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Lesson #8 - Hard spheres dynamics

This lesson is devoted to the study of a specific model : that of hard
spheres dynamics.

We exploit the DPT constructed in Lesson #7.2, a tensor supported by a
graph. We intend to apply the improved Functional Inequality (see
Theorem 2 of L#7.1).

We carry our analysis in the case of a large (1023 ?) but finite number N
of particles, evolving in the whole space Rd . The one-dimensional case is
somewhat trivial so we focus on the situation d ≥ 2.

The main result is that most of the collisions are grazing, or negligible, in
the sense that the transfer of momentum between both particles is very
small :

−→ . . .
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Theorem 1

Let N hard spheres evolve in the space Rd . Denote vj (t) the velocity of
the j -th particle. Let v be the standard deviation of the initial velocities
vj (0). Then we have

N∑
j=1

TV (t 7→ vj (t)) ≤ cdN
2v

for some universal constant cd .

The proof is enlightening in that it uses most of the tools at work with
Compensated Integrability :

−→ . . .
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the construction of a non-trivial DPT (done in L#7, Part 2),

its correction as a Div-controlled tensor,

the use of the Functional Inequality with determinantal masses (see
L#7, Part 1),

the optimisation of the inequality with respect to parameters,

a scaling argument.
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State of the art

Denote N the number of particles. In practice, this is a very large
number, something like the Avogadro number 6.02 · 1023.

The initial positions yj (0) and velocities vj (0) are given. If m is the mass
of an individual particle, we can define the total mass M = Nm and the
total energy, a constant of the motion :

E (t) :=

N∑
j=1

m

2
|vj (t)|2 ≡ E0 :=

N∑
j=1

m

2
|vj (0)|2.

The velocities remain constant between collisions, and the rules governing
pairwise collisions are simple ; see L#7.2.
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Well-posedness

At first glance, the dynamics seems to be well-posed. However, there
remains the possibility that a particle collides simultaneously with two
others, or that infinitely many collisions accumulate at some time t∗.

Such configurations do exist. In these situations, it is unclear how the
dynamics must be continued. The Cauchy problem is thus not always
well-posed.

This is not too much a worry however. In a Master thesis advised by O.
Landford, R. K. Alexander 1 proves that for generic initial data, these
pathologies do not happen and the dynamics is defined globally in time,
in a unique way.

1. R. K. Alexander. The infinite hard sphere system. M.S. thesis, University of
California at Berkeley (1975).
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Finiteness

In a famous talk 2 Ya. Sinai raised the question of whether the collision
set is finite. A positive answer was given by Vaserstein 3, whose work was
simplified by Illner 4. Their proofs argued by contradiction and thus did
not provide a bound of the number of collisions.

An explicit bound was found a decade later by Burago & all. 5, in the form

#{collisions} ≤ (32N 3/2)N
2

.

2. Ya. Sinai. Hyperbolic billiards. Proceedings of the International Congress of
Mathematicians, (Kyoto 1990), pp 249–260. Math. Soc. Japan, Tokyo (1991).

3. L. N. Vaserstein. On systems of particles with finite-range and/or repulsive
interaction. Commun. Math. Phys., 69 (1979), pp 31–56.

4. R. Illner. On the number of collisions in a hard sphere particle system in all space.
Transport Theory and Stat. Phys., 18 (1989), pp 71–86.

5. D. Burago, S. Ferleger, A. Kononenko. Uniform estimates on the number of
collisions in semi-dispersing billiards. Annals of Math., 147 (1998), pp 695–708.
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On the opposite side, Burdzy & Duarte 6 constructed an initial
configuration of N hard spheres for which the number of collisions is not
less than 1

27 N
3. This lower bound was soon improved by Burago &

Ivanov 7 in 2bN/2c.

Thus the collisions might be exponentially many, in terms of the number
of particles !

Theorem 1 shows that in this case, most of them display an exponentially
small jump [v ] of the velocity. It answers the following question raised in
B. & I.’s article :

It seems that, if the number of collisions is “large”, then the
overwhelming number of collisions are“inessential” in the sense
that they result in almost zero exchange of momenta, energy,
and directions of velocities of balls. We will think about it
tomorrow.

6. K. Burdzy, M. Duarte. A lower bound for the number of elastic collisions.
Commun. Math. Phys., 372 (2019), pp 679–711.

7. D. Burago, S. Ivanov. Examples of exponentially many collisions in a hard ball
system. ArXiv preprint, arXiv :1809.02800v1, 2018.
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The mass-momentum tensor

We assume d ≥ 2 (hence n ≥ 3) to avoid triviality. We assume a generic
initial data, for which the Cauchy problem is globally well-posed, with
only pairwise collisions.

Recall (see L#7.2) that the mass-momentum tensor S of the system is
the sum of the following contributions :

For each particle P , whose graph is γ : t 7→ Y (t) (velocity v = Ẏ ),
the tensor

1√
1 + |v |2

(
m mvT

mv mv ⊗ v

)
Lγ ,

where Lγ is the 1-dimensional Lebesgue measure. We recall that γ is
a broken line.

For every collision between particles (Pi ,Pj ), the colliton

1

|[vi ]|

(
0 0
0 m[vi ]⊗ [vi ]

)
L[x∗

i ,x
∗
j ],

where x∗i = (t∗, y∗i ) and y∗i is the position of the particle Pi at
collision time t∗ ; [vi ] = −[vj ] is the jump of the velocity.
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Notice that because of the conservation of energy, the velocities remain
uniformly bounded, and therefore the entries of S are finite measures on
every strip (0,T )× Rd . Since S is obviously symmetric and
non-negative, and we have shown (Prop 4, L#7.2) that it is
divergence-free, it is a DPT over these strips.
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Still, a flaw

Applying Compensated Integrability to S is useless. The mass-momentum
tensor S is not yet suitable for the following reasons.

On the one hand, the measure (detS )
1
n vanishes almost everywhere,

because S is of rank 0 or 1 ; apart for the nodes of the graph
(collision points x∗i ), but these are not charged by S . Thus the
contribution ∫ T

0

dt

∫
Rd

(detS )
1
d dy

is just zero.

On the other hand, the determinantal masses Dm(S ; x∗i ) (see
L#7.1, Definition 1) vanish too.
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To see the latter, remark that at a node x∗i , S is supported by three
coplanar segments, of respective directions

Vi =

(
1

vi

)
, V ′i =

(
1

v ′i

)
and V ′i −Vi =

(
0

v ′i − vi

)
. (1)

Therefore the potential 8 θ depends only upon two independent variables,
the coordinates in the plane spanned by Vi ,V

′
i . Thus the sub-gradient

∂θ(x∗i ) is a 2-dimensional convex set ; its n-dimensional volume vanishes
since n ≥ 3.

8. Defined in a ball containing only x∗
i and no other node. Recall that S = D̂2θ.
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Correctors

To overcome this flaw, we introduce a corrector K , supported in the
neighbourhoods of the nodes. Then we apply the Improved Functional
Inequality (Thm 2, L#7.1) to the sum S ′ := S + K .

Because the collisions in the strip (0,T )× Rd are finitely many, the
distance between two nodes is larger than some positive number 2ε > 0.
We may assume that there is no collision at times t = 0 and t = T , and
we choose ε smaller than the distance from the nodes to the top and
bottom boundaries of the strip.

To begin with, we construct individual correctors KX at nodes
X = (τ,Y ). Notations : vX /v

′
X the incoming/outgoing velocities,

VX =

(
1

vX

)
, V ′X =

(
1

v ′X

)
.

We choose an orthonormal basis (z3, . . . , zn) of the subspace
Span(VX ,V

′
X )⊥.
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Consider the segment σj = [X − εzj ,X + εzj ]. We define

KX = bX

n∑
j=3

zj ⊗ zj Lσj

where Lσ denotes as usual the 1-dimensional Lebesgue measure along σ.
The numbers bk > 0 are constants, to be chosen later. Each corrector is
obviously symmetric and positive semi-definite.

Because zj is parallel to σj , we know that each zj ⊗ zj Lσj
is

Div-controlled, with (see Prop. 1, L#7.2)

Div
(
zj ⊗ zj Lσj

)
= zj (δX−εzj − δX+εzj ).

We thus have
‖DivKX ‖M = 2(d − 1)bX .
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Determinantal masses

Denote K =
∑

KX the sum over all nodes in the strip. The tensor
S ′ = S +K is still supported by a graph. It differs from S in two aspects :

Gain. S ′ carries a non-trivial determinantal mass at each node
X .

Cost. S ′ is not divergence-free ; we have instead

‖Div S ′‖M = 2(d − 1)
∑

bX .

Let us calculate Dm(S ′;X ) at some node, with the same notations as
above. By construction, S ′ is locally block-diagonal according to the
splitting

Rn = Span(VX ,V
′
X )⊕⊥ Span(VX ,V

′
X )⊥.
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In the notations of Proposition 2 (Lesson #7.1), the blocks S±
correspond to restrictions of the components S and KX , respectively.
Their sizes are p = 2 and q = n − 2 = d − 1, hence Prop. 2 gives

Dm(S ′;X ) =
[
Dm(S−;X )Dm(S+;X )d−2

] 1
d .

The easy part is

Dm(S+;X ) = b
d−1
d−2

X

because S+ = KX is the sum of pairwise orthogonal 1-dimensional
Lebesgue measures, and T 7→ Dm(T ;X ) is homogeneous of degree m

m−1
in dimension m.
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The other contribution is calculated via Formula (7) of L#7.1. The roles
of aX , bY and cZ are played here by mVX ,−mV ′X and m(V ′X −VX ).
We have thus

Dm(S−;X ) =
m2

4
|det(VX ,V

′
X )|,

where the determinant has to be taken in the plane spanned by VX and
V ′X . An elementary calculation gives the formula

Dm(S−;X ) =
m2

4

√
det(vX , v ′X )2 + |v ′X − vX |2 ≥

m2

4
|v ′X − vX |. (2)

In conclusion,

Dm(S ′;X ) ≥ b
1− 1

d

X

(
m2

4
|v ′X − vX |

) 1
d

.
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Applying the Improved Functional Inequality

We are now in position to apply Theorem 2 of L#7.1 to S ′. Because
(detS ′)

1
n ≡ 0, it reduces to∑

nodesX

Dm(S ′;X ) ≤ bla-bla.

Here, we get

∑
nodes

b
1− 1

d

X

(
m2

4
|v ′X − vX |

) 1
d

≤ cd (‖S ′•0(t = 0)‖M + ‖S ′•0(t = T )‖M

+ ‖Div S ′‖M)
1+ 1

d .

We already know the value of the last term. For the two others, we
remark that on the top and bottom boundaries, we have S ′ = S .
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Thanks to Proposition 1 of L#7.2, we have

S•0(t = 0) = m

N∑
j=1

(
1

vj (0)

)
δyj (0),

and the like for S•0(t = T ). Because of the inequality√
1 + a2 ≤ 1 + a2

2 , we deduce

‖S•0(t = 0)‖M ≤ M + E0.

Thus IFI gives us

∑
X

b
1− 1

d

X aX ≤ cd

(
2(M + E0) + 2(d − 1)

∑
X

bX

)1+ 1
d

, (3)

where

aX :=

(
m2

4
|v ′X − vX |

) 1
d

.
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Scaling parameter (1)

So far, (3) is valid for every list of positive parameters bX . Let us

introduce auxiliary parameters, by replacing bX = λβ
d

d−1

X , where λ and
βX are positive. At first glance, this seems unnecessary noise, because we
have one more parameter... We rewrite (3) as

∑
X

βX aX ≤ c′dλ
1
d−1

(
M + E0 + λ(d − 1)

∑
X

β
d

d−1

X

)1+ 1
d

.

Let us choose the value balancing the contributions in the parenthesis :

λ = (M + E0)

(∑
X

β
d

d−1

X

)−1
,

obtaining

∑
X

βX aX ≤ c′′d (M + E0)
2
d

(∑
X

β
d

d−1

X

) d−1
d

= c′′d (M + E0)
2
d ‖~β‖

`
d

d−1
,

where ~β is the vector of components βX .
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Because `d is the dual space of `
d

d−1 , such an inequality tells us that

‖~a‖`d ≤ c′′d (M + E0)
2
d .

Rewriting in terms of the velocities, this gives the inequality

m2
∑
X

|[v ]| ≤ c′′′d (M + E0)2.

Remarking that the right-hand side does not depend upon the length of
the time interval (0,T ), we may take the supremum of the left-hand side
with respect to T . We obtain therefore

m2
N∑
j=1

TV (t 7→ vj (t)) ≤ c′′′d (M + E0)2. (4)
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Scaling parameter (2)

The above result is still inhomogeneous, physically speaking. This is
exactly the same situation as in Lesson #5.
If µ > 0, the scaling t̂ = µt , ŷ = y yields a motion in which the velocities
are v̂j = µvj . Applying (4) to this new configuration, we receive the
parametrized estimate

µm2
N∑
j=1

TV (t 7→ vj (t)) ≤ c′′′d (M + µ2E0)2.

By choosing µ2 = M /E0, we end up with

m2
N∑
j=1

TV (t 7→ vj (t)) ≤ 4c′′′d
√
M 3E0 ,

equivalently

N∑
j=1

TV (t 7→ vj (t)) ≤ 4c′′′d N
3
2

√
1

2

∑
j

|vj (0)|2 . (5)
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Centering

Our last observation is that (5) is still valid when replacing vj (t) by
vj (t)− v̄ for some constant vector v̄ . This amounts to choosing an
inertial moving frame. This does not modified the total variation in the
left-hand side, but the right-hand side is changed into

4c′′′d N
3
2

√
1

2

∑
j

|vj (0)− v̄ |2 .

We can minimize it by choosing for v̄ the mean velocity

v̄ :=
1

N

∑
j

vj (0).

This leads us to the conclusion

N∑
j=1

TV (t 7→ vj (t)) ≤ 4c′′′d N 2v, v :=

√
1

N

∑
j

|vj (0)− v̄ |2

where v is the standard deviation. This proves Theorem 1.
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Another estimate

We might use (2) in a different way,

Dm(S−;X ) =
m2

4

√
det(vX , v ′X )2 + |v ′X − vX |2 ≥

m2

4
|det(vX , v

′
X )|.

The same calculations yield an estimate of the sum of all the quantities
1
2 |det(vX , v

′
X )|, the areas of triangles whose vertices are 0, vX and v ′X .

Proposition 1

Denote Aj the area swept by the“curve” t 7→ vj (t). Then

N∑
j=1

Aj ≤ cdN
2wv

where cd is a universal constant, and w is the root mean square of the
velocity.
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