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Foreword

This series of lectures is about a new tool of functional analysis and its
applications. The central results have a qualitative side, called
Compensated Integrability, which is supported by a quantitative side in
the form of a sharp Functional Inequality. It is versatile enough that it
contains, as particular cases, the isoperimetric inequality and the
Gagliardo inequality.
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The applications concern a larger array of models :

Inviscid gases,

Rarefied gases,

Hard spheres dynamics,

Multi-D scalar conservation laws,

Minkowski’s problem for convex bodies, minimal surfaces, ...
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To give a sample, I shall establish a new estimate for an inviscid gas
evolving in the whole space Rd :∫ ∞

0

dt

∫
Rd

ρ
1
d p dy ≤ cdM

1
d

√
ME ,

where ρ is the mass density, p the pressure, M and E the total mass and
energy at initial time.
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The course is organized as follows.

Lesson #0 collects a few useful facts about Matrix Analysis.
Lesson #1 provides motivations from various models of Mathematical
Physics 1. Lesson #2 provides mathematical motivations, in the spirit of
C. B. Morrey’s and J. M. Ball’s contributions to the Calculus of
Variations.

The main theoretical results are stated in Lesson #3, which also displays
two important examples of Divergence-free positive symmetric tensors
(DPT). The proofs are given in Lesson #4, where a duality appears
between DPTs and the “2nd boundary-value problem” for the
Monge-Ampère equation. This makes an important link with the theory
of optimal transport.

More practical statements, especially in view of applications to evolution
problems, are stated and proved in Lesson #5.

1. This L #1 has been taught in L’Aquila on Wednesday March 4th.
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The remaining lessons are devoted to the various applications.

Lesson #6 is devoted to gas dynamics, either in a thermodynamical
context (Euler equations), or in a kinetic one (Boltzmann equation).

Lesson #7 addresses a rather original side of the theory, that of singular
DPTs. On the one hand, we consider homogeneous tensors for which the
Functionality Inequality involves Dirac masses, the so-called
determinantal masses. On the other hand, we describe rather natural
DPTs that are supported by submanifolds or graphs.
The first part of L#7 applies, in Lesson #8, to the hard spheres
dynamics, where we show that, even if the collision set may be very large,
most of the collisions are actually very weak.

Eventually, Lesson #9 deals with the dynamics of systems of particles
that interact through long-range potential forces, like gravity of Coulomb
force. The description can be either discrete, or that of a continuum
(Vlasov-type equations).
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Somehow, it is remarquable that Compensated Integrability is able to say
something about every level of description of a gas :

Microscopic (hard spheres),

Mesoscopic (kinetic equations, Boltzmann),

Macroscopic (Euler equation).
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Facts from matrix analysis

Notations. The transpose of M is denoted MT . For two vectors a, b,
a ⊗ b is the rank-one matrix abT of entries aibj . The space of n × n
matrices with entries in a field k is Mn(k), while the group of invertible
matrices is GLn(k). The cone of positive semi-definite symmetric
matrices is Sym+

n , while SPDn is that of positive definite ones.

The main objects of our theory are positive semi-definite symmetric
tensors, that is maps x 7→ S (x ) ∈ Sym+

n , where the size 2 n is ≥ 2. We
shall make use of a few technical tools.

2. The case n = 2 is often ‘trivial’.
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Proposition 1 (Lesson #0 - Schur complement)

Let M =

(
A B
C D

)
∈Mn(k) be given blockwise with A ∈ GLp(k).

Then
detM = detA · det(D − CA−1B).

In particular, M is invertible if and only if the Schur complement
D − CA−1B is so.
Suppose instead that M ∈ Symn(R). Then

(M ∈ SPDn)⇐⇒ (A ∈ SPDp and D − BTA−1B ∈ SPDn−p).

Proof
1) Decompose M = LU blockwise :

L =

(
Ip 0

CA−1 In−p

)
, U =

(
A B
0 D − CA−1B

)
.
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2) Here C = BT and A,D are symmetric. Let us write the quadratic
form q(x ) = xTMx in terms of the blocks y ∈ Rp and z ∈ Rn−p :

q(x ) = (y +A−1Bz )TA(y +A−1Bz ) + zT (D − BTA−1B)z .

Since x 7→ (y +A−1Bz , z ) is a change of variable, q is positive if and
only if the forms uTAu and zT (D − BTA−1B)z are positive separately.

Recall that a matrix A ∈ Sym+
n admits a unique square root in Sym+

n ,
denoted A1/2 or

√
A . Its existence is obvious with an orthonormal

diagonalization. The uniqueness is slightly more involved and is a
consequence of the following.
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Proposition 2

Let A,B ∈ Sym+
n be given. Then the spectrum of AB is real.

If A (resp. B) is SPDn , then AB is diagonalizable and the signs of its
eigenvalues (+, − or 0) are the same as the signs of the eigenvalues of B
(resp. A).

Mind that AB is not symmetric in general.

Proof
Say that A ∈ SPDn . Then AB is similar to A1/2BA1/2. The latter is
symmetric and represents the same quadratic form as B (in a different
basis). Hence the result.
The general case is obtained by continuity of the eigenvalues, and the
density of SPDn in Sym+

n .
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Corollary 1

For A,B ∈ Sym+
n , one has

(detA)
1
n (detB)

1
n ≤ 1

n
Tr (AB). (1)

Proof
According to Proposition ??, the eigenvalues µj of AB are non-negative
real numbers. The inequality is thus nothing but the arithmetic-geometric
mean inequality : (

n∏
j=1

µj

) 1
n

≤ 1

n

n∑
j=1

µj .
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Corollary 2

The map

Sym+
n → R+

A 7→ (detA)
1
n

is concave.

Proof
Recall that Sym+

n is a closed convex cone. It is enough to prove the
concavity over its interior SPDn . Remark that the equality in (??) is
achieved when B = A−1. We thus have

(detA)
1
n = inf

{
1

n
Tr (AB) |B ∈ SPDn ,detB = 1

}
.

Our function appears therefore as the infimum of a collection of linear
functions ; as such, it is concave.
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Corollary ?? is accurate because the function is positively homogeneous
of degree 1. A function (detA)s with s > 1

n cannot be concave, because
it is super-linear.

Remark also that A 7→ log detA is concave (compose with the concave
increasing function log) ; which is accurate among statements that are
dimension-independent.
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Minors & cofactor matrix

Let M ∈Mn(k) be given. If I = (i1, . . . , ir ) and J = (j1, . . . , jr ) are
multi-indices of equal length, one denotes M

(
I
J

)
the minor

det(mis jt )1≤s,t≤r .

If i ∈ [[1,n]], denote ı̂ the multi-index (. . . , i − 1, i + 1, . . .) (indices in
increasing order, i omitted). The cofactor matrix M̂ has entries

m̂ik := (−1)i+kM

(
ı̂

k̂

)
.

The following formulæ are classical
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M̂TM = MM̂T = (detM )In .

In particular, if M ∈ GLn(k), then

M̂ = (detM )M−T .

This implies
det M̂ = (detM )n−1.

∂
∂mij

detM = m̂ij .

(Sherman–Morrison) If a, b ∈ kn , then

det(M + a ⊗ b) = detM + aT M̂ b.
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We shall also use the following

For A,B ∈Mn(k), we have

det(A+ B) =

n∑
r=0

∑
|I |=|J |=r

ε(I , I c)ε(J , J c)A

(
I

J

)
B

(
I c

J c

)
.

(2)
In this formula, I and J are (increasingly) ordered r -uplets in
[1,n], A

(
I
J

)
is the corresponding minor, I c is the ordered

complement of I and ε(I , I c) is the signature of the
permutation [1,n] 7→ (I , I c).

For instance, if n = 4 and I = (1, 3), then I c = (2, 4) and
ε(I , I c) = ε(τ23) = −1, where τ denotes a transposition.

For a proof, see 3 Marvin Marcus, “determinant of sums”, College
mathematics journal, March 1990.

3. Courtesy of Reimundo Heluani.
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