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Lesson #3 - Compensated Integrability

This lesson presents the basic theorems of the theory. We shall use them
in Lesson #5 to establish the results that are applicable to evolution
problems such as gas dynamics.

Several facts deserve to be noticed. On the one hand, our results extend
two famous inequalities :

that of Gagliardo, well known for its role in the proof of the
Gagliardo–Nirenberg–Sobolev embedding W 1,1(Rn) ⊂ L

n
n−1 (Rn) ;

actually it provides a new proof of the latter,

the isoperimetric inequality.

Our functional inequalities are sharp. In the case of Divergence-free
tensors 1, the equality case is achieved when the tensor belongs to a
nonlinear class which we call “special DPTs”.

1. From now on, the acronym DPT means Divergence-free positive semi-definite
symmetric tensor.
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1st Hint : the diagonal case

The simplest example of a Divergence-free Positive symmetric Tensor
(= :DPT) is a diagonal tensor

D =

a1

. . .

an

 , aj ≥ 0.

The condition DivD = 0 writes ∂jaj ≡ 0 for every j ∈ [1,n]. In other
words,

aj = aj (x̂j ), x̂j := (. . . , xj−1, xj+1, . . .)

is a function of n − 1 variables only.

Say that D is Zn -periodic. Denoting Kn = (0, 1)n the unit cube, we have
for every function h : Sym+

n → R

−
∫
Rn/Zn

h(D) dx =

∫
Kn

h(D) dx .
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The function we are interested in (see L#2) is h = det
1

n−1 . The
integrand is therefore

n∏
j=1

fj (x̂j ), fj := a
1

n−1

j .

This situation is reminiscent to the following classical result 2.

Theorem 1 (Gagliardo)

Let f1, . . . , fn : Rn−1 → R be given. Define f : Rn → R by

f (x ) = f1(x̂1) · · · fn(x̂n).

If f1, . . . , fn ∈ Ln−1(Rn−1), then f ∈ L1(Rn) and we have

‖f ‖L1(Rn) ≤
n∏

j=1

‖fj‖Ln−1(Rn−1). (1)

2. E. Gagliardo. Proprietà di alcune di funzioni in più variabili. Richerche Mat., 7
(1958), 102–137.
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Despite some ressemblance, Gagliardo’s inequality is very different from
Hölder’s.

On the one hand the number n of factors does not agree with their
exponent of integrability n − 1.

On the other hand fj , viewed as a function over Rn , does not belong
to an Lp .

Finally, the simple case n = 2∫
R2

|f1(x2)f2(x1)| dx ≤
∫
R
|f1(x2)| dx2 ·

∫
R
|f2(x1)| dx1

is nothing but Fubini’s Theorem (where we actually have an
equality).

Theorem 1 remains valid when the fj ’s are defined over the cube Kn−1

(just extend them to Rn−1 by 0).
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Going back to the context of the diagonal DPT, the assumption that
fj ∈ Ln−1 means that aj ∈ L1(Kn−1), and the conclusion f ∈ L1 tells us

that (detD)
1

n−1 ∈ L1(Rn).

We therefore have

Proposition 1

Let D be a Zd -periodic diagonal DPT. Assume that D ∈ L1(Rn/Zn).

Then (detD)
1

n−1 ∈ L1(Rn/Zn), and we have

−
∫
Rn/Zn

(detD)
1

n−1 dx ≤

(
det−
∫
Rn/Zn

D dx

) 1
n−1

.

Therefore det
1

n−1 is Div-quasiconcave, as far as diagonal tensors are
concerned.
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2nd Hint : “Special”DPTs

The case n = 2 is always simpler than higher-dimensional cases.
Somehow it is trivial. This was clear in the diagonal case, because of
Fubini.

Claim : it is true in full generality.

Suppose S is a 2× 2 DPT over a simply connected domain Ω. From

∂1a11 + ∂2a21 = 0, ∂1a12 + ∂2a22 = 0,

we derive the existence of potentials φj such that

a11 = ∂2φ1, a21 = −∂1φ1, a12 = ∂2φ2, a22 = −∂1φ2.

Now the symmetry tells us ∂1φ1 + ∂2φ2 = 0, from which we infer

φ1 = ∂2θ, φ2 = −∂1θ

for some potential θ.
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We conclude that

S =

(
∂2

2θ −∂1∂2θ
−∂1∂2θ ∂2

1θ

)
. (2)

We notice that the positivity of S amounts to the convexity of θ.

Warning : The fact that every 2× 2 DPT can be parametrized by a single
potential does not extend to higher dimension,

When n ≥ 3, a DPT involves
(
n+1

2

)
entries, while there are only n

differential constraints, and(
n + 1

2

)
− n > 1.

Something remains however.
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To see this, let us observe that the formula (2) can be recast as

S = D̂2θ, the cofactor matrix of the Hessian of θ.

When n ≥ 3, not all DPTs can be written that way, but we have

Theorem 2

Let Ω ⊂ Rn be a convex open set, and θ ∈W 2,n−1(Ω) be a convex

function. Then the tensor S = D̂2θ is symmetric, positive and
divergence-free (a DPT).

The role of the W 2,n−1 assumption is to make S integrable.

Such DPT’s are called special. In n = 2 space dimensions, every DPT is
special, but this is not the case if n ≥ 3. We emphasize that the
collection of special DPTs is highly nonlinear.
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Proof

S = D̂2θ inherits the symmetry of the Hessian.

Because θ is convex, D2θ is positive ; then the cofactor Ĥ of an
H ∈ Sym+

n is positive. To see this, we may assume by density and

continuity that H is positive definite, in which case Ĥ = (detH )H−1 is
positive.

It remains to prove the divergence-freeness. For this, we start with the
differential forms αj := d(∂j θ) of degree 1, that is

αj =

n∑
i=1

∂i∂j θ dxi .

Since αj is exact, it is closed : dαj = 0.

For k ∈ [1,n], let us define the (n − 1)-form

ωk = · · · ∧ αk−1 ∧ αk+1 ∧ · · ·

where only αk is omitted.
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Because of Leibniz formula (in which the factors are 1-forms)

d(α ∧ β ∧ · · · ) = (dα) ∧ β ∧ · · · − α ∧ (dβ) ∧ · · ·+ · · · ,

we find that dωk = 0, that is ωk is a closed form.

We recall that for an (n − 1)-form, written coordinate-wise

ω = q1dx2 ∧ · · · ∧ dxn − · · ·+ (−1)n−1qndx1 ∧ · · · ∧ dxn−1,

we have dω = (div~q)dx1 ∧ · · · ∧ dxn the closedness dω = 0 is equivalent
to the identity div~q = 0.

When writing dωk = 0 for k ∈ [1,n], we therefore receive a collection of
n identities div~qk = 0. It turns out that the coordinates of the vector

field (−1)k−1~qk are the entries of the k -th row of D̂2θ.

Therefore this cofactor matrix is row-wise divergence-free.
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Remark 1

Consider a potential θ ∈ D(Rn). Of course θ is not convex, unless being
≡ 0. The same construction

S = D̂2θ

provides a symmetric divergence-free tensor, which is smooth and
compactly supported. Yet S 6≡ 0. This shows that the positivity was an
essential assumption in Proposition 3 of Lesson #1.

P3.L#1. The only DPT over Rn with finite mass is S ≡ 0n .

We now turn towards our beloved function det
1

n−1 .
The formula (see Lesson #0) det M̂ = (detM )n−1 yields

(detS )
1

n−1 = det D2θ.

The right-hand side can be viewed as a null-Lagrangian (see Lesson #2),
since the Hessian is a particular case of a Jacobian.
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Periodic case

Suppose that S , a special DPT, is Γ-periodic according to some lattice.
Warning : The potential θ is not periodic (it could not be convex !) Only
D2θ is periodic.

The potential decomposes as a sum

θ(x ) =
1

2
xTΣx︸ ︷︷ ︸

quadratic

+ ~v · x︸︷︷︸
linear

+ ρ(x )︸︷︷︸
periodic

with constant Σ ∈ Symn and v ∈ Rn . Mind that the linear part is
irrelevant since it does not contribute to the Hessian ; we shall always
ignore it.

Integrating D2θ = Σ + D2ρ, we see that

Σ = −
∫
Rn/Γ

D2θ(x ) dx ∈ Sym+
n .

D. Serre Main theoretical results



In the expression

S = ̂Σ + D2ρ,

every sij appears to be a det(A+B) where A and B are (n − 1)-blocs of
Σ and D2ρ, respectively. Using the expansion formula (2) of Lesson #0,

we obtain that sij is the sum of Σ̂ij and a linear combination of minors of
D2ρ, the latter being null-Lagrangians.

Likewise det D2θ is the sum of det Σ and a linear combination of minors
of D2ρ.

Because a null-Lagrangian rewrites as the divergence of some vector field,
we obtain that

sij = Σ̂ij + div(· · · ), (detS )
1

n−1 = det Σ + div(· · · ),

where the dots are expressions in ρ and ∇ρ, hence periodic vector fields.

Applying Green’s formula, we observe that∫
Rn/Zn

div(periodic) dx = 0.
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We infer

−
∫
Rn/Γ

S (x ) dx = Σ̂, −
∫
Rn/Γ

(detS (x ))
1

n−1 dx = det Σ.

Using again the formula det Σ̂ = (det Σ)n−1, we conclude

Theorem 3

For a periodic special DPT, we have

−
∫
Rn/Γ

(detS (x ))
1

n−1 dx =

(
det−
∫
Rn/Γ

S (x ) dx

) 1
n−1

. (3)

As far as special DPTs are concerned, the function det
1

n−1 is not only
Divergence-quasiconcave, but it is Div-quasiaffine ! We shall see below
that the equality case in the Div-quasiconcavity correspond to special
DPTs.
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Fundamental results

Recall that, because our tensors S are distributional and are positive
semi-definite, their entries are locally finite measures.

We have seen how to define the measure (detS )
1
n , which obeys the same

rules of calculation as if S was integrable. For instance the results of
Lesson #0 remain valid :

the map S 7→ (detS )
1
n is concave,

if A : Ω→ Sym+
n is continuous, then

(detA)
1
n (detS )

1
n ≤ 1

n
Tr (AS ).
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In what follows, we denote M(Ω) the space of finite measures over
Ω ⊂ Rn .

If µ ∈M(Ω), then |µ| is a positive measure, whose total mass is denoted
‖µ‖M. This defines the natural norm over M(Ω), whose restriction to
L1(Ω) coincides with ‖ · ‖1.

If µ is a vector-valued measure, its Euclidian norm |µ| is well-defined, and
its total mass is still denoted ‖µ‖M.
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Besides the notion of divergence-free tensors, we consider the following.

Definition 1

A symmetric tensor S over Ω is divergence-controlled if

it is positive semi-definite,

its entries are finite measures,

Div S is a (vector-valued) finite measure.

This means in particular that the distribution Div S is of order 0, instead
of the expected order −1.
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Periodic case

Our first result solves Question 2 of Lesson #2 : it states that det
1

n−1 is
Div-quasiconcave.

Theorem 4

Let Γ be a lattice of Rn and S ∈M(Rn/Γ;Sym+
n ) be divergence-free.

Then

1

(detS )
1
n ∈ L

n
n−1 (Rn/Γ),

2

−
∫
Rn/Γ

(detS )
1

n−1 dx ≤

(
det−
∫
Rn/Γ

S

) 1
n−1

.
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Comments

Point 1 is qualitative. It says that some finite measure is actually
absolutely continuous, and its density has an integrability property.

We call this property Compensated Integrability, because the higher

integrability of (detS )
1
n is not shared by its constituants 3 such as

(s11 · · · snn)
1
n .

Point 2 is quantitative. We wrote the left-hand side in a sloppy way.
It stands for

−
∫
Rn/Γ

(
(detS )

1
n

) n
n−1

dx .

A complement, which we shall not use, is that the equality case in
the functional inequality occurs only for special DPTs, as far as
smooth positive definite tensors are concerned. We dont’t know
whether this is true if smoothness or definiteness is dropped.

3. D. Serre. Compensated integrability. Applications to the Vlasov–Poisson equation
and other models in mathematical physics. J. Math. Pures & Appl., 127 (2019),
67–88.
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A more general result holds true when the tensor is only
Div-controlled (instead of being a DPT). Then the right-hand side of
the functional inequality incorporates a term ‖Div S‖M, in the spirit
of Theorem 6 below. Since the periodic case is rarely used in the
applications, we don’t explore further.

Following Radon–Nikodym Theorem, we can decompose
S = Sa + Ss where Sa is absolutely continuous and Ss is singular,
that is supported by a Lebesgue-null set. By orthogonality

(detS )1/n = (detSa)1/n + (detSs)1/n .

Theorem 4 tells us that (detSs)1/n = 0, Tr (Ss)-almost everywhere.
This is a manifestation of a generalization 4 of Alberti’s rank-one
Theorem for BV vector fields.

4. G. De Philippis, Filip Rindler. On the structure of A-free measures and
applications. Annals of Maths. 184 (2016), 1017–1039
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Integrable tensors over Rn

Let us denote Bn the unit ball and Sn−1 the unit sphere of Rn , and |Bn |
or |Sn−1| their volume/area.

Theorem 5

Let S ∈M(Rn ;Sym+
n ) be divergence-controlled. Then

1

(detS )
1
n ∈ L

n
n−1 (Rn),

2 ∫
Rn

(detS )
1

n−1 dx ≤ cn‖Div S‖
n

n−1

M , cn :=
1

n|Sn−1|
1

n−1

.
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Comments

.

Once again, the theorem splits into a qualitative part (Compensated
Integrability) and a quantitative part (Functional Inequality).

Even if the total mass of S does not appear in the right-hand side of
the latter, the assumption that the entries are finite measures over
Rn is essential. The conclusions are obviously false when S ≡ In ,
despite the fact that Div S ≡ 0 is a finite measure.

The constant cn is sharp, as we shall see in a moment.

The functional inequality is consistent with Proposition 3 of Lesson
#1.
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First applications - I

Gagliardo–Nirenberg–Sobolev Embedding. Let f : Rn → R be of
bounded variations : f and its derivatives ∂j f are bounded
measures. Then |f | is BV too. Let us form the tensor
S = |f |In , which is divergence-controlled since
Div S = ∇|f |. Compensated Integrability tells us that
f ∈ L

n
n−1 (Rn), while the Functional Inequality reads

‖f ‖ n
n−1
≤ c

n−1
n

n ‖∇f ‖M = c
n−1
n

n TV (f ),

a sharp estimate (see below).
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First applications - II

Isoperimetric Inequality. Let Ω be a bounded Caccioppoli set of Rn . Let
us choose the tensor S so as S (x ) = In if x ∈ Ω, and
S (x ) = 0n otherwise. This is a particular case of the
situation above, where f is the characteristic function of
Ω. According to De Giorgi’s definition, TV (f ) is the
perimeter of Ω. Since detS is the characteristic function
of Ω, the Functional Inequality writes

Vol(Ω) ≤ cnPer(Ω)
n

n−1 .

With cn = |Bn |/|Sn−1|
n

n−1 , this is nothing but the
Isoperimetric Inequality, with the sharp constant,

Vol(Ω)

Vol(Bn)
≤
(

Per(Ω)

Per(Bn)

) n
n−1

.
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Tensors in bounded domains

Let Ω be a bounded domain. For the sake of simplicity, we assume that
∂Ω is a smooth hypersurface.

Let S be Div-controlled tensor over Ω.
Each row ~q i belongs to

Mdiv(Ω) = {~q ∈M(Ω;Rn) |div~q ∈M(Ω)}.

This space is similar to the space Hdiv(Ω) used in the mathematical
analysis of Navier-Stokes equation, but with M replacing L2 in its
definition.
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Normal trace

Recall that the normal trace operator

~q 7→ (~q)|∂Ω · ~N

admits a unique continuous extension

γ~N : Hdiv(Ω)→ H−1/2(∂Ω),

which obeys the identity∫
Ω

(~q · ∇φ+ φdiv~q) dx = 〈γ~N~q , γ0φ〉H−1/2,H 1/2

for every φ ∈ H 1(Ω). Actually this identity is the source of the definition
of the normal trace operator.
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The same strategy can be used to define in a unique way the normal
trace operator over Mdiv(Ω). It takes values in the dual of the space of
traces of functions in C 1

b (Ω). At least, this is a space of distributions over
∂Ω, which contains (Lip(∂Ω))′.

Extension by 0.
Let ~q ∈Mdiv(Ω) be given. Its extension by zero to the complement
Rn \ Ω makes it still a vector-valued finite measure q̃ over Rn . However
there is no reason why q̃ would be divergence-controlled. Thanks to the
formula

〈~q ,∇φ〉+ 〈div~q , φ〉 = 〈γ~N~q , φ|∂Ω〉,

we have

〈div q̃ , φ〉 = −〈q̃ ,∇φ〉 = − 〈~q ,∇φ|Ω〉 = 〈div~q , φ|Ω〉 − 〈γ~N~q , φ|∂Ω〉.
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We deduce

Proposition 2

Let ~q ∈Mdiv(Ω) be given, and q̃ be its extension by 0. Then q̃ is
divergence-controlled if, and only if the normal trace γ~N~q is a finite
measure over ∂Ω.

Application to tensors.
Since a Div-controlled tensor S is nothing but a symmetric collection of
divergence-controlled vector fields, it admits a (now vector-valued)

normal trace. If S is continuous over Ω, this trace is nothing but S ~N ; we
shall keep this as a notation for the normal trace in the general case.
Then S̃ is Div-controlled iff S ~N ∈M(∂Ω).
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Applying Theorem 5 to S̃ , we obtain our fundamental result for bounded
domains.

Theorem 6

Let Ω be an open bounded domain with smooth boundary. Let S be a
divergence-controlled tensor over Ω. Let us assume that its normal trace
is a (vector-valued) finite measure over ∂Ω. Then

1

(detS )
1
n ∈ L

n
n−1 (Ω),

2 ∫
Ω

(detS )
1

n−1 dx ≤ cn

(
‖Div S‖M(Ω) + ‖S ~N ‖M(∂Ω)

) n
n−1

.

We emphasize that the constant cn is the same as in Theorem 5.
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Weak upper semi-continuity

Div-quasiconcavity (Thm 4) suggests that det
1

n−1 enjoys wusc. This
turns out to be true :

Theorem 7 (L. De Rosa, R. Tione & D. S., 2019)

Let Ω be an open subset in Rn , and p > n
n−1 . Let Sk : Ω→ Sym+

n be a
given sequence. Assume that Sk is bounded in Lp(Ω) and that Div Sk is
a bounded sequence in M(Ω). Up to extraction, we may assume that

Sk ⇀ S in Lp(Ω), and (detSk )
1

n−1 ⇀ ` in L
p(n−1)

n (Ω). Then

` ≤ (detS )
1

n−1 .

Notice that the statement is wrong with the limit case p = n
n−1 .
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Conclusion

Three hypotheses are at stake :

symmetry,

positivity,

control of the row-wise divergence.

Altogether, they yield an enhanced integrability of a single quantity,
namely that of the measure (detS )

1
n .

This integrability has the same exponent n
n−1 as S would have if the

operator Div was replaced by the gradient or by another elliptic operator
of order one.

Because Div is not elliptic, and is actually very far from being so,
(detS )

1
n is the only quantity to enjoy enhanced integrability.
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Conclusion

The qualitative result is completed with a quantitative one, a Functional
Inequality.
FI is established with sharp constants and is found to extend well-known
inequalities in functional analysis and geometry.

One of its forms says that det
1

n−1 is Div-quasiconcave. It is actually
weakly-∗ upper semi-continuous over divergence-controlled tensors.

The next Lesson is devoted to the proofs of the fundamental results.
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