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- Leonetti Francesco, Dispense del corso di analisi superiore.
- Nirenberg Louis, Remarks on strongly elliptic partial di↵erential equations. Comm. Pure Appl. Math. 8

(1955), 649–675

TECHNICAL INFORMATION: Teams code: rqzb3yp PhD Courses - Mathematical Analysis - 2021/22

• (N1) Introduction to the Finite Element Method for Partial Di↵erential Equations:
Ra↵aele D’Ambrosio, UnivAQ (10 hours)

PROGRAM: This is and introductory course on FEM discretizations to selected partial di↵erential equations.
The idea is to proceed by classes of problems, identifying the most appropriate numerical solvers. This type
of approach is designed for PhD students involved in research areas where the numerical treatment of PDEs
is required. Tentative list of topics:

FEM for elliptic problems.
FEM for parabolic problems.
FEM for hyperbolic problems.
1D e 2D grid generation.
Spectral methods.
Discontinuous Galerkin.

TECHNICAL INFORMATION: Teams channel with code s32ahf6. Reference e-mail ra↵aele.dambrosio@univaq.it

• (Q1) Quantum Computing:
Leonardo Guidoni, UnivAQ + Expert from IBM (14 hours)

PROGRAM: See the attached file.

TECHNICAL INFORMATION: Teams channel with code aw13okq Reference e-mail leonardo.guidoni@univaq.it

• (P1) Combinatorial species, Graph generating functions and statistical mechanics:
Dimitrios Tsagkarogiannis UnivAQ (6 hours)
PROGRAM: See the attached file.

TECHNICAL INFORMATION: Teams channel xd7j0by Reference e-mail dimitrios.tsagkarogiannis@univaq.it

• (E1) Mathematical models for economic equilibria:
Massimiliano Giuli, UnivAQ (10 hours)

PROGRAM: See the attached file.

TECHNICAL INFORMATION: Teams channel -Mathematical models for economic equilibria- with code
ooye5vv Reference e-mail massimiliano.giuli@univaq.it

• (G1) Constant mean curvature hypersurfaces and critical points of the isoperimetric problem:
Mario Santilli, UnivAQ (10 hours)

PROGRAM: See the attached file

TECHNICAL INFORMATION: Lectures on webex, write to mario.santilli@univaq.it for information

• (V1) Variational methods in continuum mechanics:
Dell’Isola–Ciallella, UnivAQ (10 hours)

PROGRAM: 1. Principle of Virtual Work as a fundamental postulate for mechanics Second Gradient Con-
tinuum Mechanics. Hamilton Rayleigh Principle for dissipative systems 2. Generalisation of the concept of
Deformation and Stress: Necessary strong form for Equilibrium Conditions Essential and Natural Boundary
Conditions 3. Piola Transformations and contact interactions for Second Gradient Continua 4. Edge and
Surface contact interactions in second gradient continua: forces and double forces. Representation of contact
interactions in terms of stresses, double stresses and shape of Cauchy cuts Limitations of so called Cauchy
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Signed graphs, gain graphs and their spectral theory.
Matteo Cavaleri, Università degli studi Niccolò Cusano, Roma

Graphs are ubiquitous in many fields of mathematics. The same is true for their recent
generalizations, namely signed and gain graphs. First introduced to handle problems in
social psychology, signed graphs are graphs whose edges can be positive or negative. More
generally, gain graphs are graphs where each oriented edge is labeled by an element of a
group G in such a way that the opposite orientation corresponds to the group inverse of
the element.

Spectral graph theory is the study of these combinatorial objects, graphs, via linear
algebra. In fact, several complex matrices, most of which Hermitian, can be associated to
a graph. Some important properties of a graph can be detected by the real spectrum of the
corresponding matrix. The generalization of this theory to signed graphs is very natural,
since Hermitian matrices are naturally associated with a signed graph. Nevertheless
this generalization is far from being trivial, because on the one hand it reflects peculiar
properties of signed graphs, and on the other hand many questions are still open [3].

For general gain graphs a crucial obstruction to develop a spectral theory is that the
matrices that come out with a gain graph on an abstract group G are not complex
matrices, but group algebra valued matrices. A possible strategy is to use the group
representation theory to study the spectrum of a gain graph with respect to a unitary
representation π, via Fourier transforms. This way, many spectral results that hold for
graphs and signed graphs can be generalized to gain graphs.

The aim of this course is to discuss generalizations of graph theory, with a special focus
on spectral aspects, to signed and gain graphs. These generalizations will be presented
after introducing some basic notions and facts about (finite, simple) graphs.

In more detail:

• Preliminaries on graphs (4h)
– Basic notions, isomorphism, regularity, bipartiteness, subgraphs, walks, trees
and spanning trees, cycle basis, 2-cover.

– Adjacency matrix, Laplacian matrix, incidence matrix. Spectrum, fundamen-
tal theorems about spectrum (which combinatorial properties of the graph can
be deduced from the algebraic invariants of the graph matrix? ). Interlace the-
orem, Sach’s formula (pointers, [7]).

– Cospectrality (which combinatorial properties of the graph can not be deduced
from the algebraic invariants of the graph matrix? ), Godsil-McKay switching
[8].

– Line graphs: definition, relation with incidence matrices, spectrum. Whit-
ney isomorphism theorem (no proof), Beineke’s, Krausz’s, Rooij and Wilf’s
characterizations (Harary’s proof [11]).

• Signed Graphs (4h)
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– Basic notions and motivation (model of positive/negative interactions in a
network). Balance (Harary’s characterizations [10]). Cover graph, pointers
to voltage graphs [9].

– Adjacency matrix, spectrum. Switching equivalence and switching isomor-
phism [13]. Sign on a cycle basis. Spectral radius, sign-symmetric signed
graphs. Acharya’s spectral characterization of balance signed graphs.

– Cospectrality, generalization of Godsil-McKay switching for signed graphs [1].
Hints on Godsil-McKay switching for complex unit graphs [2].

– Signed line graphs according to Zaslavsky [14,15]. Spectrum. Anticipation of
the spectral characterization theorem for signed line graphs with underlying
graph that is a line graph [6].

• Gain Graphs (8h)
– Definition and basic notions. Balance, switching equivalence and switching
isomorphism, cover graph of a gain graph.

– Preliminaries on group algebra and group algebra valued matrices. Abstract
adjacency matrix of a gain graph and its properties. Characterization of
balance in terms of the trace of increasing powers of the abstract adjacency
matrix of a gain graph [4].

– Preliminaries on unitary representations π of a group G. Fourier transforms:
from group algebra to group algebra valued matrices. Application to the
computation of the spectrum of a G-block circulant matrix ([12], proof from
[4]).

– π-adjacency matrix and π-spectrum of a gain graph. Generalization of Acharya’s
spectral characterization to gain graphs [4, Th. 5.1]. Decomposition of the
spectrum of a cover graph (proof from [4]).

– Set of G-phases and their associated actions. Gain-line graph. π-spectrum of
a gain-line graph [5].

– Generalization of Beineke’s, Krausz’s, Rooij and Wilf’s characterizations to
gain-line graphs [6, Th. 3.2]. The special case of signed graphs, spectral
consequences.
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Mathematical models for economic equilibria (10 hours)

Massimiliano Giuli

In science the term “equilibrium” has been widely used in physics, chemistry, biology,

engineering and economics, among others, within di↵erent frameworks. It generally refers

to conditions or states of a system in which all competing influences are balanced.

For instance, the economic equilibrium which studies the dynamics of supply, demand,

and prices in an economy within several markets, can be modeled as a variational inequal-

ity problem. In non-cooperative game involving two or more players, Nash proposed an

equilibrium solution in which each player is assumed to know the equilibrium strategies of

the other players, and no player has anything to gain by changing only their own strategy.

This problem can be reformulated as a fixed point problem.

These mathematical models share an underlying common structure that allows to conve-

niently formulate them in a unique format of equilibrium. The course is devoted to describe

this format and it focuses on the main mathematical tools which are crucial for studying

the existence and the stability of the solutions.



Constant mean curvature hypersurfaces and critical points of

the isoperimetric problem

Mario Santilli

November 24, 2021

The aim of this course is to give a detailed overview on some classical and recent results in
the theory of constant mean curvature hypersurfaces. In this field a fundamental result is a
theorem of Alexandrov (1958), which asserts that a compact embedded smooth hypersurface
in the Euclidean (or hyperbolic) space with constant scalar mean curvature is a (geodesic)
sphere. This result was the starting point of a line of research that is still very active. In this
course, besides recalling the classical proof of Alexandrov based on the celebrated ”moving-
plane method”, we give a detailed overview of some of the most significant developments
and we explore the strong connections with the isoperimetric problem. In particular we aim
to treat the following topics:

1. Alexandrov theorem: the original proof in Rn and Hn(hyperbolic space) based on the
”moving-plane-method” (see [Ale58]),

2. Alexandrov theorem and its extensions to higher-order mean curvatures: the PDE-
approach of Ros (see [Ros87]) and the integral-geometric approach of Montiel-Ros
([MR91]),

3. Alexandrov theorem beyond the space forms: Brendle’s theorem in warped product
spaces (see [Bre13]),

4. Critical points of the isoperimetric problem: the Alexandrov theorem for sets of finite
perimeter (see [DM19] and [DRKS20]).

Number of hours: 10 (5 lectures)
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Combinatorial species, Graph generating functions and statistical mech-

anics

Lecturer

Dimitrios Tsagkarogiannis, University of L’Aquila,
email: dimitrios.tsagkarogiannis@univaq.it
https://www.disim.univaq.it/DimitriosTsagkarogiannis

Abstract

Informally, a combinatorial species F is a class of labelled discrete structures which is closed under isomorphisms
induced by relabelling along bijections (see [1]). To each species we can associate a generating function F (x) =P

n�0 wF

(n)x
n

n! , where w

F

(n) denotes the number of F - structures on the set [n] = {1, 2, . . . , n}. Moreover, combin-
atorial operations on species such as sum, product, composition and derivation, among others, have their analogues
on generating functions. Equipped with this structure we can revisit Mayer’s theory on non-ideal gases (see [2]) and
express the key thermodynamic quantities such as pressure, free energy, correlation functions in terms of generating
functions of various species (see [3]). Convergence of these series remains a key issue and we will study it using
Kruskal’s algorithm on graphs and Penrose’s tree-graph inequality (see [4] and [5]).

Schedule

1. Motivation: From partition function to graph generating functions

2. Mayer expansion: Combinatorial species, generating functions and related operations

3. Convergence: Kruskal’s algorithm and Penrose’s tree-graph inequality

4. Virial expansion: inversion using trees, Lagrange’s inversion theorem, dissymmetry theorem, generating func-
tion of two-connected graphs.
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PhD course in Mathematics and Models and PhD in Informatics 
 

Introduction to Quantum Computing 
 
Speakers: 
 Leonardo Guidoni (Univaq) 
   Hands on tutorial lead by Experts from IBM-Italia 
  
The present short course is a joint PhD course between the PhD in Mathematics 
and Models and the PhD in Informatics. The aim of the short course is to provide 
to students with background in mathematics and informatics the foundation of 
quantum computation. The course will consist of theoretical lectures as well as 
hands-on tutorial lead by the Quantum Computing experts from IBM-Italia.  
 
Topics: General overview on quantum computation. Introduction to Quantum 
Mechanics and Qubits. Quantum circuits and algorithms. Single and double Qubit 
gates with examples. Present and future applications. Perspective of quantum 
computation and practical implementation of algorithms on the IBM-Q quantum 
computer and simulator.  
 
14 hours: 
8 hours of lectures + 6 hours of computer lab hands-on tutorial 
 
January 20th 11-13 
January 26th 11-13 
February 3rd 11-13 
February 9th 11-13 
Februart 18th 11-13 
February 23rd 11-13 + 15-17 
 
Classroom: Aula 0.6 (Coppito 1) 
Microsoft Teams Code: aw13okq 
 
 



TITOLO DEL CORSO: Perturbation Methods for the Stability Analysis of Dynamical Systems  

DOCENTE: P.h.D. Simona Di Nino 

DURATA: 8 ore 

ABSTRACT: The course introduces the basics of the perturbation analysis for weakly nonlinear 
dynamical systems, with special reference to the multiple scale method for ordinary differential systems. 
The following topics are addressed: eigenvalue and eigenvector sensitivity analysis; initial value 
problems: straightforward expansions; the multiple scale method: basic aspects and advanced topics; 
Duffing oscillator under external excitation: primary, super-harmonic and sub-harmonic resonances; 
Duffing oscillator under parametric excitation; multi-d.o.f. quasi-Hamiltonian systems under 
external/parametric/internal resonances. 

 


