and TinySTM [4]
Hardware: HP ProLiant server with 2 AMD OpteronTM6128 Series Processor, 8 cores per CPU (for a total 
of 16 cores), 32 GB RAM, Linux kernel version 2.7.32-5-amd64.

- Evaluation of the extrapolation capability of the model: for each application, three 
regression analysis have been performed using three different sets of measurements. 
Each set of measurements includes 80 samples gathered observing the application 
running with: 

- 2 and 4 concurrent threads (first set)
- 2,4 and 8 concurrent threads (second set)
- 2,4, 8 and 16 concurrent threads (third set)

Results (while varying application workload profiles and the number of threads between  2 and 16)

abort probability prediction error (variance in brackets)
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Comparison with a Neural Network-based Performance Model

Evaluation of the extrapolation capability with respect a neural network-
based model (proposed in [5])

Set of 
samples

regression analysis
for the parametric model

training phase
for the neural network 

comparison of the 
prediction accuracyinput

Results for Yada benchmark (using the first set of samples)

Average error: 2.385% Average error: 17.3%
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Self-regulating the Concurrency Level

Enabling STM to self-regulate the concurrency level:

architecture of CSR-STM (Concurrency Self-Regulating STM)

available at URL http://www.dis.uniroma1.it/hpdcs/CSR-STM.tar
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Self-regulating the Concurrency Level

 

Periodically, the controller uses the performance model to calculate the 
expected abort probabilities pa,k while varying the number of concurrent 
threads k, i.e.:

 

hence, the controller keeps active m threads, where m is the value of k such 
that the application throughput, i.e.

 
, is maximized

average transaction
 wasted time:

average execution time
of committed 

transaction runs

average execution time of 
code blocks outside of 

transactions

Hardware scalability model used for validation [14]:
It can be calculated using the average 

number of transaction re-runs:
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Comparison Between CSR-STM and Tiny STM
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● Analytical models of concurrency control protocols for transactional systems 
(e.g. [1,2,6,7,8]):

- strong assumptions on workload profile, operations' execution speed, 

data contention, etc → high prediction error with real applications

● Interpolation using different kind of functions (e.g. polynomial, rational, 
logarithmic functions) [8]:

- workload profile is not accounted  →  variation of the optimal 
concurrency level along the execution of the application can't be captured

● Machine learning-based approach (e.g. [5]) →  low extrapolation capability (vs. 
the parametric performance model-based approach)

● Pro-active transaction scheduling schemes (e.g. [10,11,12])

- based on heuristic schemes→require evaluating suitable heuristics and 
tuning a set of thresholds depending on the application workload

Comparison with Other Approaches
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