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L. #7 - Singular tensors (1). Determinantal masses

Compensated Integrability says that for DPTs, or Div-controlled tensors,
(detS )

1
n ∈ L

n
n−1 . This would be a trivial statement if S itself belonged to

L
n

n−1 . We investigate below some of these tensors, which are not L
n

n−1

loc .

There are mainly two situations.

Part 1. DPTs that are homogeneous in x . The higher negative
degree 1− n displays a phenomenon of rigidity. This class
is central in Minkowski’s problem for convex bodies. We

find that (detS )
1

n−1 exhibits a Dirac singularity at the
origin, which we call determinantal mass.

Part 2. Other tensors are supported by submanifolds, or by unions
such as graphs. They are used in the analysis of particle
dynamics, and also serve in the characterization of
minimal surface.

Notations : B the unit ball of Rn . We denote r = |x | and e = x
r .
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Homogeneous tensors

Let us begin with a simple but fundamental example.

Special DPTs. Recall that if θ is convex, then S := D̂2θ is a DPT.
In the extreme case, a convex function is positively homogeneous of
degree 1. Typical example : a norm. Since a derivative lets the degree of
homogeneity drop by one unit, the Hessian is homogeneous of degree −1.
Then S is homogeneous of degree 1− n.

Notice that (recall dx = rn−1dr ds(e))

1

rn−1
∈ L1

loc but 6∈ L
n

n−1

loc ,

marginally.
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In addition, the Euler identity D2θe ≡ 0 (θ is linear along rays) implies
that S is proportional to e ⊗ e, because of the following (homework)

Lemma 1

If M ∈Mn(k) has rank n − 1, then M̂ is rank-one, with

ker M̂ = (kerM )⊥.

Thus

S =
λ(e)

rn−1
e ⊗ e (1)

for some non-negative measure λ over the unit sphere Sn−1. For instance
θ0(x ) ≡ |x | yields

S0 =
1

rn−1
e ⊗ e.

Two natural questions come immediately :

Conversely, given a tensor S of the form (1) for some measure
λ ≥ 0, is it divergence-free ?
Is it special ?
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The first answer is

Proposition 1

Let λ be a non-negative measure over Sn−1. Then the tensor

S =
λ(e)

rn−1
e ⊗ e

is Div-controlled, with

Div S = Vλδx=0, Vλ =

∫
Sn−1

e dλ(e).

In particular, S is a DPT if, and only if Vλ = 0.

Remark that if λ is even, then Vλ = 0 ; S is always a DPT in this case.
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Proof

Notice S = λS0 where S0 = 1
rn−1 e ⊗ e. Away from the origin, S0 is

smooth, divergence-free, thus

Div S = λDiv S0 + S0∇λ = S0∇λ = (∇λ · e)
e

rn−1
.

Since λ is homogeneous of degree 0, we have ∇λ · e ≡ 0 and we conclude
that S is divergence-free away from the origin. Eventually, we calculate

〈Div S , φ〉 = −〈S ,∇φ〉 = −
∫
B

S : ∇φ = −
∫
Bε

−
∫
B\Bε

,

where ε ∈ (0, 1) and φ ∈ D(B)n .

Consider the first integral :
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∫
Bε

S : ∇φ =

∫ ε

0

rn−1dr

∫
Sn−1

(e · ∇φ(re))e
dλ(e)

rn−1

=

∫ ε

0

dr

∫
Sn−1

(e · ∇φ(re))e dλ(e)

∼ ε

(∫
Sn−1

e ⊗ e dλ(e)

)
: ∇φ(0)

ε→0+−→ 0.

Because S is divergence-free away from the origin, we may apply Green’s
Formula to the second integral (the outward unit normal is −e) :

−
∫
B\Bε

S : ∇φ = −
∫
B\Bε

div (Sφ) =

∫
Sε

(Se) · φ

=

∫
Sn−1

φ(εe) · e dλ(e)
ε→0+−→ φ(0) ·Vλ.

Hence 〈Div S , φ〉 = φ(0) ·Vλ, that is Div S = Vλδx=0.
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Geometrical interpretation

Denote ∂θ the sub-differential. Its image is exactly the convex body
K = ∂θ(0), that is

K = {x ∈ Rn | x · e ≤ θ(e), ∀e ∈ Sn−1}.

The boundary Σ = ∂K is the image ∂θ(Rn \ {0}). The Gauß map

ν : Σ→ Sn−1 associates to a point x ∈ Σ the unit outward normal ~N to
Σ at x .

Lemma 2

The measure λ in S = r1−nλe ⊗ e is the push forward of the
(n − 1)-dimensional Hausdorff measure over Σ, by the Gauß map.

The identity ∫
Sn−1

e dλ(e) = 0 (2)

expresses that the centroid of λ is at the origin.
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Minkowski’s problem

It asks, given λ ∈M+(Sn−1) satisfying (2), whether there exists a
convex body K such that λ is the measure described above. This
amounts to finding a positively homogeneous potential θ, such that S

given by (1) equals D̂2θ.

In order that the solution correspond to a genuine convex body, it is
necessary that the support of λ is not contained in a sphere of smaller
dimension (non-degenerate case). But if we are interested in the analytic
part only (finding the potential θ), this hypothesis is not needed.

Minkowski’s problem amounts to solving a Monge–Ampère equation on
the unit sphere, whose data is λ and the unknown is θ.
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Eugenio Calabi said

From the geometric view point, the Minkowski problem is the
Rosetta Stone, from which several related problems can be
solved.

The solution of Minkowski’s problem is a long story, beginning with
Hermann Minkowski himself, when K is a polytope. It boosted the
modern theory of elliptic nonlinear PDEs, with major contributions by A.
Aleksandrov, L. Nirenberg and others. The final word was uttered by
Pogorelov 1.

1. A. V. Pogorelov. The Minkowski multidimensional problem. John Wiley & sons,
NY (1978).
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Translating the complete result in terms of DPTs, we have

Theorem 1

Let λ be a non-negative finite measure over Sn−1 such that Vλ = 0.
Then there exists a convex potential θ, positively homogeneous of degree

one, such that the special DPT S = D̂2θ equals

λ(e)

rn−1
e ⊗ e.

This potential is unique in the non-degenerate case, up to the addition of
an affine function.
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What does homogeneity of degree 1− n mean ?

A paradox : Consider a homogeneous potential as above, but one that
depends only upon x̂1 = (x2, . . . , xn). For example θ = ‖x̂1‖. Then not
only D2θe = 0, but also D2θ~e1 = 0. For x̂1 6= 0, the rank of D2θ is at
most n − 2, implying

S := D̂2θ = 0n .

Therefore S is supported by the first axis L1 := R~e1. But since θ is
translation-invariant, the same is true for S and we can write S = TLL1

,
where LL denotes the Lebesgue measure over a line L, and T ∈ Sym+

n

is a constant matrix. In the example above, we simply have

T ≡ ~e1 ⊗ ~e1.

How can S be homogeneous of degree 1− n, and
simultaneously constant in the x1-direction ?
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Explanation. For measures, and more generally for distributions, the
notion of homogeneity is defined by duality, via the same integral formula
that is valid for functions. For instance, one finds that δ0 is homogeneous
of degree −n ( !).

More generally

Proposition 2

The Lebesgue measure LE over a linear subspace E of codimension k is
positively homogeneous of degree −k .

Coming back to the case of special DPTs supported by a line, we see
that LL1 is homogeneous of degree 1− n. This reconciles the
homogeneity of S with the translation invariance in the x1-direction.
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To conclude with homogeneity, one may ask whether there exist DPTs
over B that are positively homogeneous with an arbitrary degree α.

α > 1− n. Yes. Just take the special DPT associated with a convex
homogeneous potential of degree 2 + α

n−1 > 1. There are
actually plenty of others example that are nor “special”.

α < 1− n. No : the only positively homogeneous DPT of degree
α < 1− n is S ≡ 0n .

α = 1− n. Rigidity : the only positively homogeneous DPTs of
degree 1− n are the special ones described above.
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Determinantal masses

An annoying fact. Let θ be a convex function, positively homogeneous
of degree 1, and S be the associated special DPT. Because S = λS0 is
rank-one away from the origin, and (detS )

1
n is absolutely continuous

(Comp. Int.), it is ≡ 0. A direct application of Thm 6 (Lesson #3) is
useless, as the Functional Inequality is trivial :∫

Ω

(detS )
1

n−1 dx =

∫
Ω

0 dx = 0 ≤ cn‖S ~N ‖
n

n−1

M !!

If instead θ is smooth (hence not homogeneous), then

(detS )
1

n−1 = det D2θ (3)

is the Jacobian of the one-to-one vector field ∇θ. The quantity∫
B

(detS )
1

n−1 dx = Vol(∇θ(B)), (4)

estimated by Compensated Integrability, is nothing the volume of the
image of B under ∇θ.
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Equality (4) sheds light on the nature of (detS )
1

n−1 when θ, instead of
being smooth, is not differentiable at the origin. Then ∇θ has to be
interpreted as the sub-gradient ∂θ. The Jacobian of ∇θ will be
understood as the pullback of the Lebesgue measure by ∂θ.

This means ∫
Bε

d det D2θ := Vol(∂θ(Bε)) = Vol(∂θ(0)).

This suggests to define det D2θ, hence (detS )
1

n−1 as the Dirac mass

Vol(∂θ(0))δx=0.
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Warning : This singular part of (detS )
1

n−1 does not come from the
singular part of S (the latter can be ≡ 0, if λ is absolutely continuous
over Sn−1).

We are led to the

Definition 1

Let S be a Div-controlled tensor over an open domain Ω ⊂ Rn .
For a ∈ Ω, let Z (a) be the set of convex functions θ, positively

homogeneous of degree one about a, such that D̂2θ ≤ S in a
neighbourhood of a.
Then the determinantal mass of S at a is the supremum of Vol(∂θ(a))
among those θ ∈ Z (a).
It is denoted

Dm(S ; a).
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Improved Functional Inequality

A natural question is whether FI is still valid when we incorporate the

determinantal masses to (detS )
1

n−1 .

Theorem 2

Let S be a Div-controlled tensor in an n-dimensional bounded open
domain Ω. Let (aj )j=0,... be a discrete (either finite or countable) subset
of Ω. Then the following generalized form of the Functional Inequality
holds true :∫

Ω
(detS )

1
n−1 dx +

∑
j

Dm(S ; aj ) (5)

≤ cn

(
‖Div S‖M(Ω) + ‖S ~N ‖M(∂Ω)

) n
n−1

.

Corollary 1

A Div-controlled tensor S carries at most countably many determinantal
masses.
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Proof (of the Theorem)

It is enough to consider the case of finitely many singularities. But since
the calculations below are local, we may assume only one singularity at
a ∈ Ω.

Let θ ∈ Z (a) and Br ⊂ Ω be a ball in which S ≥ D2θ. We decompose

S = T + D2θ in Br .

By assumption, T is a Div-controlled tensor in Br , where it satisfies
DivT = Div S .

Lemma 3

There exists a convex function θ′, which coincides with θ in Br \ Br/2

but is smooth at the origin.
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The modified potential satisfies∫
Br

det D2θ′dx = Vol(∇θ′(Br )) = Vol(∂θ(0)). (6)

We form the Div-controlled tensor S ′ = T + D2θ′. The formula defines
S ′ in Br , but since S ′ ≡ S in Br \ Br/2, we may concatenate with S in
Ω \ Br/2. Thus S ′ is defined in Ω.

Apply FI to S ′, using three facts : first of all, Div S ′ ≡ Div S , then
detS ′ ≥ (det D2θ′)n−1 in Br/2 and finally S ′ ≡ S away from Br/2 :

∫
Ω\Br/2

(detS )
1

n−1 dx +

∫
Br/2

det D2θ′

≤ cd

(
‖Div S‖M(Ω) + ‖S ~N ‖M(∂Ω)

) n
n−1

.

Then use (6), and take the supremum over θ ∈ Z (a).
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A curious example

Product of distributions. Recall that if Γ1,Γ2 are distributions, their
product Γ1Γ2 does not make sense in general, but it does whenever their
wave front sets are transversal to each other.
Transversality arises in the planar (n = 2) example where Γj is the
Lebesgue measure along a line Lj , and L1,L2 are generic. For instance

Lx1=0 · Lx2=0 = δx=0 (n = 2).

This generalizes to the n-dimensional case as follows. Consider the axes
L1, . . . ,Ln of the canonical basis and their Lebesgue measures
L1, . . . ,Ln . The tensor S = diag(L1, . . . ,Ln) is a DPT (∂jLj ≡ 0). It is
homogeneous of degree 1− n, hence a special one (rigidity). Its potential
θ(x ) = 1

2

∑n
j=1 |xj | yields the identity, in the light of Definition 1,

(L1 · · · Ln)
1

n−1 = δx=0 (!).
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Practical aspects

To exploit at best the improved FI, we need a precise knowledge of
Dm(S ; a).

Say that a = 0 and we know a lower barrier λ(e)
rn−1 e ⊗ e = D̂2θ of S .

How do we determine Vol(∂θ(0)) ?

There is no explicit formula in general because the knowledge of θ
requires the resolution of a Monge–Ampère equation over the unit sphere.

The next slides give tools in this directions.
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The two-dimensional case

When n = 2, Minkowski’s problem is solved explicitly, because the

correspondance S = D̂2θ ←→ θ is linear.

Parametrize S1 by the angle α ∈ R/2πZ. The compatibility condition
Vλ = 0 reads∫ 2π

0

cosα dλ(α) = 0,

∫ 2π

0

sinα dλ(α) = 0.

This is precisely the condition of solvability for the ODE

p +
d2p

dα2
= λ, p(α+ 2π) ≡ p(α).

The potential is given by (homework)

θ
(
reiα

)
= rp(α).
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The sub-differential at x = 0 is the domain enclosed by the curve

α 7→ ∇θ
(
eiα
)

=

(
p(α) cosα− p′(α) sinα

p(α) sinα+ p′(α) cosα

)
.

The determinantal mass is its area,

Dm(S ; 0) =
1

2

∫ 2π

0

θ,1dθ,2

=
1

2

∫ 2π

0

(p(α) cosα− p′(α) sinα)(p + p′′) cosα dα

=
1

2

∫ 2π

0

(p(α) cosα− p′(α) sinα) cosα dλ(α).

Let us denote

µ(α) :=

∫ α

0

cos s dλ(s).
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Integrating by parts,

Dm(S ; 0) =
1

2

∫ 2π

0

(p(α) cosα− p′(α) sinα)µ′(α) dα

= −1

2

∫ 2π

0

(p(α) cosα− p′(α) sinα)′µ(α) dα

=
1

2

∫ 2π

0

µ(α) sinα dλ(α)

=
1

2

∫ 2π

0

sinα dλ(α)

∫ α

0

cos s dλ(s).

A symmetrization of the formula above yields

Proposition 3 (n = 2.)

Dm(λS0; 0) =
1

8

∫ 2π

0

∫ 2π

0

sin |β − α| dλ(β) dλ(α). (7)
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Simplest non-trivial case (n = 2)

The following will be useful in applications. Suppose λ is the sum of three
Dirac masses

λ = aδX + bδY + cδZ , a, b, c ≥ 0 and X ,Y ,Z ∈ S1.

The condition that S = λS0 be a DPT writes

aX + bY + cZ = 0.

Then Formula (7) gives

Dm(S ; 0) =
1

4
|det(aX , bY )|. (8)

Remark that this expression is symmetric in the data, since for instance

det(cZ , aX ) = det(aX , aX + bY ) = det(aX , bY ).
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Block diagonal tensors

Since our applications occur in higher space dimension n ≥ 3, we need an
other tool.

Let us decompose Rn = Rp ⊕ Rq , with x = (x−, x+). If θ− (resp. θ+) is
a convex homogeneous potential over Rp (resp. Rq), we form

θ(x ) = θ−(x−) + θ+(x+). (9)

The corresponding special DPT D̂2θ is block-diagonal :

S =

(
S− ⊗ δx+=0 0

0 δx−=0 ⊗ S+

)
. (10)

Conversely every homogeneous DPT of the from (10) comes from a
potential such as in (9).
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Remark that S− and S+ are themselves DPTs in Rp and Rq ,
homogeneous of degree 1− p and 1− q , respectively.

The calculation trick is

Proposition 4

For a block-diagonal DPT, homogeneous of degree 1− n, we have

Dm(S ; 0) =
[
Dm(S−; 0)p−1Dm(S+; 0)q−1

] 1
n−1 .

This interprets, in a rigorous form, the equality

det

(
M 0
0 N

)
= detM · detN .

The formula remains valid when Rn splits as E ⊕⊥ F where dimE = p
and dimF = q , and S± are replaced by homogeneous special DPTs over
E and F , respectively. When the factors E and F are not orthogonal, the
formula remains the same, up to a constant multiplicative factor.
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Proof

Using D2θ = diag(D2θ−(x−),D2θ+(x+)) and the formula

det D2θ− = Vol(∂θ−(0))δx−=0,

we have

S− = Vol(∂θ+(0))D̂2θ− , S+ = Vol(∂θ−(0))D̂2θ+ .

From these expressions, we have

Dm(S−; 0) = Vol(∂θ+(0))
p

p−1 ·Vol(∂θ−(0))

Dm(S+; 0) = Vol(∂θ−(0))
q

q−1 ·Vol(∂θ+(0)).
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Eliminating between both formula, we obtain

Vol(∂θ+(0))n−1 = Dm(S+; 0)−(p−1)(q−1) ·Dm(S−; 0)p(q−1)

Vol(∂θ−(0))n−1 = Dm(S−; 0)−(p−1)(q−1) ·Dm(S+; 0)q(p−1)

Using the fact that ∂θ(0) = ∂θ−(0)× ∂θ+(0), thus

Vol(∂θ(0)) = Vol(∂θ−(0)) ·Vol(∂θ+(0)),

we obtain the announced formula.
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