
HPDCS
Research Group

Regulating Concurrency in Software Transactional Memory:

An Effective Model-based Approach

Pierangelo Di Sanzo, Francesco Del Re, Diego Rughetti,

Bruno Ciciani, Francesco Quaglia

DIAG, Sapienza University of Rome

 Seventh IEEE International Conference on

Self-Adaptive and Self-Organizing Systems

SASO 2013

HPDCS
Research Group

…

Single-threaded/process
applications can not take
advantage of such a hardware
performance improvement.

• even more cores in a single processor

• even more processors in a single machine

Hardware performance continues to improve
mainly due to:

Recent Trend in Computer System Architectures

need for
multi-threaded/process applications

Nowadays multi-core/processor systems have become mainstream
platforms

HPDCS
Research Group

The synchronization problem in concurrent applications: code sections accessing
shared data may have to be synchronized (e.g. critical sections)

The Synchronization Problem

● pitfalls for programmers:
deadlocks, livelocks, priority
inversions, code composition is
complex, scalability issues, …
● debug is complex

- using traditional synchronization
techniques (i.e. locks, semaphores,
monitors, …) is not easy
- fine-grained synchronization is a
time-consuming task

Transactional Memories (TM):

● programming paradigm for multi-core/processor systems

● simplifies the development of parallel and concurrent
applications

key idea: hide away synchronization issues by using
transactions

application

STM layer

hardware

HPDCS
Research Group

Transactional Memories

…
elem_t* elemPtr;
…
TM_BEGIN();

long pop = (long)TM_READ(queuePtr->pop);
long push = (long)TM_READ(queuePtr->push);
long capacity = (long)TM_READ(queuePtr->capacity);

long newPop = (pop + 1) % capacity;
if (newPop == push) {
 elemPtr = NULL;
 } else {
 void** elements = (void**)TM_READ(queuePtr-> elements);
 elemPtr = (pair_t*) TM_READ(elements[newPop]);
 TM_WRITE(queuePtr->pop, newPop);
}

TM_END();
…
…

Using TM: code example
(queue pop)

transaction

The underlying transactional memory layer takes care of ensuring atomic and
isolated executions of transactions

HPDCS
Research Group

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Speedup curve

threads

sp
e

e
d

u
p

Transactional Memories: How Many Threads?

concurrency level too low:
performance is

penalized due to limitation of
parallelism and underutilization of

hardware resources

concurrency level too high:
loss of performance due

to excessive data contention
and consequent transaction

aborts and re-runs.

optimal
concurrency level

HPDCS
Research Group

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Speedup curve

threads

sp
e

e
d

u
p

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Speedup curve

threads

sp
e

e
d

u
p

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Speedup curve

threads

sp
e

e
d

u
p

Additionally, the optimal concurrency level may change depending
on the application execution phase.

optimal concurrency level: 10

phase 1 phase 2 phase 3

optimal concurrency level: 8 optimal concurrency level: 14

The optimal concurrency depends on:
application logic, workload profile, hardware architecture, ...

Identifying the optimal concurrency level...

HPDCS
Research Group

Goal:

enabling TM platforms to self-regulate the concurrency level

How:

1) a parametric performance model of TM applications is used to estimate the
throughput of an application as a function of the:

• concurrency level (number of concurrent threads)
• the current workload profile of the application

2) regression analysis is exploited to customize the parametric performance model for
a specific TM system (application + hardware platform)

3) a controller is integrated with the TM platform. At run-time, the controller exploits
the customized model in order to decide, on basis of the observed workload profile,
the number of concurrent threads to keep active

Goal and Proposed Solution

HPDCS
Research Group

The parametric performance model estimates the transaction abort
probability of transaction pa as a function of:

● the average size of the transaction read-set (rss)
● the average size of the transaction write-set (wss)
● the average execution time of committed transaction runs (tt)
● the average execution time of code blocks outside of transactions (tntc)
● the read/write affinity (rwa, i.e. the probability that an object read by a transaction is
also written by other transactions)
● the write/write affinity (wwa, i.e. the probability that an object written by a transaction
is also written by other transactions)
● the number of concurrent threads (k)

The TM Parametric Performance Model

HPDCS
Research Group

Results from analytical modeling studies of transactional systems (e.g. [1,2]) :

where α is a complex
function which is hard to
identify unless making
strong assumptions on workload
profile, operations' execution
speed, data contention, etc

may cause high prediction
error with real applications

Model Construction Approach

HPDCS
Research Group

Model Construction Approach

parametric function of
rss , wss, rwa, ,wwa,

Proposed approach:

- Simulation has been used to determine a parametric expression which
captures the shape of the curve of the function pa depending on the the
workload profile

- The parametric expression has been validated using data achieved by
executing TM applications on real systems

Basic equation:

parametric function of
tt,, tntc,

parametric function
of k

HPDCS
Research Group

Case of ρ: expressing ρ as a function of wss and wwa

fitting function:

fitting parameters: a, b, c, d

Model Construction Approach

HPDCS
Research Group

fitting function:

Error evaluation with respect simulation data:

- fitting parameters (c, b, a, d) calculated through regression analysis (using 40 randomly
selected workload profiles)
- average error (using 80 randomly selected workload profiles while varying wwa and wss):
5.3%

Model Construction Approach

HPDCS
Research Group

expression of ρ:

expression of ω:

expression of Φ:

+

+

, where

The same approach for ω and Φ, ...

Finally

, where:

Model Construction Approach

HPDCS
Research Group

Final average error with respect to simulation data: 4.8%

Model Construction Approach

HPDCS
Research Group

Model Validation with a Real System

- Evaluation of the prediction error using STAMP benchmark suite [3]
and TinySTM [4]
Hardware: HP ProLiant server with 2 AMD OpteronTM6128 Series Processor, 8 cores per CPU (for a total
of 16 cores), 32 GB RAM, Linux kernel version 2.7.32-5-amd64.

- Evaluation of the extrapolation capability of the model: for each application, three
regression analysis have been performed using three different sets of measurements.
Each set of measurements includes 80 samples gathered observing the application
running with:

- 2 and 4 concurrent threads (first set)
- 2,4 and 8 concurrent threads (second set)
- 2,4, 8 and 16 concurrent threads (third set)

Results (while varying application workload profiles and the number of threads between 2 and 16)

abort probability prediction error (variance in brackets)

HPDCS
Research Group

Comparison with a Neural Network-based Performance Model

Evaluation of the extrapolation capability with respect a neural network-
based model (proposed in [5])

Set of
samples

regression analysis
for the parametric model

training phase
for the neural network

comparison of the
prediction accuracyinput

Results for Yada benchmark (using the first set of samples)

Average error: 2.385% Average error: 17.3%

HPDCS
Research Group

Self-regulating the Concurrency Level

Enabling STM to self-regulate the concurrency level:

architecture of CSR-STM (Concurrency Self-Regulating STM)

available at URL http://www.dis.uniroma1.it/hpdcs/CSR-STM.tar

HPDCS
Research Group

Self-regulating the Concurrency Level

Periodically, the controller uses the performance model to calculate the
expected abort probabilities pa,k while varying the number of concurrent
threads k, i.e.:

hence, the controller keeps active m threads, where m is the value of k such
that the application throughput, i.e.

, is maximized

average transaction
 wasted time:

average execution time
of committed

transaction runs

average execution time of
code blocks outside of

transactions

Hardware scalability model used for validation [14]:
It can be calculated using the average

number of transaction re-runs:

HPDCS
Research Group

Comparison Between CSR-STM and Tiny STM

HPDCS
Research Group

● Analytical models of concurrency control protocols for transactional systems
(e.g. [1,2,6,7,8]):

- strong assumptions on workload profile, operations' execution speed,

data contention, etc → high prediction error with real applications

● Interpolation using different kind of functions (e.g. polynomial, rational,
logarithmic functions) [8]:

- workload profile is not accounted → variation of the optimal
concurrency level along the execution of the application can't be captured

● Machine learning-based approach (e.g. [5]) → low extrapolation capability (vs.
the parametric performance model-based approach)

● Pro-active transaction scheduling schemes (e.g. [10,11,12])

- based on heuristic schemes→require evaluating suitable heuristics and
tuning a set of thresholds depending on the application workload

Comparison with Other Approaches

HPDCS
Research Group

References (1/2)

[1] P. S. Yu, D. M. Dias, and S. S. Lavenberg. On the analytical modeling of database concurrency control. Journal of
the ACM, pages 831–872, 1993.

[2] I. K. Ryu and A. Thomasian. Performance analysis of centralized databases with optimistic concurrency control.
Performance Evaluation, 7(3):195–211, 1987.

[3] C. Cao Minh, J. Chung, C. Kozyrakis, and K. Olukotun. STAMP: Stanford transactional applications for
multiprocessing. In Proc. 4th IEEE Int. Symposium on Workload Characterization, pages 35-46. 2008.

[4] P. Felber, C. Fetzer, and T. Riegel. Dynamic performance tuning of word-based software transactional memory. In
Proc. 13th ACM Symposium on Principles and Practice of Parallel Programming, pages 237–246. 2008.

Thank you

HPDCS
Research Group

References (2/2)

[5] D. Rughetti, P. di Sanzo, B. Ciciani, and F. Quaglia. Machine learning-based self-adjusting concurrency in
software transactional memory systems. In Proc. 20th Int. Symp. on Modeling, Analysis and Simulation of Computer
and Telecomm. Systems, pages 278–285. 2012.

[6] Y. C. Tay, N. Goodman, and R. Suri. Locking performance in centralized databases. ACM Transaction on
Database Systems, pages 415–462, 1985.

[7] P. di Sanzo, B. Ciciani, F. Quaglia, and P. Romano. A performance model of multi-version concurrency control. In
Proc. 16th Int. Symp. on Modeling, Analysis and Simulation
of Computer and Telecomm. Systems, pages 41–50. 2008.

[8] P. di Sanzo, R. Palmieri, B. Ciciani, F. Quaglia, and P. Romano. Analytical modeling of lock-based concurrency
control with arbitrary transaction data access patterns. In Proc. 26th Int. Conf. on Performance Eng., pages 69–78.
2010.

[9] A. Dragojevi´c and R. Guerraoui. Predicting the scalability of an stm a pragmatic approach. In Proc. 5th ACM
Workshop on Transactional Computing. 2010.

[10] A. Dragojevi´c, R. Guerraoui, A. V. Singh, and V. Singh. Preventing versus curing: avoiding conflicts in
transactional memories. In Proc. 28th ACM Symposium on Principles of Distributed Computing, pages 7–16. 2009.

[11] M. Ansari, C. Kotselidis, K. Jarvis, M. Luj´an, C. Kirkham, and I. Watson. Advanced concurrency control for
transactional memory using transaction commit rate. In Proc. 14thInt. Euro-Par Conference, pages 719–728. 2008.

[12] R. M. Yoo and H.-H. S. Lee. Adaptive transaction scheduling for transactional memory systems. In Proc. 20th
Symp. On Parallelism in Algorithms and Archit., pages 169-178. 2008.

[13] N. J. Gunther. Guerrilla capacity planning - a tactical approach to planning for highly scalable applications and
services. Springer, 2007.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22

