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Lesson#2 - Motivations from Functional Analysis

This lesson is dedicated to the analysis of the structure characterized by
the row-wise divergence over symmetric tensors, in the light of the
Calculus of Variations.
Our operator Div replaces the row-wise rotational operator Curl, whose
kernel was made of Jacobian matrices. The natural question of weak
lower- (or upper-) semi-continuity remains the same.

It leads us to the notion of Div-Quasiconvexity, in the spirit of
Dacorogna 1 and of I. Fonseca & S. Müller 2.

1. Weak continuity and weak lower semicontinuity for nonlinear functionals, LNM
922, Springer-Verlag, NY, 1982.

2. A-Quasiconvexity, lower semicontinuity, and Young measures. SIAM J. Math.
Anal. 30 (1999) pp 1355–1390.
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Convexity

Recall the Jensen Inequality :

Let K ⊂ RN be a convex subset and φ : K → R be a convex function.
If µ is a probability over a domain Ω and u : Ω→ K is µ-measurable,
then

φ

(∫
Ω

u dµ

)
≤
∫

Ω

φ(u) dµ. (1)
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Here are two examples, where the barred integral denotes the mean value
over a domain Ω ⊂ Rm of finite Lebesgue measure :

With K = R, ∣∣∣∣−∫
Ω

u(x ) dx

∣∣∣∣2 ≤ −∫
Ω

|u(x )|2dx .

If S takes values in Sym+
n (hence N =

(
n
2

)
), then

−
∫

Ω

(detS )
1
n dx ≤

(
det−
∫

Ω

S (x ) dx

) 1
n

. (2)

This is a consequence of the concavity of S 7→ (detS )
1
n , see L#1,

Corollary 2 .
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Weak semi-continuity

Let Ω ⊂ Rm be an open subset. Let uk : Ω→ K be a sequence, bounded
in L∞ (we avoid Lp only for the sake of simplicity). Up to the extraction

of a sub-sequence, we may assume that uk
∗
⇀ u in the weak-* topology

of L∞.

What can be said of φ(uk ) ?

Mind that another extraction allows us to assume φ(uk )
∗
⇀ ` for some

` ∈ L∞(Ω). The question is therefore :

Is there a relation between ` and φ(u) ?

For an arbitrary continuous function φ : K → R, the answer is No. Weak
convergence does not commute with nonlinear operations.
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For convex functions instead, one may use (use a sub-differential if
needed)

φ(uk ) ≥ φ(u) + dφ(u) · (uk − u)

and pass to the weak limit.
One obtains

` ≥ φ(u). (3)

This means that convex functions are weakly-∗ lower semi-continuous.
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The converse happens to be true :
let a, b ∈ K and θ ∈ (0, 1) be given. Let χ : R→ {0, 1} be the
characteristic function of (0, θ) modulo 1. Define

uk (x ) = χ(kx1)a + (1− χ(kx1))b,

so that φ(uk )(x ) = χ(kx1)φ(a) + (1− χ(kx1))φ(b). We have

uk
∗
⇀ θa + (1− θ)b, φ(uk )

∗
⇀ θφ(a) + (1− θ)φ(b).

If φ is weakly-∗ lower semi-continuous, then (3) means

φ(θa + (1− θ)b) ≤ θφ(a) + (1− θ)φ(b).

This is the convexity of φ.
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A fashionable topic in Functional Analysis is to investigate what happens
to weak-∗ semi-continuity when one has some extra information about
uk , in terms of derivatives.

The best known situation occurs when ∇uk is a bounded sequence in
some Lp space. Then Rellich–Kondrachov Theorem tells us that uk is
relatively compact in Lq whenever

1

q
>

1

p
− 1

m
.

This implies that ` = φ(u) (weak continuity) whenever φ(v) = O(|v |q).
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The situation is more complex, and perhaps more interesting, when the
information concerns Puk where P is some non-elliptic differential
operator. Historically, this occured in the context of Calculus of
Variations, where K = Mr×m(R) and P is the row-wise Curl operator.

The fields uk are Jacobian matrices ∇vk , and we have Curl uk ≡ 0. Say
that Ω is bounded and vk is a minimizing sequence of some functional

I [v ] =

∫
Ω

F (x ,∇v) dx ,

under given boundary conditions. One may think of a Dirichlet BC,

v = g over ∂Ω.

If F satisfies the reasonable property that

1

C
(|u| − 1)p ≤ F (x , u) ≤ C (|u|+ 1)p , (4)
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then the sequence ∇vk = uk is bounded in Lp and we may assume that
vk ⇀ v̄ in W 1,p . In particular, v̄ satisfies the same boundary condition at
∂Ω.
Since the sequence F (x ,∇vk ) is also bounded in L1, we can extract a
subsequence so that

F (x ,∇vk ) ⇀ `

in the vague sense. Here ` is a finite measure over Ω. In particular, we
have

inf I [v ] = lim
k→∞

I [vk ] =

∫
Ω

d`.

Since we are looking for a minimizer of the functional 3, a natural
question is whether v̄ is the winner. This will certainly be the case if we
know that ` ≥ F (x ,∇v̄), because then we shall have

inf I [v ] ≥
∫

Ω

F (x ,∇v̄) dx = I [v̄ ].

3. Mind that we don’t know a priori whether such a minimizer exists. This is a part
of the problem.
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We are therefore led to the following question.

What are the continuous functions F , satisfying (4), with the
property that whenever vk ⇀ v in W 1,p and F (x ,∇vk ) ⇀ `,
one has

F (x ,∇v) ≤ `. (5)

This property is nothing but weak-∗ lower semi-continuity over
W 1,p(Ω : Mr×m(R)).

We already know that functions that are convex in their last argument u
are weakly-∗ lsc. But the fact that the argument is a Jacobian makes the
theory much richer, and many other functions F have the same property,
without being convex.
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Example : Null-Lagrangians

These are minors of ∇v .

Say that p = 2, and consider the function

g(∇v) = ∂ivα∂j vβ − ∂j vα∂ivβ

for some indices i 6= j and α 6= β. This can be rewritten as

g(∇v) = ∂i(vα∂j vβ)− ∂j (vα∂ivβ).

When vk ⇀ v in W 1,2, then vk → v in L2 strongly (Rellich–K.).
Therefore

vk
α∂j v

k
β ⇀ vα∂j vβ

in L1.

Because derivatives are continuous over D′, this tells us that

g(∇vk ) ⇀ ∂i(vα∂j vβ)− ∂j (vα∂ivβ) = g(∇v),

in the sense of distributions.
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If on the other hand g(∇vk ) ⇀ ` in the vague sense of measure, then
` = g(∇v), because the vague convergence implies that in D′.

In conclusion 2× 2 minors of ∇v are weakly-∗ continuous
functions over W 1,2.

A bootstrap argument shows that p × p minors are weakly-∗ continuous
functions over W 1,p .
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Polyconvex functions

Suppose now that the function F (x , u) is given in the form

F (x , u) = φ(x ,Minors(u))

where φ is a convex function over 4 RN . J. M. Ball 5 says that F is
polyconvex.

If vk ⇀ v in W 1,p for p ≥ min(r ,m), then every minor has the property
that

Min(∇vk ) ⇀ Min(∇v).

Since the convexity of φ(x , ·) implies its weak-∗ semi-continuity, we
obtain that

∗ limF (x ,∇vk ) ≥ F (x ,∇v),

that is, F is weakly-∗ lsc over W 1,p .

4. This dimension N is rather large !
5. Convexity conditions and existence theorems in non linear elasticity. Arch. Rat.

Mech. Anal., 63 (1977), 337–403.
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Remarks

.

Although polyconvexity implies w-∗ lower semi-continuity, the
converse is not true.

Polyconvexity is difficult to characterize, because the range of the
algebraic map

M 7→ (Minors(M ))

is far from being convex !
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Quasi-convexity

C. B. Morrey 6 characterized those functions F (x ,∇v) that are w-∗ lsc
over W 1,p . Under a reasonable growth assumption, these are the
functions such that for every z ∈ Ω, the function g(u) := F (z , u) is
Quasi-convex.

The definition of quasi-convexity is

For every open ω ⊂ Rm , A ∈Mr×m(R) and v ∈ D(ω;Rr ),

g(A) ≤ −
∫
ω

g(A +∇v) dx . (6)

Equivalently

For every lattice Γ of Rm , A ∈Mr×m(R) and Γ-periodic field
v ,

g(A) ≤ −
∫
Rn/Γ

g(A +∇v) dx . (7)

6. Multiple integrals in the calculus of variations. Springer-Verlag, NY, 1966.
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The fact that w-∗ lsc implies quasi-convexity is not too difficult :

If v is periodic, let us define the sequence vk : Rm → Rr by

vk (x ) = Ax +
1

k
v(kx ).

Then ∇vk (x ) = A + (∇v)(kx ) is a bounded sequence in L∞, while
vk (x )→ v̄(x ) := Ax uniformly. Thus vk ⇀ v̄ n W 1,∞ weak-∗. On the
other hand, g(∇vk ) ⇀ ḡ , where ḡ is the rhs of (7). Thus the lower
semi-continuity

g(∗ lim∇vk ) ≤ ∗ lim g(∇vk )

writes as (7).
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Rank-one convexity

We say that a function g : Mr×m(R)→ R is rank-one convex if its
restriction to every segment [A,B ] such that rk(B −A) = 1, is convex.
In other words, if s 7→ g(A + sa ⊗ b) is convex for every matrix A and
vectors a, b.

Proposition 1

Quasi-convexity implies rank-one convexity.

Proof
Let A,B = A + a ⊗ b be given.

Let χ be as above the characteristic function of (0, θ) modulo 1, and f
be its primitive. Define

w(x ) = Ax + f (b · x )a.
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Let us complete b as a basis of Rm , and denote Γ the corresponding
lattice. The field v(x ) = w(x )− θAx − (1− θ)Bx is Γ-periodic.

We have ∇w = A + χ(b · x )a ⊗ b. Let us consider the sequence
vk (x ) = 1

k v(kx ), which tends weakly-∗ to 0. Equivalently
wk (x ) = Ax + 1

k f (kb · x )a tends to (θA + (1− θ)B)x . Then

g(∇wk ) = g(A + χ(kb · x )a ⊗ b) ⇀ θg(A) + (1− θ)g(B).

The lsc g(∗ lim∇wk ) ≤ ∗ lim g(∇wk ) thus gives

g(θA + (1− θ)B) ≤ θg(A) + (1− θ)g(B).

Remark. In elasticity, the integrand F (x , ·) is defined only on GL+
n

(defined by det > 0). Rank-one convexity makes sense because GL+
n

itself is a rank-one convex subset ; see L#0.
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To summarize :

Theorem 1

For g ∈ C (Mr×m(R);R), we have
(1) =⇒ (2) ⇐⇒ (3) =⇒ (4)

where

1 g is polyconvex,

2 v 7→ g(∇v) is weakly-∗ lower semi-continuous over W 1,∞,

3 g is quasi-convex,

4 g is rank-one convex.

The converse of the arrows =⇒ are false if r ,m ≥ 2.
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The quadratic case

A special case of the Compensated Compactness theory (Tartar &
Murat) gives the following.

Theorem 2

For quadratic forms g : Mr×m(R)→ R,
(4) ⇐⇒ (2,3) ⇐⇒ (g(a ⊗ b) ≥ 0, ∀a, b).

The proof of (4) =⇒ (3) involves Fourier transform and the Plancherel
formula.

When either r or m equals 2, all the four properties are equivalent to
each other in the case of quadratic forms. This is false if r ,m ≥ 3.
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Extension to general differential constraint

We wish to mimic, as close as possible, the theory of Calculus of
Variations, when the information Curl u = 0 (that is u = ∇v) is replaced
by another differential constraint

P(∇)u = 0. (8)

Here P is a linear operator with constant coefficients acting over fields
u : Rn → RN . It is of homogeneous order ; in practice, it will be of order
1. We are of course interested in the case where RN ∼ Symn and
P(∇) = Div.

A rather important extension of the theory is that we don’t need that the
control P(∇)u vanish, but only that it is more regular than ∇u. In
Compensated Compactness for instance, one assumes that u is given in a
bounded set of L2(Ω), though P(∇)u belongs to a compact set of
H−1(Ω).
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Let us write

P(∇) =

n∑
i=1

P i∂i , P i ∈M`×N (R).

The symbol of the operator is defined as

P(ξ) :=

n∑
i=1

ξiP
i ∈M`×N (R), ∀ξ ∈ Rn .

A technical, though important assumption 7, is that the rank of P(ξ)
does not depend upon ξ 6= 0. This is satisfied in every physical
application, because of the invariance of the laws of Physics under a
change of observer.

7. F. Murat. Compacité par Compensation : condition nécessaire et suffisante de
continuité faible sous une hypothèse de rang constant. Ann. Scuola Norm. Sup. Pisa,
Cl. Sci. 8 (1981), 68–102.

D. Serre Functional Analysis



P -Quasiconvexity

Consider a functional of the form

I [u] =

∫
Ω

F (x , u(x )) dx ,

where the integrand satisfies

F (x , u) ≤ C (x )(1 + |u|p), C ∈ L1(Ω).

A general question of Functional Analysis is whether I is lower
semi-continuous along sequences uk that satisfy

uk
∗Lp

⇀ u, P(∇)uk
W−1,p

→ 0, (9)

where we warn that the first convergence holds in the weak topology,
while the second one is in the strong topology. For instance, one might
have P(∇)uk ≡ 0.
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Fonseca & Müller (ibid.) proved the following result, extending that of
Morrey.

Theorem 3

Assume the constant rank condition for the operator P(∇). Assume also
the growth F (x , u) ≤ C (x )(1 + |u|p). Then (9) implies

I [u] ≤ lim inf I [uk ]

if, and only if every g = F (x̄ , ·) is P -quasiconvex, that is

g

(
−
∫
Rn/Γ

U (x ) dx

)
≤ −
∫
Rn/Γ

g(U (x )) dx (10)

for every periodic field U satisfying P(∇)U = 0.

Of course, convex functions are P -quasiconvex, by Jensen.

Changing g into −g yields the notion of P -quasiconcavity, which is
equivalent to the upper semi-continuity of I .
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The proof that lower semi-continuity implies (10) is essentially the same
as in Morrey : just consider sequences

uk (x ) = V (x , kx )

where each U := V (x̄ , ·) satisfies P(∇)U = 0.

As before, P -quasiconvexity implies an algebraic condition of directional
convexity :

Proposition 2

Let Λ be the characteristic cone of P :

Λ =
{
w ∈ RN | ∃ξ 6= 0, P(ξ)w = 0

}
=
⋃
ξ 6=0

kerP(ξ).

If g is P -quasiconvex, then it is Λ-convex, that is s 7→ g(ū + sw) is
convex for every ū ∈ RN and w ∈ Λ.

D. Serre Functional Analysis



Proof

Consider as before a field

U (x ) = ū + χ(kξ · x )w

where χ is periodic. It is periodic and satisfies P(∇)U = 0. We have

−
∫

U (x ) dx = (1−θ)(ū+w)+θū, −
∫

g(U (c)) dx = θg(ū+w)+(1−θ)g(ū)

where θ is the mean value of χ.

A necessary condition for the lower semi-continuity property (under the
control by P(∇)) is therefore the Λ-convexity.

Compensated Compactness : when g is quadratic, the P -quasiconvexity is
equivalent to the Λ-convexity, which reduces to g(w) ≥ 0 for every
w ∈ Λ.
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Back to symmetric tensors

We apply the previous ideas to symmetric tensors (RN ∼ Symn) that
are controlled through their row-wise divergence : P(∇) = Div.

The symbol P(ξ) acts by P(ξ)S = Sξ. It has full range when ξ 6= 0,
hence the constant rank condition is satisfied.

The characteristic cone is obviously

Λ = {S ∈ Symn | detS = 0}.
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Recall that we are interested in functions of the determinant, especially in
powers, because :

on the one hand, they have a well-defined physical dimension,

on the other hand det
1
n is concave over Sym+

n .

The latter property suggests however to restrict to tensors that are
positive semi-definite. Recall that such tensors have entries in the space
M(Ω) of finite (or merely locally finite) measures. This will be our
framework throughout the theory.

D. Serre Functional Analysis



Defining det
1
n

Let T := TrS , which is a non-negative measure. Because of

|sij | ≤
1

2
(sii + sjj ),

we have sij = fijT where fij is bounded, T -measurable, and takes values
in Sym+

n .

There is a natural way to define det
1
n , using the fact that this is a

positively homogeneous function of degree one :

(detS )
1
n := (det f )

1
n T .

The Jensen inequality applies with this definition (mind that det
1
n is

concave) :

−
∫

Ω

(detS )
1
n ≤

(
det−
∫

Ω

S

) 1
n

.
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We are thus interested in the following questions

Q1. When is detα upper semi-continuous over positive
semi-definite symmetric tensors, under the control of their
row-wise divergence ?

Q2. When is detα Div-quasiconcave, that is

−
∫

(detS )αdx ≤
(

det−
∫

S dx

)α
(11)

for every smooth periodic S : Rn/Γ→ Sym+
n satisfying

Div S = 0 ?

Q3. When is detα concave in the singular directions (i.e.
det = 0) over Sym+

n ?
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At this stage, the relation between these three properties is unclear, apart
from the fact that each implies the next one :

We cannot involve Fonseca & Müller to say that the
Div-quasiconcavity implies the upper semi-continuity, because (11)
is valid only for positive tensors.

The concavity in the singular directions does not immediately imply
(11), because detα is not quadratic.

Remark finally that we are only interested in exponents α > 1
n . Lower

exponents (α ≤ 1
n ) satisfy all the properties because then detα is

concave over Sym+
n ; just compose det

1
n with s 7→ snα, which is

increasing and concave.
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Question Q1 and Q2 will be answered later on. In this chapter, we
content ourselves with the following.

Proposition 3

Consider positive exponents α. The map

Sym+
n → R+

S 7→ (detS )α

is concave in the directions of singular matrices if, and only if

α ≤ 1

n − 1
.

Proof

Again, by composition with s 7→ sβ (β ∈ (0, 1)) it suffices to prove that
S 7→ (detS )α has this concavity property for α = 1

n−1 , and that it has

not if α > 1
n−1 .
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To begin with, consider the matrices

A =

(
0 0
0 In−1

)
, S =

(
1 0
0 0n−1

)
.

We have det(S + tA) = tn−1, and A ∈ Λ. If detα is Λ-concave over
Sym+

n , we thus have (n − 1)α ≤ 1.

There remains the case α = 1
n−1 . Suppose that S ,S + A ∈ Sym+

n , with
A ∈ Λ, that is detA = 0. By density and continuity, we may assume that
both S ,S + A ∈ SPDn . Then

det(S + tA) = detS · det(In + S−1A)

= detS · det(In + S−1/2AS−1/2) =: c det(In + tB)

where c > 0, B ∈ Λ and In + B ∈ SPDn . We have to prove that

t 7→ (det(In + tB))
1

n−1 is concave over [0, 1].
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For this, we use an orthogonal diagonalisation

B = UTdiag(c1, . . . , cn−1, 0)U = UT

(
C 0
0 0

)
U .

We have
(det(In + tB))

1
n−1 = (det(In−1 + tC ))

1
n−1 ,

which is know to be concave, because the exponent 1
n−1 is the inverse of

the size of these positive symmetric matrices (L#0, Corollary 2).
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Conclusion

Because of Proposition 3, the map

S 7−→ (detS )
1

n−1

is a good candidate for being Divergence-Quasiconcave.

If it turns out to be Div-quasiconcave, it will be a good candidate for
being upper semi-continuous over Sym+

n , under a control by the
row-wise divergence.

This suggests that (detS )
1
n , a priori a finite measure, is actually a

function in the Lebesgue space L
n

n−1 (Ω). This gain of integrability will be
called in the sequel

Compensated Integrability.
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