L#1 - Symmetric tensors in Mathematical Physics

Let Q C R”" be an open set. We are interested in symmetric tensors
S:Q — Sym,,.

If the entries are distributions, we define the row-wise divergence DivS : Q — R”
by

(DivS); = Zajsij.
J
The positivity of the tensor plays an important role. We say that § is positive semi-
definite if for every u € R", the distribution ,uTS,u is > 0. We recall that non-negative

distributions are locally finite measures. Hence S > 0, implies that every entry s;;
is a locally finite measure.

The following result shows how well positivity fits with divergence-freeness:



Proposition 3 Let S be symmetric > 0,, over R", and divergence-free.
Then S = 0,,.

Proof

The Fourier transform & — 7 S(&) is continuous. The divergence-free condition
translates as 7 S(&)E = 0. For v a unit vector, take & = ev. Passing to the limit into
FS(ev)v =0, we obtain #5(0)v = 0. Therefore

/ S(x)dx = FS(0) =0y,

In other words, the non-negative finite measure ,uTS,u has total mass 0, and there-
fore vanishes identically.



Continuum mechanics

The physical space is R4 for some d > 1, the space variable being denoted y =
(¥1,---,Yq)- We setn =1+d and x = (¢,y) where ¢ is the time variable.

A material is described by its mass density p(z,y) > 0 and velocity field v(¢,y). The
equation of continuity (conservation of mass) writes

drp +divy(pv) =0, (3)

where pv is the linear momentum.

Newton’s law of acceleration writes

dt(pv) + Divy(pv ®v) = DivyX, (4)



where X(z,y) is the Cauchy's stress tensor. An important fact, which is equivalent
to the conservation of angular momentum, is that X is symmetric. The system (3,4)
can therefore be recast as
. VT
Div, S =0, S .= (ppv pvgv B Z)

where the tensor S is symmetric. Thanks to Proposition 1 (take p = 1), it is positive
definite if and only if p > 0 and —X € SPD,. More generally, it is positive semi-
definite if and only if £ < 0.

e For aninviscid gas, ¥ = —pl; where p > 0O is the pressure. Thus S > 0,,.

e Foraviscous gas, X = —pl; +A(Vv+ Vvl 4 u(divv)I; and one cannot con-
clude.



Determinant

Suppose that a physical model involves a divergence-free tensor §. The indepen-
dent variables x; have physical dimensions /;, while those of the entries s;; are
d;;j. Because each equation (DivS); = 0 must involve quantities of the same di-
mension, say m;, we have d;; = m,-éj. Therefore the monomials (G a permutation)

have a common dimension
[1miT1¢
I J
and it makes sense to form a linear combination. For instance, det S is well-defined
from a physical point of view.



Another reason to consider the determinant is that a model must be invariant under
the action of some group G of linear transformations: the orthogonal, Galilean or
Lorentz group, depending on the context. If R € G, the action is defined by

(R-S)(x) :=RS(R™'x)RT.

The determinant is equivariant under this action.

In continuum mechanics, the Schur complement formula yields detS = pdet(—X).
For an inviscid gas, this gives

detS = ppd.



Relativistic gas (special relativity)

Let ¢ > 0 be the speed of light. Recall that |v| < c.

Because of the equivalence principle between mass an energy, the continuity equa-
tion is replaced by the conservation of energy:

2 2
pcc+p p . pce+p
| —— — = | +divy, [ ———v | =0. 5
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The law of acceleration becomes

2 2
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This is recast as Div,S = 0 where the symmetric tensor
pc’4p pc’+p
2=y 2P
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is still positive semi-definite (homework: prove this using Schur complement). Amaz-
ingly enough one has again

detS = ppd.

This may be seen by using the Lorentz invariance, and considering the frame in
which the velocity vanishes.



Kinetic models

We still take n = 1 +d and x = (z,y). But now the velocity v € R is an independent
variable and the particle density is a function f(¢,y,v) > 0. The local mass density
and the linear momentum are

)= [ ftymds,  m= / P

from which we can define a mean velocity u :

The motion is governed by a kinetic equation

Auf +v-Vyf = Qlfl. 7

tran‘srport

The right-hand side accounts for particle interactions, for instance collisions. In
most models, Q is non-linear (often quadratic), non-local in the variable v, but local

inx: Q[f](z,y,v) depends only upon f(¢,y,).



All the models, among which there is that of Boltzmann, share the following prop-
erties, in which g = g(v) > 0 is an arbitrary function in L1((1+ |[v|?)dv).

Minimum principle. If g(w) =0, then Q|g](w) > 0.
Conservation of mass. [ QO[g](v)dv = 0.
Conservation of momentum. [, Qlg|(v)vdv =0.

Conservation of energy. [.QO|g](v) v[2dv = 0.



The first one ensures that f stays > 0. The next two are responsible for the macro-
scopic conservation laws of mass and momentum:

dp+divym = 0,
dm~+DivyT = 0,

where T := [pa Qlg](v)v®@vdv. This is recast as DivyS = 0 with

T
(P m)
S.—( T)_/Rdf(t,y,v)V@Vdv

where V = (i) The latter formula shows that S is symmetric, positive semi-definite.



Wave equation

A scalar function u(t,y) obeys to
Uy = C2Ayl/l. (8)

The conservation of energy writes

1 :

ati(ut2 + 2| Vul?) = divy(c?u;Vu)

where V is the spatial gradient. Meanwhile the energy flux u;Vu obeys a conser-
vation law too:

3 (1rd ju) = 9 j%(u% — 2{Vuf?) + Adiv(d uVa).



All this can be recast as Div,.S = 0 where

g %(utz—l—cz|Vu|2) —c?uVul
' —c?u;Vu %(utz—czwu]z)ld—l—czVu@Vu '

When d = 1, § is positive semi-definite. Otherwise the positiveness occurs only
when |u;| > ¢|Vu|. Actually we have

c2d

2 2 2
det$S = ?(Mt —C |V1/t‘ )l/l



Maxwell’s equations

Electro-magnetism? in vacuum is described by a field (E, B) with values in RS, The
standard models writes

oB+curlE=0, divB=0, (9)
equgo:E — curl B =0, divk = 0. (10)

In presence of charges, the equations (10) incorporate the charge density p and
the current j. One has 8(),110c2 = 1 with ¢ the light speed. The energy density is
conserved?*:

1 .
at§(|B|2 +|E|?)+div (E x B) = 0.

SHere d = 3 and n = 4.

“Here we chose units in which ¢ = 1.



The energy momentum satisfies a conservation law as well:

d:(ExB) = (curlB) x B+ (curlE) X E
1
— Div(B®B+E®E)—V§(|B|2+\E|2).

Whence a divergence-free symmetric tensor

1
. (2(BP+IE[?) ExB |
| ExB ~B@B—-E®E+5(|B*+|E]))I

This does not look impressive ... But let us mention that the Maxwell system might
not be perfectly linear. Linearity has been criticized because a steady point charge
generates a field B = 0 and E = g|y| 3y, for which the energy density ¢2/2|y|* is
not integrable at the origin. Therefore the amount of energy in a neighbourhood of
the charge is infinite | Physicists looked for alternate, non-linear models to resolve
this paradox ; the most famous one is that of M. Born & L. Infeld in 1934.



Non-linear models

One postulates that the unknown is a differential form ® of degree 2, which is
closed: dw = 0. In coordinates, one writes

0= (E-dy)Ndt+B-(dyNdy) = Eidyi \Ndt+---+ Bidy, Ndy3+ -,

which defines the fields (E,B). Mind that these depend on the choice of coordi-
nates. The condition d® = O translates as the Maxwell-Faraday equations (9).

The remaining equations are assumed to derive from a variational principle 6L =0
where L|®w| = [ [ L(E,B)dydt. Because the ambiant space is that of closed 2-
forms, which are locally exact, we content ourselves to writing

d

— L do| =0 11

for every 1-form c.



Coordinate-wise, o0 = ¢dt + A - dy and

doo= (VO —0:A) -dy Adt +curlA - (dy Ady).

oL oL
// (a—B-curlA+ 3 (Vo — 8;A> dydt =0

for every function ¢ and vector field A. This yields

Thus (11) gives

o:D — curlH =0, divD =0, (12)
where
D oL o oL
" OE’ " OB’

This replaces the Maxwell-Gauss equations (10)

The system (9,10) is a special case where L = %(|E|2 — |B?).



The general model admits an energy density W, which is the Legendre transform
of L with respect to E (B is kept as a parameter):

W(B,D)=D-E —L(E,B).
By reciprocity Wp = E. The chain rule gives (B-derivatives are taken at D constant)
Wp=D-Ep—Lg-Eg—Lp=—Lgp=H.
Thus (9.1,12.1) can be recast as
d;B + curlWp = 0, d:D — curl W = 0.

We derive essentially the same conservation law (Poynting identity) as in the linear
model

oW +div(E x H) = 0. (13)



A controversy

It is tempting to look for a conservation law of the form d;(E x H) 4+ Div(---) =0,
as we had one in the standard linear model, but this does not seem available in
general. Instead, we have

D x B) =Div(Wg@B+Wp®D)+V(W—B-Wg—D-Wp).  (14)

We may therefore form a divergence-free tensor

. ( 114 ExH )
DxB —-Wp®B—-Wp®D+ (B-Wg+D-Wp—W)I3 )"
It is however unclear at this stage whether § is symmetric or not. On the one hand
the lower-right block is not clearly symmetric. On the other hand, why should D x B
equal £ X H ? This was the origin of a controversy about the so-called Poynting
vector. Some people leant to the Minkowski’s form D x B, while the others inclined
towards Abraham’s form E x H.



Involving Lorentz invariance

The controversy is resolved when one remarks that the model must be frame-
independent, that is invariant under Lorentz transformations. In other words, the
density L(E, B) does not really depend upon E and B, but only on the 2-form ®(x).
This means that if (E’, B') represents the same form in a different admissible coor-
dinate system, then L(E’,B") = L(E,B).

One proves that such a density is actually a function of two scalar quantities

1
L={((o,m), o©:= 5(|E\2— B|?), m=E-B.

A remarkable fact is

Theorem 1 The tensor S is symmetric if, and only if L is invariant under
the action of the Lorentz group, that is L = ¢(G, 1) for some function /.



Proof

(<=) If L is Lorentz-invariant, then D = {cE + {zB and H = {cB — {7 E. Therefore

DxB=/VcEXB=E xH.

On the other hand, the lower-right block of S is symmetric because of

Wp@B+Wp®D = H®B+ER®D=-Lp®B+EQLE
= (s(BRB+EQE).

(=) Conversely, the condition D x B=FE x H writes L Xx B4+ E X Lg =. This is
a set of three first-order linear PDEs R - VL = 0. For instance R -V = B3dg, —
By0g, + Exdp, — E3dp,. They imply R- VL = 0 for every vector field R in the Lie
algebra 4 spanned by {R|,R>,R3}.



One verifies that

A = (R1,Ry,R3,[R1, Ry, [R2, R3], [R3, Ry])

has dimension 6, and that for each point (E,B), dimA4(E,B) = 4. This means
that the PDEs admit 6 — 4 = 2 independent solutions, from which all solutions are
functionally dependent. Obviously ¢ and T are two such independent solutions.

Not surprisingly (Maxwell contains the wave equation), S is not positive. Actually

detS=—-72<0
where

Z :=12(6* +1%) — ({ — ol — Tly)?.



Conclusion

The various examples taken form Mathematical Physics teach us the following
lessons.

e There often exists a divergence-free tensor of size n X n (the divergence be-
ing taken in space and time variables). The equality DivS = 0 expresses the
conservation of either mass or energy, together with that of the correspond-
ing momentum. We shall speak of the mass-momentum (energy-momentum)
tensor of the model.

e The symmetry of § is a consequence of (or even is equivalent to) the in-
variance of the model with respect to a group of transformation (Galilean,
Lorentzian).



e The tensor is not always positive (we shall elaborate later on).

Comments

* We warn the audience that in continuum mechanics, the tensor is symmetric only
when the equations of motion are written in the Eulerian frame (when x stands
for space and time). It is lost when the equations of the motion are written in the
Lagrangian variables (material variables).

* Although the tensor § for the wave equation is not always positive, it defines a
quadratic form Q such that Q(V) > 0 for every time-like vector. This expresses
the property that the positivity of the energy density does not depend upon the
admissible frame.



* Likewise, a natural assumption for Maxwell's models is that the energy density is
positive, for every admissible frame. This means that not only W > 0, but actually
vIsv >0 for every time-like vector,

1
V:(), v < 1.
v

Under the natural assumption that {5 > 0, this amounts to the differential inequality

€§n£n+(0+\/02+7c2>€c. (15)

* The above examples raise the natural (still open) question of understanding the
properties of divergence-free symmetric tensor that take values in the cone defined
by vIsy >0 for every time-like vector V. Since this is a weaker condition than
positive semi-definiteness, we expect weaker results.



