# Compensated Integrability and Applications to Mathematical Physics

# Denis SERRE

UMPA, UMR 5669 CNRS École Normale Supérieure de Lyon France

University of L'Aquila, spring 2020



This series of lectures is about a new tool of functional analysis and its applications. The central results have a qualitative side, called <u>Compensated Integrability</u>, which is supported by a quantitative side in the form of a sharp <u>Functional Inequality</u>. It is versatile enough that it contains, as particular cases, the isoperimetric inequality and the Gagliardo inequality.



The applications concern a larger array of models :

- Inviscid gases,
- Rarefied gases,
- Hard spheres dynamics,
- Multi-D scalar conservation laws,
- Minkowski's problem for convex bodies, minimal surfaces, ...



To give a sample, I shall establish a new estimate for an inviscid gas evolving in the whole space  $\mathbb{R}^d$  :

٠

$$\int_0^\infty dt \int_{\mathbb{R}^d} \rho^{\frac{1}{d}} p \, dy \le c_d M^{\frac{1}{d}} \sqrt{ME} \; ,$$

where  $\rho$  is the mass density, p the pressure, M and E the total mass and energy at initial time.



The course is organized as follows.

Lesson #0 collects a few useful facts about Matrix Analysis. Lesson #1 provides motivations from various models of Mathematical Physics<sup>1</sup>. Lesson #2 provides mathematical motivations, in the spirit of C. B. Morrey's and J. M. Ball's contributions to the Calculus of Variations.

The main theoretical results are stated in Lesson #3, which also displays two important examples of Divergence-free positive symmetric tensors (DPT). The proofs are given in Lesson #4, where a duality appears between DPTs and the "2nd boundary-value problem" for the Monge-Ampère equation. This makes an important link with the theory of optimal transport.

More practical statements, especially in view of applications to evolution problems, are stated and proved in Lesson #5.



1. This L #1 has been taught in L'Aquila on Wednesday March 4th.

The remaining lessons are devoted to the various applications.

Lesson #6 is devoted to gas dynamics, either in a thermodynamical context (Euler equations), or in a kinetic one (Boltzmann equation).

Lesson #7 addresses a rather original side of the theory, that of singular DPTs. On the one hand, we consider homogeneous tensors for which the Functionality Inequality involves Dirac masses, the so-called determinantal masses. On the other hand, we describe rather natural DPTs that are supported by submanifolds or graphs. The first part of L#7 applies, in Lesson #8, to the hard spheres dynamics, where we show that, even if the collision set may be very large, most of the collisions are actually very weak.

Eventually, Lesson #9 deals with the dynamics of systems of particles that interact through long-range potential forces, like gravity of Coulomb force. The description can be either discrete, or that of a continuum (Vlasov-type equations).



Somehow, it is remarquable that Compensated Integrability is able to say something about every level of description of a gas :

- Microscopic (hard spheres),
- Mesoscopic (kinetic equations, Boltzmann),
- Macroscopic (Euler equation).



**Notations**. The transpose of M is denoted  $M^T$ . For two vectors a, b,  $a \otimes b$  is the rank-one matrix  $ab^T$  of entries  $a_i b_j$ . The space of  $n \times n$  matrices with entries in a field k is  $\mathbf{M}_n(k)$ , while the group of invertible matrices is  $\mathbf{GL}_n(k)$ . The cone of positive semi-definite symmetric matrices is  $\mathbf{Sym}_n^+$ , while  $\mathbf{SPD}_n$  is that of positive definite ones.

The main objects of our theory are positive semi-definite symmetric tensors, that is maps  $x \mapsto S(x) \in \mathbf{Sym}_n^+$ , where the size n is  $\geq 2$ . We shall make use of a few technical tools.

2. The case n = 2 is often 'trivial'.



#### Proposition 1 (Lesson #0 - Schur complement)

Let  $M = \begin{pmatrix} A & B \\ C & D \end{pmatrix} \in \mathbf{M}_n(k)$  be given blockwise with  $A \in \mathbf{GL}_p(k)$ . Then

$$\det M = \det A \cdot \det(D - CA^{-1}B).$$

In particular, M is invertible if and only if the <u>Schur complement</u>  $D - CA^{-1}B$  is so. Suppose instead that  $M \in \mathbf{Sym}_n(\mathbb{R})$ . Then

 $(M \in \mathbf{SPD}_n) \iff (A \in \mathbf{SPD}_p \text{ and } D - B^T A^{-1} B \in \mathbf{SPD}_{n-p}).$ 

# $\frac{\text{Proof}}{1) \text{ Decompose } M = LU \text{ blockwise :}$

$$L = \begin{pmatrix} I_p & 0\\ CA^{-1} & I_{n-p} \end{pmatrix}, \qquad U = \begin{pmatrix} A & B\\ 0 & D - CA^{-1}B \end{pmatrix}$$

iNδAM

2) Here  $C = B^T$  and A, D are symmetric. Let us write the quadratic form  $q(x) = x^T M x$  in terms of the blocks  $y \in \mathbb{R}^p$  and  $z \in \mathbb{R}^{n-p}$ :

$$q(x) = (y + A^{-1}Bz)^{T}A(y + A^{-1}Bz) + z^{T}(D - B^{T}A^{-1}B)z.$$

Since  $x \mapsto (y + A^{-1}Bz, z)$  is a change of variable, q is positive if and only if the forms  $u^TAu$  and  $z^T(D - B^TA^{-1}B)z$  are positive separately.

Recall that a matrix  $A \in \mathbf{Sym}_n^+$  admits a unique square root in  $\mathbf{Sym}_n^+$ , denoted  $A^{1/2}$  or  $\sqrt{A}$ . Its existence is obvious with an orthonormal diagonalization. The uniqueness is slightly more involved and is a consequence of the following.



ίℕδΑ

#### Proposition 2

Let  $A, B \in \mathbf{Sym}_n^+$  be given. Then the spectrum of AB is real. If A (resp. B) is  $\mathbf{SPD}_n$ , then AB is diagonalizable and the signs of its eigenvalues (+, - or 0) are the same as the signs of the eigenvalues of B(resp. A).

Mind that AB is not symmetric in general.

#### Proof

Say that  $A \in \mathbf{SPD}_n$ . Then AB is similar to  $A^{1/2}BA^{1/2}$ . The latter is symmetric and represents the same quadratic form as B (in a different basis). Hence the result.

The general case is obtained by continuity of the eigenvalues, and the density of  $\mathbf{SPD}_n$  in  $\mathbf{Sym}_n^+$ .



# Corollary 1

For  $A, B \in \mathbf{Sym}_n^+$ , one has

$$(\det A)^{\frac{1}{n}} (\det B)^{\frac{1}{n}} \le \frac{1}{n} \operatorname{Tr}(AB).$$
(1)

## Proof

According to Proposition **??**, the eigenvalues  $\mu_j$  of AB are non-negative real numbers. The inequality is thus nothing but the arithmetic-geometric mean inequality :

$$\left(\prod_{j=1}^n \mu_j\right)^{\frac{1}{n}} \le \frac{1}{n} \sum_{j=1}^n \mu_j.$$



# Corollary 2

# The map

$$\begin{aligned} \mathbf{Sym}_n^+ &\to & \mathbb{R}_+ \\ A &\mapsto & (\det A)^{\frac{1}{n}} \end{aligned}$$

is concave.

## Proof

Recall that  $\mathbf{Sym}_n^+$  is a closed convex cone. It is enough to prove the concavity over its interior  $\mathbf{SPD}_n$ . Remark that the equality in (??) is achieved when  $B = A^{-1}$ . We thus have

$$(\det A)^{\frac{1}{n}} = \inf \left\{ \frac{1}{n} \operatorname{Tr} (AB) \, | \, B \in \operatorname{\mathbf{SPD}}_n, \det B = 1 \right\} \,.$$

Our function appears therefore as the infimum of a collection of linear functions; as such, it is concave.



Corollary **??** is accurate because the function is positively homogeneous of degree 1. A function  $(\det A)^s$  with  $s > \frac{1}{n}$  cannot be concave, because it is super-linear.

Remark also that  $A \mapsto \log \det A$  is concave (compose with the concave increasing function  $\log$ ); which is accurate among statements that are dimension-independent.



Let  $M \in \mathbf{M}_n(k)$  be given. If  $I = (i_1, \ldots, i_r)$  and  $J = (j_1, \ldots, j_r)$  are multi-indices of equal length, one denotes  $M \begin{pmatrix} I \\ J \end{pmatrix}$  the minor

$$\det(m_{i_s j_t})_{1 \le s, t \le r}.$$

If  $i \in [\![1, n]\!]$ , denote  $\hat{i}$  the multi-index  $(\ldots, i - 1, i + 1, \ldots)$  (indices in increasing order, i omitted). The cofactor matrix  $\hat{M}$  has entries

$$\hat{m}_{ik} := (-1)^{i+k} M\binom{\hat{i}}{\hat{k}}.$$

The following formulæ are classical

ΙΝδΑΝ

• 
$$\hat{M}^T M = M \hat{M}^T = (\det M) I_n.$$

• In particular, if 
$$M \in \mathbf{GL}_n(k)$$
, then

$$\hat{M} = (\det M) M^{-T}.$$

• This implies

$$\det \hat{M} = (\det M)^{n-1}.$$

• 
$$\frac{\partial}{\partial m_{ij}} \det M = \hat{m}_{ij}.$$

• (Sherman–Morrison) If  $a, b \in k^n$ , then

$$\det(M + a \otimes b) = \det M + a^T \hat{M} b.$$

iNδAM

We shall also use the following

For  $A, B \in \mathbf{M}_n(k)$ , we have

$$\det(A+B) = \sum_{r=0}^{n} \sum_{|I|=|J|=r} \epsilon(I, I^{c})\epsilon(J, J^{c})A\binom{I}{J}B\binom{I^{c}}{J^{c}}.$$
(2)

In this formula, I and J are (increasingly) ordered r-uplets in [1, n],  $A \begin{pmatrix} I \\ J \end{pmatrix}$  is the corresponding minor,  $I^c$  is the ordered complement of I and  $\epsilon(I, I^c)$  is the signature of the permutation  $[1, n] \mapsto (I, I^c)$ .

For instance, if n = 4 and I = (1,3), then  $I^c = (2,4)$  and  $\epsilon(I, I^c) = \epsilon(\tau_{23}) = -1$ , where  $\tau$  denotes a transposition.

For a proof, see<sup>3</sup> Marvin Marcus, "determinant of sums", College mathematics journal, March 1990.

3. Courtesy of Reimundo Heluani.

iℕδA