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Lesson#6 - Applications to gas dynamics

1. Thermodynamical models

Now that useful forms of Compensated Integrability and the
corresponding Functional Inequalities have been established (Theorem 1
to 5 of Lesson #5), we are in good position to develop applications.

The first domain is that of compressible gas dynamics, where we have at
our disposal various models :

Euler system,

its variant with heat diffusion (Euler-Fourier),

its relativistic variant.
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The second part of the lesson (next lecture) will be devoted to kinetic
models for dilute gases, especially to the Boltzmann equation.

The situation is significantly different for Vlasov-type models where
particles don’t collide, but interact through a self-induced field. We shall
postpone their study to Lesson #9.
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Euler system for a compressible gas

Internal variables are the mass density ρ ≥ 0, the pressure p ≥ 0, the
temperature ϑ ≥ 0, the specific internal energy e ≥ 0 and the entropy s.
Of these five quantities, only two are functionally independent, as the
three others can be determined through one equation of state.

For instance, one can start from a function F (ρ, ϑ) called Helmholtz free
energy, and define

p = −ρ2 ∂F

∂ρ
s = −∂F

∂ϑ
, e = ϑs + F .

The specific energy can be viewed as the partial Legendre transform of
−F with respect to the temperature.
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The velocity field is denoted v . We ignore the diffusion processes ; in
particular the gas is inviscid.

The gas obeys the Euler system which expresses the conservation of
mass, momentum and energy :

∂tρ+ div(ρv) = 0, (1)

∂t(ρv) + Div(ρv ⊗ v) +∇p = 0, (2)

∂t

(
1

2
ρ|v |2 + ρe

)
+ Div

(
(
1

2
ρ|v |2 + ρe + p)v

)
= 0. (3)
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The mass-momentum tensor

As noted in Lesson #1, the two first equations can be recast as
Divt,yS = 0 where

S =

(
ρ ρvT

ρv ρv ⊗ v + pId

)
is positive semi-definite.

Question : Is this a DPT ? ⇐⇒ Are ρ, ρv , ρ|v |2 + p integrable ?

The answer is positive from the conservation of total mass M0 and the
conservation/decay of total energy E (t) ≤ E0.
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To summarize, we shall work in the following context

Ms. The total mass M0 is a finite constant.

En. The total energy at time t > 0 is bounded above by E0,
where the energy E0 at time t = 0 is finite.

St. There exists a finite constant C such that p ≤ Cρ(1 + e).

Flows satisfying (Ms, En) will be called below admissible.

Structure assumption (St) is satisfied by most reasonable equations of
state. For instance perfect gas obey to

p = (γ − 1)︸ ︷︷ ︸
constant

ρe.

These assumptions ensure that S is a DPT over (0, τ)× ω.
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Observe that the control of energy∫
ω

(
1

2
ρ|v |2 + ρe

)
dy ≤ E0, ∀ t ∈ (0, τ)

serves also to estimate the right-hand side in the functional inequalities
that involve ‖m(0, ·)‖M + ‖m(τ, ·)‖M.

Because of m = ρv , Cauchy–Schwarz yields

‖m(t , ·)‖M ≤
(∫

ω

ρ(t , y) dy ·
∫
ω

ρ(t , y)|v |2 dy
)1/2

≤
√

2M0E0 .
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The Cauchy problem

Recall that detS = ρpd . Applying Theorem 3 of Lesson #5, we obtain

Proposition 1

Assume the structure condition (St). Then every admissible flow in
(0, τ)× Rd with finite mass and energy satisfies∫ τ

0

dt

∫
Rd

ρ
1
d p dy ≤ kdM

1
d

0

√
8M0E0 . (4)

We emphasize that the estimate (4) does not depend at all upon the
length τ of the time interval. Therefore, if the flow is globally defined, the
result above is valid even with τ = +∞.
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A refined estimate

Proposition 1 is not the end of the story : Internal variables such as ρ, p
don’t depend upon the choice of an inertial frame. Thus the left-hand
side of (4) is invariant under a Galilean change of variable. But since the
kinetic part of the energy involves the velocity, the right-hand side is not
invariant. To keep track of the choice of an inertial frame F , this kinetic
part is denoted Ek0 = Ek0[F ].

One can therefore go further, by minimizing Ek0[F ] with respect to the
frame. Since every inertial frame moves with a constant velocity v̄ with
respect to the laboratory frame, we calculate

min
v̄∈Rd

∫
Rd

1

2
ρ0|v0 − v̄ |2dy .
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This is achieved when v̄ is the mean velocity,

v̄ =
1

M0

∫
Rd

ρ0v0dy ,

giving

M0Ek0 =
1

4

∫
Rd

∫
Rd

ρ0(y)ρ0(y ′)|v0(y ′)− v0(y)|4dy dy ′.

This yields

Theorem 1 (Euler/Cauchy pb.)

Assume the structure condition (St). Then every admissible flow in
(0, τ)× Rd with finite mass and energy satisfies∫ τ

0

dt

∫
Rd

ρ
1
d p dy ≤ kdM

1
d

0

√
8D0 (5)

where

D0 :=
1

4

∫
Rd

∫
Rd

ρ0(y)ρ0(y ′)|v0(y ′)− v0(y)|4dy dy ′ + M0

∫
Rd

ρ0e0dy .
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Discussion

.
The novelty of (4) is that it involves only the total mass and energy. Yet,
it is not contained in the estimates of mass and energy.

The latter tell us that both ρ and ρe (as well as ρ|v |2) belong to
L∞(R+;L1(Rd)). But (4) tells us that ρ1/dp ∈ L1((0,+∞)× Rd).

There are two main differences between these estimates :

The latter is a space-time integral, instead of being the supremum in
time of a space integral.

The integrand ρ1/dp dominates strictly p ∼ ρe.
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For instance, if we are working with an isentropic gas, for which the
equation of state is p = ργ (the same constant γ as above), then
ρ1/dp = ργ+1/d is a higher power of ρ than the internal energy
ρe = 1

γ−1 ρ
γ .

We have therefore a gain, in that we integrate a “stronger quantity”, a
higher power of the mass density. This gain has a cost, in that we replace
the supremum in time by an integral. Somehow, (4) ressembles the
Strichartz estimates that arise in the Cauchy problem for dispersive
equations.
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Interpolation

Let us consider the polytropic equation of state p = ργ . The finite mass
and energy tell us that ρ ∈ L∞(R+;Lq(Rd)) for q = 1 and q = γ,
respectively. By interpolation (Hölder inequality), this remains true for
every q ∈ [1, γ].

Turning towards (4), we see that

ρ ∈ Lγ+ 1
d (R+ × Rd) = Lγ+ 1

d (R+;Lγ+ 1
d (Rd)).

Interpolating again, we infer that ρ ∈ Lr (R+;Ls(Rd)) whenever the
point Q = ( 1

r ,
1
s ) belongs to the triangle spanned by the vertices

(0, 1), (0,
1

γ
), (

1

r̂
,

1

r̂
), with r̂ := γ +

1

d
.

Let us illustrate this : −→
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0 0,25 0,5 0,75 1

0,25

0,5

Coordinates are 1
s (horizontal) and 1

r (vertical). In this example, d = 3
and γ = 5

3 (mono-atomic gas). Conservations of mass and energy
correspond to the horizontal edge ; the new estimate extends them to the
whole triangle.
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Estimating the velocity

The drawback of (4) is that it does not give any information about the
velocity. So far, it is controlled only through the energy estimate :

sup
t>0

∫
Rd

ρ|v |2dy ≤ 2E0.

To go forward, we consider the integrated tensor.

A(y) :=

∫ τ

0

A(t , y) dt

where A = ρv ⊗ v + pId . We have A(y) = π(y)Id +Akin(y) where

π =

∫ τ

0

p(t , y) dt , Akin :=

∫ τ

0

ρv ⊗ v dt (kinetic part).

Then we apply Inequality (7) of Lesson #5,
−→ . . .
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‖(detA)
1
d ‖ d

d−1
≤ cd (‖m(0, ·)‖M + ‖m(τ, ·)‖M) . (6)

We have

detA =

d∑
k=0

πd−kσk (Akin)

where
σ0 = 1, σ1 = Tr , . . . σd = det .

Every term in the sum if non-negative. For instance

σ1 (Akin) =

∫ τ

0

ρ|v |2.
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For the determinant, we use Andreev’s Formula 1 :

det

[∫
I

fj (t)gk (t) dt

]N
j ,k=1

=
1

N !

∫
I

dt1 · · ·
∫
I

dtN det[fj (t`)]
N
j ,`=1 det[gj (t`)]

N
k ,`=1.

We apply this with N = d , f = ρv and g = v , to obtain

detAkin =
1

d !

∫
· · ·
∫

(0,τ)d
ρ(t1) · · · ρ(td) [det(v(t1), . . . , v(td))]

2
dt1 · · · dtd ,

where we omitted the argument y (the same for all factors).

1. C. Andréief ( !). Note sur une relation entre les intégrales définies des produits de

fonctions. Mém. Soc. Sci. Phys. et Nat. Bordeaux, Ê2 (1886), 110–123.
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In conclusion, we obtain a list of estimates. From that with σ1 :∫
Rd

∫ τ

0

p dt ·
(∫ τ

0

ρ|v |2dt
) 1

d−1

dy ≤ kd
√

8M0E0 . (7)

to that with σd ,

‖ (detAkin)
1
d ‖

L
d

d−1
≤ cd

√
8M0E0 , (8)

where detAkin is given by the formula above. Somehow, (8) estimates
the torsion of the curves t 7→ v(t , y).

As usual the estimates are valid with τ = +∞.
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Compressible gas in a bounded domain

When the physical domain ω is a bounded open set in Rd , we invoque
Theorem 4 (L#5). The right-hand side of its Functional Inequality
involves the total masses of m = ρv and A, over (0, τ)× ω. As usual

‖m‖M =

∫
Ωτ

|ρv | dy dt ≤
∫ τ

0

√
2M0E0 dt = τ

√
2M0E0 .

On the other hand, because |A|op ≤ TrA over Sym+
d ,

‖A‖M ≤
∫

Ωτ

(ρ|v |2 + dp) dy dt

For a polytropic gas (adiabatic constant γ)

ρ|v |2 + dp ≤ max(2, d(γ − 1))

(
1

2
ρ|v |2 + ρe

)
gives ‖A‖M ≤ max(2, d(γ − 1)) τE0. Remark that d(γ − 1) = 2 for a
mono-atomic gas.
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We thus obtain the estimate

Proposition 2

An admissible flow of a polytropic gas (either isentropic or not) in an
open bounded domain ω ⊂ Rd satisfies∫ τ

0

dt

∫
ω

dist(y , ∂ω)1+ 1
d ρ

1
d p dy ≤ KM

1
2d

0

√
E0

(
R
√
M0 + τ

√
E0

)1+ 1
d

(9)
where R = max dist(y , ∂ω) is the radius of ω, and K = K (d , γ) is an
absolute constant.

This estimate is the only one where the bound does depend upon the
length τ of the time interval. Predictible ! The gas cannot disperse and
the left-hand side has to grow at least linearly as τ increases.
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It seems that (9) is not accurate : the right-hand side is superlinear in τ ,
while the left-hand side is expected to behave linearly, say if ρ, p admit
limits ρ∞, p∞ as τ → +∞.

We can improve it by splitting a given time interval (0, τ) into ` equal
parts, and to apply (9) on each one :∫ k τ`

(k−1) τ`

dt

∫
ω

dist(y , ∂ω)1+ 1
d ρ

1
d p dy ≤ KM

1
2d

0

√
E0

(
R
√
M0 +

τ

`

√
E0

)1+ 1
d

.

Summing from k = 1 to k = `, we obtain∫ τ

0

dt

∫
ω

dist(y , ∂ω)1+ 1
d ρ

1
d p dy ≤ `KM

1
2d

0

√
E0

(
R
√
M0 +

τ

`

√
E0

)1+ 1
d

.

When τ is large, we can choose an integer which balances the terms in
the parenthesis :

` ∼ τ
√
E0

R
√
M0

.
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We infer∫ τ

0

dt

∫
ω

dist(y , ∂ω)1+ 1
d ρ

1
d p dy =τ→+∞ O

(
τ(RM0)

1
d E0

)
.

This means that in average,∫
ω

dist(y , ∂ω)1+ 1
d ρ

1
d p dy

behaves as an
O
(

(RM0)
1
d E0

)
when τ → +∞.
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Heat-conducting gas

This is the situation where the third equation (3), that of energy balance,
incorporates a diffusion div (κ∇ϑ) in its right-hand side. This term
expresses Fourier’s law of heat diffusion ; we speak of the Euler–Fourier
system.

Two important remarks :

The conservation laws of mass and momentum remain the same,
and thus we keep the same DPT as in the Euler system.

The total energy is still conserved (or even decays) provided we have∫
ω

div (κ∇ϑ) dy ≡ 0.

This will happen in the following situations : either the domain is the
whole Rd with suitable decay at infinity (Cauchy problem with finite
mass and energy), or it is surrounded by an insulated boundary. The

latter corresponds to a boundary condition ~N · ∇ϑ = 0.
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In all these cases, the same analysis as above can be carried out and the
estimates (4,7,8,9) remain valid.

Thus the Euler–Fourier system does not distinguish from the Euler
system in our theory.

This contrasts with the Navier-Stokes system, where the momentum
equation incorporates viscous effects,

∂t(ρv) + Div (ρv ⊗ v) +∇p = DivT

where
T = µ(∇v +∇vT ) + λ(div v)Id .

Here T contributes to the divergence-free symmetric tensor S , but the
positivity is lost.
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Relativistic gas

Context : Special Relativity. The speed of light c is an upper bound for
the fluid velocity. Focus on the Cauchy problem (there are no boundaries
to moderate the velocity).

The conservation of mass is not any more independent from that of
energy :

∂t

(
ρc2 + p

c2 − |v |2
− p

c2

)
+ divy

(
ρc2 + p

c2 − |v |2
v

)
= 0,

∂t

(
ρc2 + p

c2 − |v |2
v

)
+ Divy

(
ρc2 + p

c2 − |v |2
v ⊗ v

)
+∇yp = 0.
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The DPT is

S =

(
ρc2+p
c2−|v |2 −

p
c2

ρc2+p
c2−|v |2 v

ρc2+p
c2−|v |2 v

ρc2+p
c2−|v |2 v ⊗ v + pId

)
,

whose determinant is still ρpd .

Applying Theorem 3 (L#5),∫ τ

0

dt

∫
Rd

ρ
1
d p dy ≤ kdE

1
d

0 (µ(0) + µ(τ)),

with

E0 ≡
∫
Rd

(
ρc2 + p

c2 − |v |2
− p

c2

)
dy , µ(t) =

∥∥∥∥ ρc2 + p

c2 − |v |2
v

∥∥∥∥
M
.
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To estimate µ(t), we make the reasonable assumption that the pressure
is a linear function of ρ. This is supported by the observation that the
sound speed

√
∂p/∂ρ must remain smaller than c, hence be bounded.

Actually the Stefan–Boltzmann law for a gas at thermodynamical
equilibrium yields the identity p = a2ρ where a2 = c2/3.

Under such an assumption, we have

E0 ≡
∫
Rd

ρ(c4 + a2|v |2)

c2(c2 − |v |2)
dy , µ(t) =

∥∥∥∥ρ(c2 + a2)

c2 − |v |2
v

∥∥∥∥
M
.

We next use the inequality

2a2c|v | ≤ c4 + a2|v |2,

valid whenever |v | < c, to give a bound of µ(t) :

µ(t) ≤ c
a2 + c2

2a2
E0.
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We deduce

Theorem 2

Assume a linear equation of state p = a2ρ with 0 < a < c. Then an
admissible flow of the Cauchy problem for the relativistic Euler system
satisfies ∫ τ

0

dt

∫
Rd

ρ
1
d p dy ≤ kdc

a2 + c2

a2
E

1+ 1
d

0 . (10)

Remark : This estimate involves only one invariant quantity, namely the
total energy E0. This is a consequence of the equivalence between mass
and energy, which implies that that there is no extra parameter M0.
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Conclusion

Compensated Integrability applies to, and gives estimates of a new kind
for, gas dynamics, provided that the stress tensor is non-negative (lack of
viscous forces).

Otherwise, it supports various contexts :

Heat conduction,

Relativistic velocities.
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