CdL in Matematica - A.A. 2015-2016

Esercizi di Analisi Matematica B (Donatelli)

Undicesima settimana - I Semestre

Esercizio 1

Dati gli insiemi $A = \{(x, y, z) \in \mathbb{R}^3 \mid y^2 + z^2 \le x \le 1\}, B = \{(x, y, z) \in \mathbb{R}^3 \mid x^2 + y^2 = 1, \ 0 \le z \le 1\}$ e le funzioni $f(x, y, z) = 2x + y + z, \ g(x, y, z) = x + y + z, \ \text{calcolare} \ f(A) \in g(B).$

Esercizio 2

Calcolare l'estremo inferiore e superiore della funzione $f(x,y)=\frac{\sqrt{|x+y|}}{e^{x^2+y^2}}$ sul cerchio $x^2+y^2\leq \frac{1}{4}$.

Esercizio 3

Calcolare il lavoro compiuto dal campo vettoriale $\vec{F} = (y + 3x, 2y - x)$ per far compiere a una particella un giro dell'ellisse $4x^2 + y^2 = 4$ in senso orario.

Esercizio 4

Sia
$$F: \mathbb{R}^2 \to \mathbb{R}$$
, definita da $F(x,y) = \begin{cases} 0 & \text{se } |y| \le x^2 \\ y - x^2 & \text{se } y > x^2 \\ y + x^2 & \text{se } y < -x^2 \end{cases}$.

Verificare che

- a) $F(0,0) = 0, \frac{\partial F}{\partial y}(0,0) \neq 0.$
- b) F(x,y) definisce implicitamente infinite funzioni di x in un intorno di $x_0=0$, passanti per l'origine degli assi.
- c) Spiegare perché a) e b) non sono in contraddizione con il teorema del Dini.

Esercizio 5

Sia Γ il luogo di punti $(x, y, z) \in \mathbb{R}^3$ che verificano le condizioni

$$\begin{cases} x + \tan(x+y) + \log(1+x+z) = 0\\ \tan y + yz + \arctan(x+y) = 0 \end{cases}$$

Verificare che, in un intorno dell'origine, si possono esplicitare due coordinate in funzione della terza. Esprimere tale parametrizzazione al primo e al secondo ordine.

Esercizio 6

Dimostrare che l'equazione $(y-1)+x\arctan(x+z)+\cos z=0$ definisce in un intorno di (0,0,0) una ed una sola funzione y=g(x,z). Stabilire la natura del punto (0,0) per la funzione g(x,z)

.

Esercizio 7

Sia $f(x,y)=(x+y)^2$ e sia $E=\{(x,y)\mid x^2+2y^2\leq 1\}$. Calcolare il valore massimo e il valore minimo di f su E e calcolare $\int_E f(x,y)dxdy$

Esercizio 8

Determinare massimi e minimi delle funzioni $f(x,y)=x^4-x^6+(y-e^x)^2\log(2+x^2), f(x,y,z)=x^4+y^4+z^4-4xyz.$

Esercizio 9

Indicato con σ il segmento $\{(x,y): x>0, y>0, x+y=1\}$, si consideri la funzione

$$f(x,y) = x \log\left(1 + \frac{1}{x}\right) + y \log\left(1 + \frac{1}{y}\right).$$

- (a) Provare che $\inf_{\sigma} f = \log 2$, $\sup_{\sigma} f = \log 3$.
- (b) Generalizzare il risultato al caso f(x,y) = g(x) + g(y), con $g:[0,1] \to \mathbb{R}$, di classe C^2 e strettamente concava.

Esercizio 10

Sia f(x,y) una funzione di classe C^1 su \mathbb{R}^2 . Dimostare che, se f é nulla nell'origine, esistono due funzioni A(x,y) e B(x,y) continue su \mathbb{R}^2 e tali che

$$f(x,y) = xA(x,y) + yB(x,y)$$
 per ogni $(x,y) \in \mathbb{R}^2$.

Suggerimento: si consiglia di considerare la funzione g(t) = f(tx, ty).

Esercizio 11

Determinare gli insiemi di convergenza puntuale e uniforme delle successioni di funzione seguenti:

1.
$$f_n(x) = nxe^{-nx}$$

2.
$$f_n(x) = nx(1-x^2)^n$$

3.
$$f_n(x) = \frac{1}{1 + nx^2}$$

4.
$$f_n(x) = \frac{3x+n}{x+n}$$
 $x \ge 0$

5.
$$f_n(x) = n(\sin nx)e^{-nx}$$

6.
$$f_n(x) = \sqrt{\sin^2 x + \frac{1}{n^2}}$$

7.
$$f_n(x) = \sqrt[n]{\sin} x$$
 $x \in [0, \pi]$

8.
$$f_n(x) = (\sin x)^n \quad x \in [0, \pi]$$