# Compensated Integrability and Applications to Mathematical Physics

#### Denis SERRE

UMPA, UMR 5669 CNRS École Normale Supérieure de Lyon France

University of L'Aquila, spring 2020



## Lesson#2 - Motivations from Functional Analysis

This lesson is dedicated to the analysis of the structure characterized by the row-wise divergence over symmetric tensors, in the light of the Calculus of Variations.

Our operator  $\operatorname{Div}$  replaces the row-wise rotational operator  $\operatorname{Curl}$ , whose kernel was made of Jacobian matrices. The natural question of weak lower- (or upper-) semi-continuity remains the same.

It leads us to the notion of Div-Quasiconvexity, in the spirit of Dacorogna <sup>1</sup> and of I. Fonseca & S. Müller <sup>2</sup>.

<sup>1.</sup> Weak continuity and weak lower semicontinuity for nonlinear functionals, LNM 922, Springer-Verlag, NY, 1982.

<sup>2.</sup> A-Quasiconvexity, lower semicontinuity, and Young measures. SIAM J. Math SA Manal. 30 (1999) pp 1355–1390.

## Convexity

## Recall the Jensen Inequality:

Let  $K \subset \mathbb{R}^N$  be a convex subset and  $\phi: K \to \mathbb{R}$  be a convex function. If  $\mu$  is a probability over a domain  $\Omega$  and  $u: \Omega \to K$  is  $\mu$ -measurable, then

$$\phi\left(\int_{\Omega} u \, d\mu\right) \le \int_{\Omega} \phi(u) \, d\mu. \tag{1}$$



Here are two examples, where the barred integral denotes the mean value over a domain  $\Omega\subset\mathbb{R}^m$  of finite Lebesgue measure :

• With  $K = \mathbb{R}$ ,

$$\left| \oint_{\Omega} u(x) \ dx \right|^2 \le \oint_{\Omega} |u(x)|^2 dx.$$

• If S takes values in  $\mathbf{Sym}_n^+$  (hence  $N=\binom{n}{2}$ ), then

$$\oint_{\Omega} (\det S)^{\frac{1}{n}} dx \le \left( \det \oint_{\Omega} S(x) \ dx \right)^{\frac{1}{n}}.$$
(2)

This is a consequence of the concavity of  $S\mapsto (\det S)^{\frac{1}{n}}$ , see L#1, Corollary 2 .



## Weak semi-continuity

Let  $\Omega\subset\mathbb{R}^m$  be an open subset. Let  $u_k:\Omega\to K$  be a sequence, bounded in  $L^\infty$  (we avoid  $L^p$  only for the sake of simplicity). Up to the extraction of a sub-sequence, we may assume that  $u_k\stackrel{*}{\rightharpoonup} u$  in the weak-\* topology of  $L^\infty$ .

What can be said of  $\phi(u_k)$ ?

Mind that another extraction allows us to assume  $\phi(u_k) \stackrel{*}{\rightharpoonup} \ell$  for some  $\ell \in L^\infty(\Omega)$ . The question is therefore :

Is there a relation between  $\ell$  and  $\phi(u)$  ?

For an arbitrary continuous function  $\phi:K\to\mathbb{R}$ , the answer is  $\underline{\text{No}}$ . Weak convergence does not commute with nonlinear operations.



For <u>convex</u> functions instead, one may use (use a sub-differential if needed)

$$\phi(u_k) \ge \phi(u) + d\phi(u) \cdot (u_k - u)$$

and pass to the weak limit.

One obtains

$$\ell \ge \phi(u). \tag{3}$$

This means that convex functions are weakly-\* lower semi-continuous.



The converse happens to be true :

let  $a,b\in K$  and  $\theta\in(0,1)$  be given. Let  $\chi:\mathbb{R}\to\{0,1\}$  be the characteristic function of  $(0,\theta)$  modulo 1. Define

$$u_k(x) = \chi(kx_1)a + (1 - \chi(kx_1))b,$$

so that  $\phi(u_k)(x) = \chi(kx_1)\phi(a) + (1-\chi(kx_1))\phi(b)$ . We have

$$u_k \stackrel{*}{\rightharpoonup} \theta a + (1 - \theta)b, \qquad \phi(u_k) \stackrel{*}{\rightharpoonup} \theta \phi(a) + (1 - \theta)\phi(b).$$

If  $\phi$  is weakly-\* lower semi-continuous, then (3) means

$$\phi(\theta a + (1 - \theta)b) \le \theta\phi(a) + (1 - \theta)\phi(b).$$

This is the convexity of  $\phi$ .



A fashionable topic in Functional Analysis is to investigate what happens to weak-\* semi-continuity when one has some extra information about  $u_k$ , in terms of derivatives.

The best known situation occurs when  $\nabla u_k$  is a bounded sequence in some  $L^p$  space. Then Rellich–Kondrachov Theorem tells us that  $u_k$  is relatively compact in  $L^q$  whenever

$$\frac{1}{q} > \frac{1}{p} - \frac{1}{m} \,.$$

This implies that  $\ell = \phi(u)$  (weak continuity) whenever  $\phi(v) = O(|v|^q)$ .



The situation is more complex, and perhaps more interesting, when the information concerns  $Pu_k$  where P is some non-elliptic differential operator. Historically, this occured in the context of Calculus of Variations, where  $K = \mathbf{M}_{r \times m}(\mathbb{R})$  and P is the row-wise  $\mathrm{Curl}$  operator.

The fields  $u_k$  are Jacobian matrices  $\nabla v_k$ , and we have  $\operatorname{Curl} u_k \equiv 0$ . Say that  $\Omega$  is bounded and  $v_k$  is a minimizing sequence of some functional

$$I[v] = \int_{\Omega} F(x, \nabla v) \, dx,$$

under given boundary conditions. One may think of a Dirichlet BC,

$$v=g$$
 over  $\partial\Omega$ .

If F satisfies the reasonable property that

$$\frac{1}{C}(|u|-1)^p \le F(x,u) \le C(|u|+1)^p,\tag{4}$$

 $iN\delta AM$ 

then the sequence  $\nabla v_k = u_k$  is bounded in  $L^p$  and we may assume that  $v_k \rightharpoonup \bar{v}$  in  $W^{1,p}$ . In particular,  $\bar{v}$  satisfies the same boundary condition at  $\partial\Omega$ .

Since the sequence  $F(x,\nabla v_k)$  is also bounded in  $L^1$ , we can extract a subsequence so that

$$F(x, \nabla v_k) \rightharpoonup \ell$$

in the vague sense. Here  $\ell$  is a finite measure over  $\Omega.$  In particular, we have

$$\inf I[v] = \lim_{k \to \infty} I[v_k] = \int_{\Omega} d\ell.$$

Since we are looking for a minimizer of the functional  $^3$ , a natural question is whether  $\bar{v}$  is the winner. This will certainly be the case if we know that  $\ell \geq F(x, \nabla \bar{v})$ , because then we shall have

$$\inf I[v] \ge \int_{\Omega} F(x, \nabla \bar{v}) dx = I[\bar{v}].$$

<sup>3.</sup> Mind that we don't know a priori whether such a minimizer exists. This is in the problem.

We are therefore led to the following question.

What are the continuous functions F, satisfying (4), with the property that whenever  $v_k \rightharpoonup v$  in  $W^{1,p}$  and  $F(x, \nabla v_k) \rightharpoonup \ell$ , one has

$$F(x, \nabla v) \le \ell. \tag{5}$$

This property is nothing but weak-\* lower semi-continuity over  $W^{1,p}(\Omega: \mathbf{M}_{r \times m}(\mathbb{R}))$ .

We already know that functions that are convex in their last argument u are weakly-\* lsc. But the fact that the argument is a Jacobian makes the theory much richer, and many other functions F have the same property, without being convex.



## Example: Null-Lagrangians

These are minors of  $\nabla v$ .

Say that p=2, and consider the function

$$g(\nabla v) = \partial_i v_\alpha \partial_j v_\beta - \partial_j v_\alpha \partial_i v_\beta$$

for some indices  $i \neq j$  and  $\alpha \neq \beta$ . This can be rewritten as

$$g(\nabla v) = \partial_i(v_\alpha \partial_j v_\beta) - \partial_j(v_\alpha \partial_i v_\beta).$$

When  $v^k \rightharpoonup v$  in  $W^{1,2}$ , then  $v^k \to v$  in  $L^2$  strongly (Rellich–K.). Therefore

$$v_{\alpha}^{k}\partial_{j}v_{\beta}^{k} \rightharpoonup v_{\alpha}\partial_{j}v_{\beta}$$

in  $L^1$ .

Because derivatives are continuous over  $\mathcal{D}'$ , this tells us that

$$g(\nabla v^k) \rightharpoonup \partial_i(v_\alpha \partial_j v_\beta) - \partial_j(v_\alpha \partial_i v_\beta) = g(\nabla v),$$

in the sense of distributions.

 $iN\delta AM$ 

If on the other hand  $g(\nabla v^k) \rightharpoonup \ell$  in the vague sense of measure, then  $\ell = g(\nabla v)$ , because the vague convergence implies that in  $\mathcal{D}'$ .

In conclusion  $2\times 2$  minors of  $\nabla v$  are weakly-\* continuous functions over  $W^{1,2}$ .

A bootstrap argument shows that  $p \times p$  minors are weakly-\* continuous functions over  $W^{1,p}.$ 



## Polyconvex functions

Suppose now that the function F(x, u) is given in the form

$$F(x, u) = \phi(x, \text{Minors}(u))$$

where  $\phi$  is a convex function over  $^4$   $\mathbb{R}^N$ . J. M. Ball  $^5$  says that F is polyconvex.

If  $v_k \rightharpoonup v$  in  $W^{1,p}$  for  $p \ge \min(r,m)$ , then every minor has the property that

$$\operatorname{Min}(\nabla v_k) \rightharpoonup \operatorname{Min}(\nabla v).$$

Since the convexity of  $\phi(x,\cdot)$  implies its weak-\* semi-continuity, we obtain that

$$*\lim F(x, \nabla v_k) \ge F(x, \nabla v),$$

that is, F is weakly-\* lsc over  $W^{1,p}$ .

<sup>4.</sup> This dimension N is rather large!

<sup>5.</sup> Convexity conditions and existence theorems in non linear elasticity. Arch. Anal., 63 (1977), 337–403.

## Remarks

- Although polyconvexity implies w-\* lower semi-continuity, the converse is not true.
- Polyconvexity is difficult to characterize, because the range of the algebraic map

$$M \mapsto (\mathsf{Minors}(M))$$

is far from being convex!



## Quasi-convexity

C. B. Morrey <sup>6</sup> characterized those functions  $F(x,\nabla v)$  that are w-\* Isc over  $W^{1,p}$ . Under a reasonable growth assumption, these are the functions such that for every  $z\in\Omega$ , the function g(u):=F(z,u) is Quasi-convex.

The definition of quasi-convexity is

For every open  $\omega \subset \mathbb{R}^m$ ,  $A \in \mathbf{M}_{r \times m}(\mathbb{R})$  and  $v \in \mathcal{D}(\omega; \mathbb{R}^r)$ ,

$$g(A) \le \int_{\omega} g(A + \nabla v) \, dx. \tag{6}$$

#### Equivalently

For every lattice  $\Gamma$  of  $\mathbb{R}^m$ ,  $A \in \mathbf{M}_{r \times m}(\mathbb{R})$  and  $\Gamma$ -periodic field v.

$$g(A) \le \int_{\mathbb{R}^n/\Gamma} g(A + \nabla v) \, dx. \tag{7}$$

 $iN\delta AM$ 

<sup>6.</sup> Multiple integrals in the calculus of variations. Springer-Verlag, NY, 1966.

The fact that w-\* lsc implies quasi-convexity is not too difficult :

If v is periodic, let us define the sequence  $v^k: \mathbb{R}^m \to \mathbb{R}^r$  by

$$v^k(x) = Ax + \frac{1}{k} v(kx).$$

Then  $\nabla v^k(x)=A+(\nabla v)(kx)$  is a bounded sequence in  $L^\infty$ , while  $v^k(x)\to \bar v(x):=Ax$  uniformly. Thus  $v^k \rightharpoonup \bar v$  n  $W^{1,\infty}$  weak-\*. On the other hand,  $g(\nabla v^k) \rightharpoonup \bar g$ , where  $\bar g$  is the rhs of (7). Thus the lower semi-continuity

$$g(* \lim \nabla v^k) \le * \lim g(\nabla v^k)$$

writes as (7).



## Rank-one convexity

We say that a function  $g:\mathbf{M}_{r\times m}(\mathbb{R})\to\mathbb{R}$  is <u>rank-one convex</u> if its restriction to every segment [A,B] such that  $\mathrm{rk}(B-A)=1$ , is convex. In other words, if  $s\mapsto g(A+sa\otimes b)$  is convex for every matrix A and vectors a,b.

#### Proposition 1

Quasi-convexity implies rank-one convexity.

### Proof

 $\overline{\text{Let } A}, B = A + a \otimes b \text{ be given.}$ 

Let  $\chi$  be as above the characteristic function of  $(0,\theta)$  modulo 1, and f be its primitive. Define

$$w(x) = Ax + f(b \cdot x)a.$$



Let us complete b as a basis of  $\mathbb{R}^m$ , and denote  $\Gamma$  the corresponding lattice. The field  $v(x) = w(x) - \theta Ax - (1-\theta)Bx$  is  $\Gamma$ -periodic.

We have  $\nabla w=A+\chi(b\cdot x)a\otimes b$ . Let us consider the sequence  $v^k(x)=\frac{1}{k}\,v(kx)$ , which tends weakly-\* to 0. Equivalently  $w^k(x)=Ax+\frac{1}{k}\,f(kb\cdot x)a$  tends to  $(\theta A+(1-\theta)B)x$ . Then

$$g(\nabla w^k) = g(A + \chi(kb \cdot x)a \otimes b) \rightharpoonup \theta g(A) + (1 - \theta)g(B).$$

The lsc  $g(*\lim \nabla w^k) \le *\lim g(\nabla w^k)$  thus gives

$$g(\theta A + (1 - \theta)B) \le \theta g(A) + (1 - \theta)g(B).$$

**Remark**. In elasticity, the integrand  $F(x,\cdot)$  is defined only on  $\mathbf{GL}_n^+$  (defined by  $\det > 0$ ). Rank-one convexity makes sense because  $\mathbf{GL}_n^+$  itself is a rank-one convex subset; see L#0.

iNδAM

To summarize:

#### Theorem 1

For 
$$g \in C(\mathbf{M}_{r \times m}(\mathbb{R}); \mathbb{R})$$
, we have (1)  $\Longrightarrow$  (2)  $\Longleftrightarrow$  (3)  $\Longrightarrow$  (4)

where

- g is polyconvex,
- $v \mapsto g(\nabla v)$  is weakly-\* lower semi-continuous over  $W^{1,\infty}$ ,
- q is quasi-convex,
- g is rank-one convex.

The converse of the arrows  $\Longrightarrow$  are false if  $r, m \ge 2$ .



## The quadratic case

A special case of the Compensated Compactness theory (Tartar & Murat) gives the following.

#### Theorem 2

For quadratic forms 
$$g: \mathbf{M}_{r \times m}(\mathbb{R}) \to \mathbb{R}$$
,  
 $(4) \iff (2,3) \iff (g(a \otimes b) \geq 0, \quad \forall a,b).$ 

The proof of  $(4) \Longrightarrow (3)$  involves Fourier transform and the Plancherel formula.

When either r or m equals 2, all the four properties are equivalent to each other in the case of quadratic forms. This is false if  $r, m \geq 3$ .



## Extension to general differential constraint

We wish to mimic, as close as possible, the theory of Calculus of Variations, when the information  $\operatorname{Curl} u = 0$  (that is  $u = \nabla v$ ) is replaced by another differential constraint

$$P(\nabla)u = 0. (8)$$

Here P is a linear operator with constant coefficients acting over fields  $u:\mathbb{R}^n \to \mathbb{R}^N$ . It is of homogeneous order; in practice, it will be of order 1. We are of course interested in the case where  $\mathbb{R}^N \sim \operatorname{Sym}_n$  and  $P(\nabla) = \operatorname{Div}$ .

A rather important extension of the theory is that we don't need that the control  $P(\nabla)u$  vanish, but only that it is more regular than  $\nabla u$ . In Compensated Compactness for instance, one assumes that u is given in a bounded set of  $L^2(\Omega)$ , though  $P(\nabla)u$  belongs to a <u>compact</u> set of  $H^{-1}(\Omega)$ .

iNδAM

Let us write

$$P(\nabla) = \sum_{i=1}^{n} P^{i} \partial_{i}, \qquad P^{i} \in \mathbf{M}_{\ell \times N}(\mathbb{R}).$$

The symbol of the operator is defined as

$$P(\xi) := \sum_{i=1}^{n} \xi_i P^i \in \mathbf{M}_{\ell \times N}(\mathbb{R}), \qquad \forall \xi \in \mathbb{R}^n.$$

A technical, though important assumption  $^7$ , is that the rank of  $P(\xi)$  does not depend upon  $\xi \neq 0$ . This is satisfied in every physical application, because of the invariance of the laws of Physics under a change of observer.

<sup>7.</sup> F. Murat. Compacité par Compensation : condition nécessaire et suffisante de continuité faible sous une hypothèse de rang constant. *Ann. Scuola Norm. Sup.* Cl. Sci. **8** (1981), 68–102.

## P-Quasiconvexity

Consider a functional of the form

$$I[u] = \int_{\Omega} F(x, u(x)) dx,$$

where the integrand satisfies

$$F(x, u) \le C(x)(1 + |u|^p), \qquad C \in L^1(\Omega).$$

A general question of Functional Analysis is whether I is lower semi-continuous along sequences  $u_k$  that satisfy

$$u_k \stackrel{*L^p}{\rightharpoonup} u, \qquad P(\nabla)u_k \stackrel{W^{-1,p}}{\rightarrow} 0,$$
 (9)

where we warn that the first convergence holds in the weak topology, while the second one is in the strong topology. For instance, one might have  $P(\nabla)u_k \equiv 0$ .

 $iN\delta AM$ 

Fonseca & Müller ( $\mathit{ibid}$ .) proved the following result, extending that of Morrey.

#### Theorem 3

Assume the constant rank condition for the operator  $P(\nabla)$ . Assume also the growth  $F(x,u) \leq C(x)(1+|u|^p)$ . Then (9) implies

$$I[u] \leq \liminf I[u_k]$$

if, and only if every  $g=F(\bar{x},\cdot)$  is P-quasiconvex, that is

$$g\left(\int_{\mathbb{R}^n/\Gamma} U(x) \, dx\right) \le \int_{\mathbb{R}^n/\Gamma} g(U(x)) \, dx \tag{10}$$

for every periodic field U satisfying  $P(\nabla)U=0$ .

Of course, convex functions are P-quasiconvex, by Jensen.

Changing g into -g yields the notion of P-quasiconcavity, which is equivalent to the upper semi-continuity of I.

ΪΝδΑΜ

The proof that lower semi-continuity implies (10) is essentially the same as in Morrey : just consider sequences

$$u_k(x) = V(x, kx)$$

where each  $U := V(\bar{x}, \cdot)$  satisfies  $P(\nabla)U = 0$ .

As before,  $\ensuremath{P}\mbox{-quasiconvexity}$  implies an algebraic condition of directional convexity :

#### Proposition 2

Let  $\Lambda$  be the characteristic cone of P:

$$\Lambda = \left\{ w \in \mathbb{R}^N \mid \exists \xi \neq 0, \ P(\xi)w = 0 \right\} = \bigcup_{\xi \neq 0} \ker P(\xi).$$

If g is P-quasiconvex, then it is  $\Lambda$ -convex, that is  $s\mapsto g(\bar{u}+sw)$  is convex for every  $\bar{u}\in\mathbb{R}^N$  and  $w\in\Lambda$ .



#### Proof

Consider as before a field

$$U(x) = \bar{u} + \chi(k\xi \cdot x)w$$

where  $\chi$  is periodic. It is periodic and satisfies  $P(\nabla)U=0$ . We have

$$\int \, U(x) \, dx = (1-\theta)(\bar u + w) + \theta \, \bar u, \qquad \int g(\, U(c)) \, dx = \theta g(\bar u + w) + (1-\theta)g(\bar u)$$

where  $\theta$  is the mean value of  $\chi$ .

A necessary condition for the lower semi-continuity property (under the control by  $P(\nabla)$ ) is therefore the  $\Lambda$ -convexity.

Compensated Compactness : when g is quadratic, the P-quasiconvexity is equivalent to the  $\Lambda$ -convexity, which reduces to  $g(w) \geq 0$  for every  $w \in \Lambda$ .

iNδAM

## Back to symmetric tensors

We apply the previous ideas to symmetric tensors  $(\mathbb{R}^N \sim \mathbf{Sym}_n)$  that are controlled through their row-wise divergence :  $P(\nabla) = \mathrm{Div}$ .

The symbol  $P(\xi)$  acts by  $P(\xi)S=S\xi$ . It has full range when  $\xi\neq 0$ , hence the constant rank condition is satisfied.

The characteristic cone is obviously

$$\Lambda = \{S \in \mathbf{Sym}_n \mid \det S = 0\}.$$



Recall that we are interested in functions of the determinant, especially in powers, because :

- on the one hand, they have a well-defined physical dimension,
- ullet on the other hand  $\det^{rac{1}{n}}$  is concave over  $\mathbf{Sym}_n^+$ .

The latter property suggests however to restrict to tensors that are positive semi-definite. Recall that such tensors have entries in the space  $\mathcal{M}(\Omega)$  of finite (or merely locally finite) measures. This will be our framework throughout the theory.



## Defining $\det^{\frac{1}{n}}$

Let  $T := \operatorname{Tr} S$ , which is a non-negative measure. Because of

$$|s_{ij}| \leq \frac{1}{2}(s_{ii} + s_{jj}),$$

we have  $s_{ij} = f_{ij} T$  where  $f_{ij}$  is bounded, T-measurable, and takes values in  $\mathbf{Sym}_n^+$ .

There is a natural way to define  $\det^{\frac{1}{n}}$ , using the fact that this is a positively homogeneous function of degree one :

$$(\det S)^{\frac{1}{n}} := (\det f)^{\frac{1}{n}} T.$$

The Jensen inequality applies with this definition (mind that  $\det^{\frac{1}{n}}$  is concave) :

$$f_{\Omega}(\det S)^{\frac{1}{n}} \leq \left(\det f_{\Omega} S\right)^{\frac{1}{n}}.$$



#### We are thus interested in the following questions

- Q1. When is  $\det^{\alpha}$  upper semi-continuous over positive semi-definite symmetric tensors, under the control of their row-wise divergence?
- Q2. When is  $\det^{\alpha}$  Div-quasiconcave, that is

$$\int (\det S)^{\alpha} dx \le \left(\det \int S dx\right)^{\alpha} \tag{11}$$

for every smooth periodic  $S: \mathbb{R}^n/\Gamma \to \mathbf{Sym}_n^+$  satisfying Div S=0 ?

Q3. When is  $\det^{\alpha}$  concave in the singular directions (i.e.  $\det = 0$ ) over  $\mathbf{Sym}_{n}^{+}$ ?



At this stage, the relation between these three properties is unclear, apart from the fact that each implies the next one :

- We cannot involve Fonseca & Müller to say that the Div-quasiconcavity implies the upper semi-continuity, because (11) is valid only for positive tensors.
- The concavity in the singular directions does not immediately imply (11), because  $\det^{\alpha}$  is not quadratic.

Remark finally that we are only interested in exponents  $\alpha>\frac{1}{n}$ . Lower exponents  $(\alpha\leq\frac{1}{n})$  satisfy all the properties because then  $\det^{\alpha}$  is concave over  $\mathbf{Sym}_n^+$ ; just compose  $\det^{\frac{1}{n}}$  with  $s\mapsto s^{n\alpha}$ , which is increasing and concave.



Question  ${\bf Q1}$  and  ${\bf Q2}$  will be answered later on. In this chapter, we content ourselves with the following.

#### Proposition 3

Consider positive exponents  $\alpha$ . The map

$$\mathbf{Sym}_n^+ \to \mathbb{R}_+$$
$$S \mapsto (\det S)^\alpha$$

is concave in the directions of singular matrices if, and only if

$$\alpha \le \frac{1}{n-1} \, .$$

### Proof

Again, by composition with  $s\mapsto s^\beta$   $(\beta\in(0,1))$  it suffices to prove that  $S\mapsto(\det S)^\alpha$  has this concavity property for  $\alpha=\frac{1}{n-1}$ , and that it has not if  $\alpha>\frac{1}{n-1}$ .

To begin with, consider the matrices

$$A = \begin{pmatrix} 0 & 0 \\ 0 & I_{n-1} \end{pmatrix}, \qquad S = \begin{pmatrix} 1 & 0 \\ 0 & 0_{n-1} \end{pmatrix}.$$

We have  $\det(S+tA)=t^{n-1}$ , and  $A\in\Lambda$ . If  $\det^{\alpha}$  is  $\Lambda$ -concave over  $\mathbf{Sym}_n^+$ , we thus have  $(n-1)\alpha\leq 1$ .

There remains the case  $\alpha=\frac{1}{n-1}$ . Suppose that  $S,S+A\in \mathbf{Sym}_n^+$ , with  $A\in \Lambda$ , that is  $\det A=0$ . By density and continuity, we may assume that both  $S,S+A\in \mathbf{SPD}_n$ . Then

$$\det(S + tA) = \det S \cdot \det(I_n + S^{-1}A)$$
  
= \det S \cdot \det(I\_n + S^{-1/2}AS^{-1/2}) =: c \det(I\_n + tB)

where c > 0,  $B \in \Lambda$  and  $I_n + B \in \mathbf{SPD}_n$ . We have to prove that  $t \mapsto (\det(I_n + tB))^{\frac{1}{n-1}}$  is concave over [0,1].



For this, we use an orthogonal diagonalisation

$$B = U^T \operatorname{diag}(c_1, \dots, c_{n-1}, 0) U = U^T \begin{pmatrix} C & 0 \\ 0 & 0 \end{pmatrix} U.$$

We have

$$(\det(I_n + tB))^{\frac{1}{n-1}} = (\det(I_{n-1} + tC))^{\frac{1}{n-1}},$$

which is know to be concave, because the exponent  $\frac{1}{n-1}$  is the inverse of the size of these positive symmetric matrices (L#0, Corollary 2).



## Conclusion

Because of Proposition 3, the map

$$S \longmapsto (\det S)^{\frac{1}{n-1}}$$

is a good candidate for being Divergence-Quasiconcave.

If it turns out to be Div-quasiconcave, it will be a good candidate for being upper semi-continuous over  $\mathbf{Sym}_n^+$ , under a control by the row-wise divergence.

This suggests that  $(\det S)^{\frac{1}{n}}$ , a priori a finite measure, is actually a function in the Lebesgue space  $L^{\frac{n}{n-1}}(\Omega)$ . This gain of integrability will be called in the sequel

Compensated Integrability.

