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L#7 - Singular tensors (2). DPTs over graphs ;
Applications

In Part 1, we explored a few examples of singular DPTs, especially those
that are homogeneous of degree 1− n. They are of the form

S =
λ(e)

rn−1
e ⊗ e, r = |x |, e =

x

r
,

where λ is a non-negative measure over Sn−1, satisfying∫
Sn−1

e dλ(e) = 0.

Example : If λ = δu + δ−u for some unit vector u, then S = πLu is
concentrated along the line Ru, and its constant density (a symmetric
positive semi-definite matrix) π = u ⊗ u is the orthogonal projection over
Ru.

How far can this example be generalized ?
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Tensors supported by a curve

Let s 7→ X (s) be the arc-length parametrization of a smooth curve γ.
The parameter runs over a bounded interval I = (0, `) where ` is the
length. If the curve is closed, then s runs over R/`Z instead. Denote
τ(s) = Ẋ (s) the unit tangent vector.

For a smooth map s 7→ Σ(s) ∈ Sym+
n , we may define a singular,

symmetric positive semi-definite tensor

S = ΣLγ ,

where Lγ denotes the 1-dimensional Lebesgue measure along γ. For
every vector-valued φ ∈ D(Rn), we have

〈S , φ〉 =

∫
I

Σ(s)φ(X (s)) ds.
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For which pairs (γ,Σ) is the tensor S Div-controlled, or
divergence-free ?

Let us compute Div S .

〈Div S , φ〉 = −〈S ,∇φ〉 = −
∫
I

Tr (Σ(s)∇φ(X (s))) ds.

Div S is supported by a subset of SuppS , hence by the closure of γ (the
curve together its ends). S is Div-controlled if

|〈S ,∇φ〉| ≤ C sup
γ
|φ|

for some finite constant C . This implies that∫
I

Tr (Σ(s)∇φ(X (s))) ds

does not involve the normal part of ∇φ.
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In other words, Σ(s) must be rank-one, proportional to the orthogonal
projector τ(s)⊗ τ(s) onto the tangent line. Thus let

Σ(s) = σ(s)τ(s)⊗ τ(s)

for some smooth function σ ≥ 0. We have

〈Div S , φ〉 = −
∫
I

σ(s)

(
d

ds
φ(X (s))

)
τ(s) ds.

Integrating by parts, (for the sake of generality, we consider the open
case I = (0, `))

〈Div S , φ〉 =

∫
I

φ(X (s))
d

ds
(σ(s)τ(s)) ds

+φ(X (0))σ(0)τ(0)− φ(X (`))σ(`)τ(`).
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The calculations above yield the statement

Proposition 1

Let γ : s 7→ X (s) be a smooth curve in Rn and s 7→ Σ(s) ∈ Sym+
n be a

density along this curve.
The tensor S = ΣLγ is Div-controlled if, and only if Σ = στ ⊗ τ for
some absolutely continuous function s 7→ σ(s) ≥ 0. We have

Div S =
d

ds
(σ(s)τ(s)) Lγ + σ(0)τ(0)δX (0) − σ(`)τ(`)δX (`).

If γ is a closed curve, then the Dirac masses are absent from the formula.

Corollary 1

The tensor S defined in Proposition 1 is a DPT over an open domain Ω
if, and only if the curve γ is a segment with vertices on ∂Ω, and the
density σ is a constant.
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Example : moving particle

Let P be a particle of mass m, whose position at time t is
t 7→ Y (t) ∈ Rd . Denote its velocity v(t) = Ẏ (t).

As usual, n = 1 + d and x = (t , y) is the time-space coordinate. The
curve γ will be the graph of P . Arc-length parametrization and tangent
vector :

ds =
√

1 + |v |2 dt , τ =
1√

1 + |v |2

(
1

v

)
∈ Sd .

Define the mass-momentum tensor of the particle :

SP := m
√

1 + |v |2 τ ⊗ τ Lγ =
1√

1 + |v |2

(
m mvT

mv mv ⊗ v

)
Lγ ,

where
1√

1 + |v |2
Lγ = dt |γ .
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We compute as before

〈Div S , φ〉 = −〈S ,∇φ〉

= −
∫

m√
1 + |v |2

(φt + v · ∇φ)

(
1

v

)
ds

= −
∫

m
d

dt
φ(Y (t))

(
1

v

)
dt

Integrating by parts, we find (up to Dirac masses at the ends of the
interval)

Div S =
m√

1 + |v |2

(
0
dv
dt

)
Lγ .
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Dynamical interpretation

.
If the particle obeys to Newton’s law

m
dv

dt
= F ,

then

Div S =
1√

1 + |v |2

(
0

F

)
Lγ .

Proposition 2

Let P be a particle moving in a force field F . Then the mass-momentum
tensor satisfies

Div S =

(
0

F dt |γ

)
.

D. Serre Proofs



Junctions

The situation becomes richer when considering a tensor supported by a
graph G ⊂ Ω.

Let V be the set of vertices and E that of edges (segments). According
to Corollary 1, if S is a DPT supported by G , then its restriction to an
edge e of direction τe must have a constant density of the form
σeτe ⊗ τe with σe ≥ 0. Thus besides the sets (V ,E ), our data consists
in a third set σ = (σe)e∈E .

Proposition 1 gives

Div S =
∑
e∈E

σeτe(δin − δfin) =
∑
v∈V

(∑
v`e

σeτe,v

)
δv , (1)

where v ` e means that v is a vertex of e, and τe,v is the outward unit
tangent vector. In particular, τe comes in the last sum with two opposite
signs at the opposite vertices of e.

D. Serre Proofs



We deduce

Proposition 3

Let G = (V ,E ) be a graph in Ω, made of segments. Let σ = (σe)e∈E be
a list of constant ≥ 0 densities. Then the tensor

S =
∑
e∈E

σe τe ⊗ τe Le

is a DPT if, and only if (Kirchhoff’s law)

∀v ∈ V ,
∑
v`e

σeτe,v = 0. (2)
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Example : colliding particles

Consider two point particles P1,2 with masses m1,2. No force : they move
freely with a constant velocity. However it happens that they collide at
time t∗, position y∗ ∈ Rd . The velocities experience jumps

v1 7→ v ′1, v2 7→ v ′2.

The conservation of momentum writes

m1v
′
1 + m2v

′
2 = m1v1 + m2v2.

(Conservation of the kinetic energy is not use at this stage.)

The trajectory of Pj is the union of two semi-lines γj− (before the
collision) and γj+ (after), both ending at x∗ = (t∗, y∗). Thus the graph
of the whole system looks like an X, with center at x∗ (see Figure 1.a
next slide).
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Fig. 1. Graph supporting the mass-momentum tensor of a colliding pair.
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The particle Pj has its own mass-momentum tensor S j , which is
supported by its trajectory :

S j =
1√

1 + |vj |2

(
mj mj v

T
j

mj vj mj vj ⊗ vj

)
Lj−

+
1√

1 + |v ′j |2

(
mj mj v

′T
j

mj v
′
j mj v

′
j ⊗ v ′j

)
Lj+,

with an obvious notation for the Lebesgue measures.

Remark that S j is not divergence-free. Instead (1) gives

Div S j = mj

(
0

v ′j − vj

)
δx∗ .

We deduce however from the conservation of linear momentum that

Div (S1 + S2) = 0.
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This leads us defining the mass-momentum tensor of the system of
particles by

S := S1 + S2.

We have proved

Proposition 4

For a system of two un-accelerated point particles, the mass-momentum
tensor is a DPT.

Of course, this is valid for an arbitrary finite system P1, . . . ,PN of
colliding point particles. Just form

S := S1 + · · ·+ SN .
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Criticism

The model of colliding point particles is not realistic in space dimension
d ≥ 2.

Actually, given an initial configuration of N particles (positions yj (0),
velocities vj (0)), there is no reason why two of them would collide at
some time : Generically, the vectors yj (0)− yi(0) and vj (0)− vi(0) are
not colinear and thus the particles Pi and Pj ignore each other.

This is why we must turn to a slightly more elaborate model, where
particles have the shape of a ball.
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Hard spheres dynamics

Consider N identical particles of mass m, whose shapes are balls of
radius a. Their “positions”yj (t) is actually that of their centers.

A collision between Pi and Pj happens when (see Figure 1.b)

|yj (t∗)− yi(t
∗)| = 2a.

Denoting again the velocities before/after the shock by vi , vj , v
′
i , v
′
j , we

have

(vj − vi) · (yj (t∗)−yi(t
∗)) ≤ 0, (v ′j − v ′i ) · (yj (t∗)−yi(t

∗)) ≥ 0. (3)

The conservation of momentum is still

v ′i + v ′j = vi + vj . (4)

With the “jump” notation [v ] = v ′ − v , this is [vj ] = −[vi ].
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Assume that the collisions are friction-less :

[vi ] ‖ yj (t∗)− yi(t
∗). (5)

Because of (4) and (3), we have

2[vi ] · (yj (t∗)− yi(t
∗)) = [vi − vj ] · (yj (t∗)− yi(t

∗)) ≤ 0,

and therefore [vi ] is colinear with yi(t
∗)− yj (t

∗), and points in the same
direction.

At last, the collisions are elastic : they conserve the kinetic energy

|v ′i |2 + |v ′j |2 = |vi |2 + |vj |2. (6)
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As in the simplified model, the conservation of energy does not serve in
the construction of the mass-momentum tensor, nor to verify its
divergence-freeness. But it is useful in proving that its entries are finite
measures.

For the moment, we content ourselves with the following consequence of
(6) : the total energy

E (t) :=
m

2

N∑
j=1

|vj |2 ≡ E0

is a constant.
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The mass-momentum tensor

The trajectory of one particle Pj is a broken line, with vertices at xj ,k for
k = 0, 1 . . .. By convention, xj ,0 = (0, yj (0)) is at initial time. Along the
segment γj ,k between xj ,k and xj ,k+1, the constant velocity is vj ,k . In
particular vj ,0 = vj (0).

The mass-momentum tensor of Pj is defined as before, by

S j = m
∑
k≥0

1√
1 + |vj ,k |2

(
1 vT

j ,k

vj ,k vj ,k ⊗ vj ,k

)
Lj ,k ,

with an obvious notation for the 1-dimensional Lebesgue measure.
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The naive attempt to define a mass-momentum tensor of the system is to
sum all the S j ’s.

However a flaw happens : this sum is not divergence-free.

The reason why Proposition 4 does not apply is that at a collision the
points yi(t

∗) and yj (t
∗) do not coincide ; they are instead separated by a

distance 2a. Therefore the contributions(
0

m[vi ]

)
δt∗,yi (t∗) and

(
0

m[vj ]

)
δt∗,yj (t∗) (7)

in the Divergence do not cancel each other.
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To recover the divergence-freeness, we add a corrector.

Consider the tensor

C =
1

|[vi ]|

(
0 0
0 m[vi ]⊗ [vi ]

)
L[x∗

i ,x
∗
j ], (8)

supported by the segment joining the centers of Pi and Pj at the time of
the collision.

Because of (5), and by Proposition 1, we have

DivC =

(
0

m[vi ]

)
(δx∗

j
− δx∗

i
),

where we have used the fact that [vi ] points towards y∗i . This
compensates exactly the contributions (7).
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In conclusion, we define the mass-momentum tensor of the whole hard
spheres system, as the sum of the following contributions :

for every particle Pj , its dedicated tensor S j ,

for every pairwise collision, the tensor defined in (8).

See Figure 1.b.

We thus have

Proposition 5

The mass-momentum tensor of a hard sphere system experiencing only
pairwise collisions is divergence-free.
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Interpretation

If we think that a mass-momentum tensor describes only the dynamics of
physical particles, then every contribution C as (8) must be interpreted
as some kind of particle, of a new type.

On the one hand, it is mass-less because its upper-left entry is 0. It travels
at infinite speed because it exists only at the time t∗ of the collision.

On the other hand, its role is to carry the exchange m[vi ] of momentum
between colliding particles.

We suggest to call this virtual particle a

Colliton.
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Higher-dimensional supports and mean curvature

More generally, we may consider tensors of the form

S = ΣLM

supported by a sub-manifold M of dimension p. Here LM denotes the
p-dimensional Lebesgue measure induced over M , and Σ : M → Sym+

n

is a reasonnably smooth density.

For a test vector-field φ ∈ D(Rn), we have

〈S , φ〉 =

∫
M

Σ(x )φ(x ) dLM .

An argument similar to that employed for curves (that is when p = 1)
tells us that S is Div-controlled if, and only if for every x ∈ M , the range
of Σ(x ) is contained in the tangent space ~TM x .
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The calculation of Div S , whose support is contained in the closure of M ,
might be complicated. We have however the following remarkable fact

Theorem 1

Let M be a smooth immersed submanifold of dimension p. For x ∈ M ,
let π(x ) be the orthogonal projector onto ~TM x .
The tensor

SM := πLM

is divergence-free if, and only if M is a minimal surface.

Remark that this π(x ) is symmetric, positive semi-definite with rank p.
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Proof (For hypersurfaces.)

If p = n − 1, then π(x ) = In − ~N (x )⊗ ~N (x ) where ~N (x ) is the unit
normal to M at x .

Since the Divergence is a local operator, it suffices to consider a small
piece of M , written as a graph over its tangent space. Up to a rotation,
we may suppose that M is locally represented as

xn = w(x̂n)

where w is smooth and w(0) = 0 and ∇w(0) = 0.

The projector is given by

π(x ) =
1

1 + |∇w |2

(
(1 + |∇w |2)In−1 −∇w ⊗∇w ∇w

∇w |∇w |2
)
.
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For a test function φ ∈ D(B), we denote ψ(x̂n) := φ(x̂n ,w(x̂n)) the
restriction of φ to M . Since the area element over M is

dLM =
√

1 + |∇w |2 dx̂n ,

we write

〈Div SM , φ〉 = −〈SM ,∇φ〉 = −
∫
Bn−1

π(x )∇φ(x )
√

1 + |∇w |2 dx̂n .

With ∇φ = (∇̂φ, ∂nφ), the chain rule gives ∇ψ = ∇̂φ+ ∂nφ∇w , whence

〈Div SM , φ〉 = −〈S ,∇φ〉 =

−
∫
Bn−1

dx̂n√
1 + |∇w |2

(
(1 + |∇w |2)∇̂φ− (∇w · ∇̂φ)∇w + ∂nφ∇w

∇w · ∇̂φ+ |∇w |2∂nφ

)
= −

∫
Bn−1

dx̂n√
1 + |∇w |2

(
(1 + |∇w |2)∇ψ − (∇w · ∇ψ)∇w

∇w · ∇ψ

)
.
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Integrating by parts, we get

〈Div SM , φ〉 =

∫
Bn−1

ψ~K dx̂n ,

where for instance

Kn = div
∇w√

1 + |∇w |2
,

is n − 1 times the mean curvature H .

Likewise, an elementary calculation gives

K̂n = ∇
√

1 + |∇w |2 −Div
∇w ⊗∇w√
1 + |∇w |2

= −Kn∇w .

Finally we have

〈Div SM , φ〉 = (n − 1)

∫
Bn−1

ψH

(
−∇w

1

)
dx̂n = (n − 1)

∫
M

φH ~N dLM .
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The proof above gives us a more general statement, which covers
arbitrary hypersurfaces. Taking care of the boundary terms in the
integration by parts, we can even write

Theorem 2

Let M be an immersed hypersurface in Rn , with smooth boundary γ.
Then the tensor SM defined in Theorem 1 satisfies

Div SM = (n − 1)H ~N LM − ~ν Lγ . (9)

Here above, H is the mean curvature, ~N is the unit normal to M , Lγ is
the (n − 2)-dimensional Lebesgue measure induced over γ and ~ν(x ) is
the outward unit vector tangent to M , normal to γ.
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Composite minimal surfaces

In soap bubble experiences, we observe minimal surfaces, though not only
that. There are often more (and possibly many more) than one such
surface. When they meet along lines, we see three of them, forming
angles of 120 degrees pairwise (Plateau’s laws).

This phenomenon is interpreted in terms of a DPT in the following way :
say that

M = M1 ∪M2 ∪M3

is the union of three hypersurfaces, whose boundaries have a common
component, an (n − 2)-dimensional submanifold γ.

Let us define the natural tensor associated with M ,

SM = SM1
+ SM2

+ SM3
.
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From Theorem 2, we have

Div SM = (n−1)
(
H1

~N1 L1 + H2
~N2 L2 + H3

~N3 L3

)
− (~ν1 +~ν2 +~ν3)Lγ ,

with obvious notations.
The tensor SM is therefore a local DPT if, and only if on the one hand
each Mj is a minimal surface (Hj ≡ 0), and on the other hand

~ν1 + ~ν2 + ~ν3 ≡ 0.

Since each ~νj is a unit vector, this exactly means that the hypersurfaces
form pairwise an angle of 120 degrees. See an illustration of Figure 2.

Mind that the calculation above tells nothing about the
self-intersections ; if the relative interiors of two sheets intersect, S is just
locally the sum SM1

+ SM2
of two local DPTs, hence is local DPT. See

an example in Figure 3.
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Fig. 2. At least 20 ternary lines bounding minimal sheets are visible here.
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Fig. 3. The Enneper minimal surface is self-intersecting, thus not immersed.
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Conclusion

In this lesson, we have seen that the theory of divergence-free positive
symmetric tensors relates to various domains. Besides gas dynamics,
which was considered in Lesson 6, we encounter two important topics in
differential geometry :

Minkowski’s problem,

minimal surfaces.

Finally it let us discovering a virtual particle at work in the collision
between hard spheres.

In the next lesson, we shall apply the improved Functional Inequality,
which involves the determinantal masses at central singularities, to the
hard spheres model. We shall derive new estimates about the collision set
for a finite collection of N particles in Rd .
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