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Foreword

This series of lectures is about a new tool of functional analysis and its
applications. The central results have a qualitative side, called
Compensated Integrability, which is supported by a quantitative side in
the form of a sharp Functional Inequality. It is versatile enough that it
contains, as particular cases, the isoperimetric inequality and the
Gagliardo inequality.
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The applications concern a larger array of models :
@ Inviscid gases,
o Rarefied gases,
@ Hard spheres dynamics,
@ Multi-D scalar conservation laws,

@ Minkowski's problem for convex bodies, minimal surfaces, ...
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To give a sample, | shall establish a new estimate for an inviscid gas
evolving in the whole space R? :

/ dt/ p%pdygch%\/ME7
0 Rd

where p is the mass density, p the pressure, M and E the total mass and
energy at initial time.
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The course is organized as follows.

Lesson #0 collects a few useful facts about Matrix Analysis.

Lesson #1 provides motivations from various models of Mathematical
Physics . Lesson #2 provides mathematical motivations, in the spirit of
C. B. Morrey's and J. M. Ball's contributions to the Calculus of
Variations.

The main theoretical results are stated in Lesson #3, which also displays
two important examples of Divergence-free positive symmetric tensors
(DPT). The proofs are given in Lesson #4, where a duality appears
between DPTs and the “2nd boundary-value problem” for the
Monge-Ampére equation. This makes an important link with the theory
of optimal transport.

More practical statements, especially in view of applications to evolution
problems, are stated and proved in Lesson #5.

1. This L #1 has been taught in L'Aquila on Wednesday March 4th.



The remaining lessons are devoted to the various applications.

Lesson #6 is devoted to gas dynamics, either in a thermodynamical
context (Euler equations), or in a kinetic one (Boltzmann equation).

Lesson #7 addresses a rather original side of the theory, that of singular
DPTs. On the one hand, we consider homogeneous tensors for which the
Functionality Inequality involves Dirac masses, the so-called
determinantal masses. On the other hand, we describe rather natural
DPTs that are supported by submanifolds or graphs.

The first part of L#7 applies, in Lesson #8, to the hard spheres
dynamics, where we show that, even if the collision set may be very large,
most of the collisions are actually very weak.

Eventually, Lesson #9 deals with the dynamics of systems of particles
that interact through long-range potential forces, like gravity of Coulomb
force. The description can be either discrete, or that of a continuum

(Vlasov-type equations).
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Somehow, it is remarquable that Compensated Integrability is able to say
something about every level of description of a gas :

@ Microscopic (hard spheres),
@ Mesoscopic (kinetic equations, Boltzmann),

@ Macroscopic (Euler equation).
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Facts from matrix analysis

Notations. The transpose of M is denoted M 7. For two vectors a, b,
a ® b is the rank-one matrix ab” of entries q; b;j. The space of n x n
matrices with entries in a field k is M, (k), while the group of invertible
matrices is GL,, (k). The cone of positive semi-definite symmetric
matrices is Symx, while SPD,, is that of positive definite ones.

The main objects of our theory are positive semi-definite symmetric

tensors, that is maps z — S(z) € Symj{, where the size? n is > 2. We

shall make use of a few technical tools.

: - iNoAM
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Proposition 1 (Lesson #0 - Schur complement)

A B

LetM:<C D

Then

) € M, (k) be given blockwise with A € GL, (k).

det M = det A - det(D — CA™'B).

In particular, M is invertible if and only if the Schur complement
D — CA™'B is so.
Suppose instead that M € Sym,, (R). Then

(M € SPD,,) <= (A€ SPD, and D — B"A™'B € SPD,,_,).

Proof
1) Decompose M = LU blockwise :

s 0 (A B
v=(ot on,) 7=(6 p-cas)
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2) Here C = BT and A, D are symmetric. Let us write the quadratic
form q(z) = 27 Mz in terms of the blocks y € R? and z € R" 7 :

g(z) = (y+ A7'B2)TA(y + A7'B2) + 27(D — BTA7'B)z.

Since 7 +— (y + A7 Bz, 2) is a change of variable, ¢ is positive if and
only if the forms u” Au and 27 (D — BT A= B)z are positive separately.
[

Recall that a matrix A € Sym;t admits a unique square root in Symjl',
denoted A'/2 or /A . lts existence is obvious with an orthonormal
diagonalization. The uniqueness is slightly more involved and is a
consequence of the following.
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Proposition 2

Let A, B € Sym; be given. Then the spectrum of AB is real.
If A (resp. B) is SPD,,, then AB is diagonalizable and the signs of its
eigenvalues (+, — or 0) are the same as the signs of the eigenvalues of B

(resp. A).

Mind that AB is not symmetric in general.

Proof

Say that A € SPD,,. Then AB is similar to A/2BA'/?. The latter is
symmetric and represents the same quadratic form as B (in a different
basis). Hence the result.

The general case is obtained by continuity of the eigenvalues, and the
density of SPD,, in Sym,'.

| |
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For A, B € Sym, one has

1
n

Tr(AB). (1)

S|~

(det A)# (det B)# <

Proof
According to Proposition 77, the eigenvalues y; of AB are non-negative
real numbers. The inequality is thus nothing but the arithmetic-geometric

mean inequality :

1
<H Mj) < % > w
j=1 j=1
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The map
Sym; — R,
A — (detA)s
is concave. )
Proof

Recall that Sym;" is a closed convex cone. It is enough to prove the
concavity over its interior SPD,,. Remark that the equality in (??) is
achieved when B = A~!. We thus have

(det A)= :inf{lTr(AB)B € SPD,, ,det B = 1} :
n

Our function appears therefore as the infimum of a collection of linear

functions; as such, it is concave.



Corollary ?? is accurate because the function is positively homogeneous
of degree 1. A function (det A)° with s > % cannot be concave, because
it is super-linear.

Remark also that A — logdet A is concave (compose with the concave
increasing function log) ; which is accurate among statements that are
dimension-independent.
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Minors & cofactor matrix

Let M € M, (k) be given. If I = (i1,...,4%.) and J = (j1,...,J-) are
multi-indices of equal length, one denotes M(LI,) the minor

det(mi,j,)1<s,t<r-

If i € [1,n], denote i the multi-index (...,7 — 1,7+ 1,...) (indices in
increasing order, i omitted). The cofactor matrix M has entries

)

T >

e (—1)i+’“M<

The following formulzae are classical
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o MTM =MMT = (det M)1,.
@ In particular, if M € GL,(k), then

M = (det MYM™T.

@ This implies .
det M = (det M)™ 1.

("] 0 detM:’ﬁ’LU

6mi]

(Sherman—Morrison) If a, b € k™, then

det(M + a® b) = det M + o™ Mb.
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We shall also use the following
For A, B € M,,(k), we have

det(A + B) = Z > e JJ)A(DBGZ).

r=0|I|=|J|=r )
2

In this formula, I and J are (increasingly) ordered r-uplets in
[1,n], A(f,) is the corresponding minor, 1€ is the ordered
complement of I and e(I,1°) is the signature of the
permutation [1,n] — (I,1°).

For instance, if n =4 and I = (1,3), then I¢ = (2,4) and
€(I,1¢) = e(1a3) = —1, where 7 denotes a transposition.

For a proof, see3 Marvin Marcus, “determinant of sums”, College
mathematics journal, March 1990.
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3. Courtesy of Reimundo Heluani.



