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Lesson #4 - Proofs of the fundamental results

In this Lesson, we give the proofs of Theorems 4 and 5 of Lesson #3.

A striking phenomenon is that the structure of Divergence-controlled
tensors is in duality with a non-linear elliptic PDE, namely the
Monge–Ampère equation (Prop. 1 below).

More precisely, we shall use the solvability of the so-called second
boundary-value problem. This BVP occurs in optimal transport theory,
when the cost is quadratic.

We shall therefore recall some basic concepts about optimal transport
theory.

Once we have Brenier’s Theorem at our disposal, we can pass to the
proofs of both versions of Compensated Integrability.

Because our Functional Inequalities are sharp, the proofs are necessarily
sharp as well. In particular, it is possible to trace back what happens in
the equality cases.
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The Monge-Ampère equation

This 1 is the following 2nd-order PDE

det D2u = f , (MAE)

where f is a data. Because the determinant is not monotonous over the
whole space Symn , the equation is not a priori elliptic.

But since H 7→ detH is non-decreasing over Sym+
n , we may claim that

(MAE) is elliptic when D2u ∈ Sym+
n , that is when u is convex.

Note that the convexity is a constraint that we put on the solution.
Notice also that it requires the following condition over the data :

f ≥ 0 (f > 0 prefered).

1. I heard once that Gaspard Monge came to L’Aquila when Bonaparte was in Italy,
and that he boosted the university. However, I didn’t find a reference.
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Maximum principle

In short, it says

Let Ω be a bounded convex domain. Let u, v ∈ C (Ω) ∩ C 2(Ω)
be uniformly convex over every compact subset. If

det D2u ≥ det D2v in Ω,

u ≤ v over ∂Ω,

then u ≤ v in Ω.

Somehow, this reveals ellipticity.
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The duality argument

It is sometimes suitable to replace the data f by its nth root φ in (MAE),
so that the equation becomes homogeneous in u and φ :(

det D2u
) 1

n = φ. (HMA)

We notice that the regularity of φ is essentially the same as that of f ,
except in the borderline situation where f vanishes at the boundary. Thus
it is meaningfull to assume instead

inf φ > 0.

Let us now consider a Div-controlled tensor S over a domain Ω. We recall
that the expression (detS )

1
n is a well-defined finite measure. Suppose

that φ ∈ C∞(Ω), and that u is a C∞-solution of (HMA). Then we have

φ(detS )
1
n =

(
det(SD2u)

) 1
n .
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Because both S and D2u are positive semi-definite, their product has a
real, non-negative spectrum (Proposition 2 of Lesson #0)

If A,B ∈ Sym+
n , then σ(AB) ⊂ R+. If in addition A, or B is

positive definite, then AB is diagonalisable.
,

and the right-hand side above is bounded by the normalized trace
(Corollary 1)

If A,B ∈ Sym+
n , then

(det(AB))
1
n ≤ 1

n
Tr (AB).

1

n
Tr
(
SD2u

)
.

Let us now remark that 2

Tr
(
SD2u

)
=

∑
i,j

sij∂i∂ju =
∑
i,j

(∂i(sij∂ju)− (∂isij )∂ju)

= div (S∇u)− (Div S ) · ∇u.
2. We emphasize that our divergence symbol has a capital letter D when apply to

tensors, but is lowercase when applied to vector fields.
D. Serre Proofs



Combining these observations, we obtain

Proposition 1 (Duality Div-c. vs M.-A.)

Let S be a Div-controlled tensor. Let (u, φ) be a pair of smooth
functions, with u convex, tied by the homogeneous Monge-Ampère
equation (HMA). Then we have

φ(detS )
1
n ≤ 1

n
(div (S∇u)− (Div S ) · ∇u). (1)

Warning ! At this stage, we have not yet discusses the boundary
conditions. Therefore (1) cannot be exploited immediately to estimate

(detS )
1
n .
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Why is there a 2nd BVP ?

Because there is a 1st BVP, namely the Dirichlet BVP, with prescribed
boundary data

u|∂Ω = g .

The theory of the Dirichlet BVP for (MAE) is extremely complex and
requires a full book to be carried out. We recommend A. Figalli’s
monograph The Monge-Ampère equation and its Applications, Zurich
lectures in advanced mathematics ; European Math. Soc. (2017).

An obvious necessary condition for a general solvability (remeber that we
look for a convex solution) : Ω must be strictly convex.
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We shall not explore further the Dirichlet BVP, as we don’t need it in the
proofs of Compensated Integrability. We content ourselves with
mentionning a result concerning smooth data :

Theorem 1

Suppose that Ω is uniformly convex, with a C k+2,α-boundary for some
integer k ≥ 2 and α ∈ (0, 1). Let f ∈ C k ,α(Ω) and g ∈ C k+2,α(∂Ω) be
given, with f > 0. Then there exists one and only one solution of the
Dirichlet boundary-value problem for (MAE), which turns out to be of
class C k+2,α(Ω).

This theorem was established in 1983-84 independently by N. M.
Ivochkina, by N. V. Krylov, and by L. Caffarelli, L. Nirenberg & J. Spruck.
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Optimal transport theory

The optimal transport problem was first posed by G. Monge 3. In its
original form, one has two metric spaces X and Y , equipped with
positive finite Radon measures µ and ν of equal masses : ‖µ‖ = ‖ν‖.

One defines the set Trans(µ, ν) of transport maps T : X → Y by the
constraint

T#µ = ν

(“ν is the push-forward of µ by T”). In other words,

µ(T−1(A)) = ν(A)

for every Borel subset A ⊂ Y .

Then one minimizes a cost∫
X

c(x ,T (x )) dµ(x ),

over Trans(µ, ν).

3. Mémoire sur la théorie des déblais et des remblais (1781).
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Obstruction : Trans(µ, ν) might be empty. Think to µ = δ and ν = dx .

Therefore L. Kantorovitch reformulated the problem. He symmetrized the
roles of X and Y , and relaxed the constraint.

One considers instead the set Γ(µ, ν) of measures γ over X ×Y , whose
marginals over X and Y are µ and ν respectively :

γ(B ×Y ) = µ(B), γ(X ×A) = ν(A).

Then one minimizes the cost∫ ∫
X×Y

c(x , y) dγ(x , y)

over Γ(µ, ν).
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The link between both formulations :

If T ∈ Trans(µ, ν), then Monge’s cost equals Kantorovitch’s for the
measure γ defined by∫ ∫

X×Y
g(x , y) dγ(x , y) :=

∫
X

g(x ,T (x )) dµ(x ).

In particular, a solution of Monge’s problem provides a solution of
Kantorovitch’s.

Conversely, if a minimizer γ of the Kantorovitch problem can be
associated that way with a function T , then T solves Monge’s
problem.
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Kantorovitch’s approach yields a dual formulation :

The infimum of the cost equals the supremum of∫
X

φ(x ) dµ(x ) +

∫
Y

ψ(y) dν(y),

under the constraint that

φ(x ) + ψ(y) ≤ c(x , y), ∀(x , y) ∈ X ×Y .
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Quadratic cost

We shall be concerned only with a rather special case of the
Monge–Kantorovitch problem, when X ,Y ⊂ Rn , and the cost is
quadratic

c(x , y) = |x − y |2.

In addition, we assume that ν is the Lebesgue measure. The compatibility
condition over µ is therefore∫

X

dµ(x ) = Vol(Y ). (2)

In practice, we shall need only to consider measures µ with smooth,
uniformly positive densities :

dµ(x ) = f (x ) dx , f ∈ C∞(X ), min f > 0. (3)
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We then have the following fundamental result 4.

Theorem 2 (Y. Brenier)

Let X be a bounded open convex subset of Rn . Let f ∈ C∞(X ) be
given, such that min f > 0, and let B(R) ⊂ Rn be a ball whose volume
equals

∫
X
f (x ) dx .

Then Monge’s optimal transport problem from (X , f (x )dx ) to
(B(R), dx ), with quadratic cost, admits a unique solution T .
This transport map turns out to be the gradient ∇u of some C∞ convex
function, which solves the Monge-Ampère equation (MAE), and satisfies

∇u(X ) = B(R). (4)

(Brenier’s Theorem is far more general ; this restricted version is that
needed for our purpose.)

4. See C. Villani. Topics in optimal transportation. Graduate Studies in Mathematics
58, Amer. Math. Society (2003).
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Because ∇u : X → B(R) is one-to-one, (4) can be read equivalently

∇u(∂X ) = ∂B(R).

It thus plays the role of a boundary condition. The terminology speaks of
the second boundary condition.

Since we may always assume that B(R) is centered at the origin, the
condition above reads

|∇u(x )| ≡ R, x ∈ ∂X ,

where the radius R is determined by

Rn =
1

Vol(Bn)

∫
X

f (x ) dx .
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Proof of Theorem 5

Recall that Thm 5 of Lesson #3 concerns Div-controlled tensors S whose
entries are bounded measures in Rn .

We first consider the case where S is compactly supported.

Let X be an open ball, large enough that it contains SuppS . For every
φ ∈ C∞(X ), Brenier’s Theorem provides a solution u ∈ C∞(X ) of the
homogeneous Monge-Ampère equation (HMA), such that
∇u(X ) = B(R) with

Rn =
1

Vol(Bn)

∫
X

φ(x )ndx . (5)

Recall the duality property (1) :

φ(detS )
1
n ≤ 1

n
(div(S∇u)−Div S · ∇u).
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Integrating, we obtain∫
X

φd(detS )
1
n ≤ − 1

n

∫
X

∇u · d(Div S ),

where we have used the fact that S∇u is compactly supported.
Using Cauchy–Schwarz, we infer∫

X

φd(detS )
1
n ≤ R

n

∫
X

d |Div S | = R

n
‖Div S‖M.

Because the value of R is given by (5), this amounts to writing∫
X

φd(detS )
1
n ≤ 1

nVol(Bn)
1
n

‖Div S‖M‖φ‖n . (6)

This estimate, valid for every smooth and positive φ, remains valid by
density for positive φ ∈ Ln(X ), and therefore for every φ ∈ Ln(X ). This

tells us on the one hand that the measure (detS )
1
n is absolutely

continuous with respect to the Lebesgue measure (qualitative part).
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It tells us on the other hand that its density belongs to L
n

n−1 (X ), the
dual space of Ln(X ), and satisfies

‖(detS )
1
n ‖ n

n−1
≤ 1

nVol(Bn)
1
n

‖Div S‖M.

This is exactly the functional inequality (quantitative part) of Theorem 5,
because of nVol(Bn) = |Sn−1|.

There remains to treat the general case, where the entries are finite
measures.

For this, we choose a cut-off ρ ∈ D(Rn) such that 0 ≤ ρ ≤ 1, ρ ≡ 1 over
a ball B(L) and |∇ρ| ≤ 1 otherwise.
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The tensor ρS is Div-controlled, compactly supported, with

Div(ρS ) = ρDiv S + S∇ρ.

Because the theorem has been proved in the compactly supported case,
we have that ρ(detS )

1
n ∈ L

n
n−1 (Rn) and∫

B(L)

(detS )
1

n−1 dx =

∫
B(L)

ρ
n

n−1 (detS )
1

n−1 dx

≤
∫
Rn

ρ
n

n−1 (detS )
1

n−1 dx

≤ cn(‖ρDiv S‖M + ‖S∇ρ‖M)
n

n−1

≤ cn(‖Div S‖M + ‖S∇ρ‖M(Rn\B(L)))
n

n−1 .

Letting L→ +∞, and using ‖S‖M(Rn\B(L)) → 0, we obtain the desired
conclusion.

Q.E.D.
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One can prove Theorem 6 (bounded domain) the same way if Ω is
uniformly convex :

Take φ ∈ C∞(Ω) with minφ > 0, let T = ∇u be the optimal transport
plan from (Ω, φn dx ) to (B(R), dx ). Integrating (1) over Ω and using
Green’s formula, we obtain∫

Ω

φd(detS )
1
n ≤ 1

n

(∫
∂Ω

~N · d(S∇u)−
∫

Ω

∇u · dDiv S

)
.

Because S is symmetric, the boundary integral is that of ∇u · d(S ~N ).
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By Cauchy–Schwarz, and using |∇u| ≤ R everywhere, we infer∫
Ω

φd(detS )
1
n ≤ R

n
(‖S ~N ‖M + ‖Div S‖M).

We conclude as in the previous proof, by expressing R in terms of ‖φ‖n
and by using duality. We obtain (detS )

1
n ∈ L

n
n−1 (Ω) and∫

Ω

(detS )
1

n−1 dx ≤ cn(‖S ~N ‖M + ‖Div S‖M)
n

n−1 . (7)
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Equality case

The latter calculation can be used to characterize those tensors S for
which (7) is an equality, at least when S is smooth and uniformly positive
over Ω.

Let us choose the test function

φ0 := (detS )
1

n(n−1) .

Remark that we have both

φ0(detS )
1
n = (detS )

1
n−1 and ‖φ0‖n =

(∫
Ω

(detS )
1

n−1 dx

) 1
n

.

Denote ∇u0 the optimal transport plan and R0 the radius of the target
ball.
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The equality in (7) gives us

R0(‖S ~N ‖M + ‖Div S‖M) = n

∫
Ω

φ0(detS )
1
n

≤
∫
∂Ω

∇u0 · (S ~N ) dx −
∫

Ω

∇u0 ·Div S dx ,

Because |∇u0| = R0 on the boundary, but |∇u0| < R0 in the interior, we
infer

S ~N ‖+ ∇u0 over ∂Ω, (8)

Div S ≡ 0 in Ω. (9)

This is not the end of the story, because every inequality used in the
proof must be an equality. In particular, we have(

det(SD2u0)
) 1

n =
1

n
Tr (SD2u0).
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This is the equality case in the Arithmetic-Geometric Inequality, which
means that the (real ≥ 0) spectrum of SD2u0 is made of equal
eigenvalues λ(x ). Since this matrix is diagonalizable (Proposition 2 of
Lesson #0), we deduce SD2u0 = λ(x )In for some scalar function λ > 0.

In other words, S = µ(x )D̂2u0 for some µ > 0.

Coming back to the definition of φ0, we have

(det D2u0)
1
n = φ0 = (detS )

1
n(n−1) = µ

1
n−1 (det D2u0)

1
n ,

whence µ ≡ 1. Hence S = D̂2u0.
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Eventually, we come back to the condition (8), which writes
~N ‖+ S−1∇u0, that is ~N ‖+ (D2u0)∇u0. This is equivalent to

∇1

2
|∇u0|2 ‖+ ~N ,

which turns out to be trivial since |∇u0| ≡ R0 is constant on the
boundary and is less than R0 in the interior. In conclusion we have

Proposition 2

Let Ω be a uniformly convex domain. Let S be a smooth, uniformly
positive Div-controlled tensor. The Functional Inequality (7) is an

equality if, and only if S = D̂2u is a special DPT for a convex potential
such that ∇u(Ω) is a ball.
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Periodic DPTs

We turn towards the proof of Theorem 4. To this end, we need another
type of “boundary-value” problem for the Monge-Ampère equation, the
one treated by Yanyan Li 5.

Given a lattice Γ of Rn , we have seen that a convex function cannot be
periodic (unless being constant), but its Hessian can be. We therefore
consider convex functions u : Rn → R of the form

u(x ) =
1

2
xTAx + ρ(x )

where ρ is periodic and A ∈ SPDn . Then (MAE) is recast as

det(A + D2ρ) = f . (10)

5. Some existence results of fully nonlinear elliptic equations of Monge–Ampère type.
Comm. Pure & Appl. Math., 43 (1990), pp 233–271.
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Remark that, when integrating (10) on a fundamental domain, and using
the fact that det(A + D2ρ)− detA is a sum of null-Lagrangians, we
obtain the constraint

detA = −
∫
Rn/Γ

f (x ) dx . (11)

The result we use is

Theorem 3 (Yanyan Li)

Let Γ be a lattice of Rn , and f be a smooth, Γ-periodic, positive function.
Let A ∈ SPDn satisfy the compatibility condition (11). Then there exists
a unique (up to an additive constant) periodic smooth solution ρ of the
Monge-Ampère equation (10), such that 1

2 xTAx + ρ(x ) is convex.

Somehow, the boundary condition has thus been replaced by the
prescription that −

∫
Rn/Γ

D2u dx equals A.
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Proof of Theorem 4

We now consider a Γ-periodic DPT S .

We choose an arbitrary matrix A ∈ SPDn and a smooth, Γ-periodic test
function φ > 0 such that f := φn satisfies (11). We denote ρ the solution
given by Li’s Theorem. Equivalently u = 1

2 xTAx + ρ(x ) solves

(det D2u)
1
n = φ.

Duality gives

φ(detS )
1
n ≤ 1

n
div (S∇u)− 1

n
Div S · ∇u

=
1

n
div (S (Ax +∇ρ)) =

1

n
(Tr (SA) + div (S∇ρ)).
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Integrating on a fundamental domain, we get

−
∫
Rn/Γ

φ d(detS )
1
n ≤ 1

n
−
∫
Rn/Γ

Tr (SA) =
1

n
Tr (AS̄ ),

where

S̄ := −
∫
Rn/Γ

S

denotes the mean value of the tensor.

We may assume S̄ ∈ SPDn , otherwise detS ≡ 0 and the results (CI and
FI) are obvious.

The next step is to minimize the right-hand side Tr (AS̄ ) with respect to
A, keeping φ fixed. Recall that A is arbitrary in SPDn , apart for the
constraint (11), here

detA = −
∫
Rn/Γ

φ(x )n dx .
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The minimum of Tr (AS̄ ) is achieved for A = λS̄−1 where

λ = ‖φ‖n(det S̄ )
1
n .

We obtain therefore

−
∫
Rn/Γ

φ d(detS )
1
n ≤ λ = ‖φ‖n(det S̄ )

1
n ,

from which we conclude as usual by duality.
Q.E.D.
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The equality case works as well. If S is smooth and uniformly positive, we
choose the same

φ0 = (detS )
1

n(n−1)

and
A0 = ‖φ0‖n(det S̄ )

1
n S̄−1.

The same arguments as in the case of a bounded domain yield the fact

that S ≡ D̂2u0, that is, S is a special DPT.

And conversely, we have seen (Thm 3 of Lesson #3) that every special
DPT satisfies the equality in the Functional Inequality

−
∫
Rn/Γ

(detS )
1

n−1 dx ≤

(
det−
∫
Rn/Γ

S

) 1
n−1

.
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Conclusion

The important points of this lesson are

The structure of Div-controlled tensors is in duality with a
boundary-value problem for the Monge-Ampère equation,

The proofs are sharp ; one is able to characterize those tensors for
which the Functional Inequality is an equality. These are special
DPTs.

The fundamental results are not yet in a form that can be used in
applications, but they contain everything we need. We shall develop
convenient statements in the next Lesson.
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