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Abstract. Stochastic monotonicity is a well known partial order rela-
tion between probability measures defined on the same partially ordered
set. Strassen Theorem establishes equivalence between stochastic mono-
tonicity and the existence of a coupling compatible with respect to the
partial order. We consider the case of a countable set and introduce the
class of finitely decomposable flows on a directed acyclic graph associ-
ated to the partial order. We show that a probability measure stochas-
tically dominates another probability measure if and only if there exists
a finitely decomposable flow having divergence given by the difference
of the two measures. We illustrate the result with some examples.

1 Introduction

Given a partially ordered set (from now on, poset) V there is a naturally
induced partial order relation on the set of probability measures on V , usu-
ally called stochastic monotonicity. Given two probability measures µ1, µ2,
we say that µ2 stochastically dominates µ1, and write µ1 � µ2, if the expec-
tation of any bounded increasing function with respect to the measure µ1 is
less or equal than the expectation with respect to µ2.

Strassen Theorem [9,10,18] is an important and powerful result in Prob-
ability Theory. In the case of a countable set V claims that µ2 stochastically
dominates µ1 if and only if there exists a coupling between the two measures
that gives zero weight to pairs of elements not increasingly ordered.

We consider the case of a countable poset V and show a new equivalent
statement for stochastic domination, based on a graph structure associated
to V . Indeed, the partial order structure of a countable poset can be de-
scribed in terms of an acyclic directed graph (V,E). On such a graph, it is
possible to define a flow, which is an assignment of a positive weight, repre-
senting the amount of mass flown, to each directed edge. The divergence of
the flow on a vertex is defined as the difference between the amount of mass
flown outside and the amount of mass flown into the vertex. We will de-
fine the class of finitely decomposable flows on (V,E), i.e., flows that can be
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decomposed as a summable superposition of ”elementary flows” associated
to finite self avoiding paths on the graph (see section 2 for the definition),
and we will prove that µ2 stochastically dominates µ1 if and only if there
exists a finitely decomposable flow having as divergence the difference be-
tween the two measures. This statement may be reformulated intuitively by
saying that one measure stochastically dominates another one when it is
possible to transform this second measure into the first one by moving mass
according to the partial order structure. We emphasize that with this new
formulation stochastic domination is shown to be equivalent to the existence
of a flow on a directed graph encoding all the information about the partial
order. This allows to connect directly monotonicity results to the geometry
of the underlying partial order. In particular, in section 5 we will discuss
a dual problem for which the homological structure of the directed graph
turns out to be a relevant characteristic. The motivation of the title is the
following. In fluid theory the Lagrangian description follows the trajectories
of the particles while the Eulerian one observes the local flow. A coupling
gives a Lagrangian description of the transference plan of mass while a flow
gives an Eulerian one.

We have therefore the 3 equivalent statements: (1) µ1 � µ2; (2) there
exists a finite decomposable flow having divergence µ1−µ2: (3) there exists
a compatible coupling. The content of Strassen Theorem is that (1) ⇔ (3).
We show how to prove all the remaining implications. We present all the
proofs since they are interesting in themselves and reflect the geometric
structure behind. In particular it is interesting to note that the proof of the
implication (2)⇒ (3) is constructive. The following mathematical structures
are involved in the proofs.

To prove the two implications of (1) ⇔ (2) we use Farkas Lemma [16]
and a suitable infinite dimensional version of such Lemma. To prove the two
implications (2) ⇔ (3) we use ideas from the theory of mass transportation
[14,15] where an equivalence with a continuous problem of flows also appears
[2,15]. In particular we give a constructive proof obtained by an algorithmic
construction that associates a coupling to any finite acyclic flow [13] and is a
discrete version of a construction due to S.K. Smirnov on bounded domains
of Rn [17]. By a limiting argument we extend this result to the class of
finitely decomposable flows.

There is a kind of hierarchical structure between the statements (1), (2)
and (3) and the proof of any implication (i)⇒ (j) require a difficult argument
when i < j while a simple construction is enough when i > j. The proof of
the equivalence between statements (1), (2) and (3) can be obtained by one
of the two cycles of implications : (1) ⇒ (3) ⇒ (2) ⇒ (1) or (1) ⇒ (2) ⇒
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(3) ⇒ (1).
Our result is similar in spirit to the equivalence between the Monge-

Kantorovich problem with cost |x − y| and a minimal flow problem pro-
posed by Beckmann [2]. This equivalence in illustrated in Chapter 4 of [15].
The reason of this equivalence is in the fact that the cost in the Monge-
Kantorovich problem does not depend on the details of the transference
plan but only on the flow of mass locally observed. The same happens for
stochastic order. In particular our result is the counterpart for stochastic
monotonicity of Theorem 4.6 in [15] for mass transportation.

In the finite case the partial order structure can be encoded by a minimal
directed acyclic graph called Hasse diagram. The result in the finite case is
implicit in [8] where it is proved using the theory of convex games. There are
also similar ideas and statements in [12] (and references therein) obtained
by duality. A clear formulation in terms of a flow on network problem is
however missing and moreover we extend the result to the countable infinite
case. Item (v) of Theorem 1 of [11] can be seen as a very special case of our
formulation.

At the beginning of section 2 we give a more detailed overview of the basic
ideas and constructions behind our results. In section 5 we discuss some
examples. Even if the examples are simple they are important to point out
the change of perspective with respect to the usual approach. The proofs of
monotonicity are indeed obtained with computations that are different from
the usual ones.

The structure of the paper is the following.
In section 2 we fix notation and state the main result of the paper. In section
3 we prove our main Theorem 2.1. In section 4 we prove some auxiliary
Propositions 2.2 and 2.3. In section 5 we discuss some examples.

2 Preliminaries, notation and main results

In this section we discuss the general framework, introduce notation and
state our main results. We start with a short introductive illustration of our
results. We discuss informally the intuitive idea and the novelty with respect
to the classic statement.

2.1 Preliminaries

We start recalling again the Strassen Theorem (see for example Section 1
of Chapter IV of [10]). It says that the statements (1) µ1 � µ2, and (3)
there exists a compatible coupling (see Section 2.3 for a precise definition)
ρ between µ1 and µ2, are indeed equivalent.
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A coupling ρ determines a transportation of mass according to which the
initial distribution of mass µ1 is transformed into the final distribution of
mass µ2. The value ρ(x, y) fix the amount of mass that has to be moved from
site x to site y. Another possible description of the transportation is obtained
looking at the channels through which the mass can flow and recording the
amount of mass flown, without taking care of origin and destination. This
is obtained giving a flow Q for which Q(x, x′) is the amount of mass flown
across the channel (x, x′). This second description is less detailed since you
have not a complete view of the transference plan and several couplings
can correspond to the same flow. These two perspectives are similar to the
Lagrangian and the Eulerian point of view in fluid theory.

In the case of a countable partial order the channels are naturally indi-
viduated by the edges of an acyclic directed graph (V,E) determining the
partial order. For a flow on a graph there is a natural definition of discrete
divergence. If initially we have a distribution of mass µ1 and we let flow
mass according to a flow such that divQ = µ1 − µ2 at the end we obtain
the distribution of mass µ2. Note that the existence of a flow satisfying
divQ = µ1−µ2 is not obvious since the edges of the graph are oriented and
the mass can flow only in one direction. We can formulate now a natural
statement: (2) there exists a flow on a directed acyclic graph determining
the partial order such that divQ = µ1 − µ2. The main result of this paper
is that the statements (1), (2) and (3) are all equivalent.

To prove that µ1 � µ2 we can then use the statement (3) constructing a
compatible coupling. This is a collection of |V | × |V | numbers with 2|V |+ 1
constraints. We can however also use statement (2) exhibiting a flow on
(V,E) such that divQ = µ1 − µ2. This is a simpler object determined by a
collection of |E| numbers with |V | constraints.

2.2 Digraphs and posets

We consider a countable set V . A directed graph, called shortly a digraph,
with vertices set V is a pair (V,E) where E ⊂ V ×V is a collection of directed
edges. We assume that there are not edges of the type (x, x). A directed path
γ from x ∈ V to y ∈ V is a sequence of vertices γ := (x0, . . . , xn) such that
x0 = x, xn = y and (xi, xi+1) ∈ E, for i = 0, . . . , n− 1. The integer n is the
length of the directed path and is denoted also by |γ|. If there exists an i
such that (u, v) = (xi, xi+1) we write (u, v) ∈ γ. Given a subset S ⊆ V , if
xi ∈ S for any i we write γ ⊆ S. We call γ− := x0 the starting point of the
path and γ+ := xn its final point. A directed cycle is a directed path for
which x0 = xn. Given two paths γ = (x0, . . . , xn) and γ′ = (x′0, . . . , x

′
k) such
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that xn = x′0 we denote by

γ ? γ′ := (x0, . . . , xn, x
′
1, . . . , x

′
k) , (2.1)

the path given by their concatenation. A path is called self-avoiding if xi 6= xj
when i 6= j. A digraph containing no directed cycles is called a directed
acyclic graph. Given a digraph (V,E) we call (V, E) the un-directed graph
with edges

E := {{x, y} : (x, y) ∈ E or (y, x) ∈ E} .
Given a digraph (V,E) we can construct a new digraph (V,E) called its

transitive closure. A pair (x, y) ∈ E if and only if there exists a directed
path form x to y. When |V | < +∞ and (V,E) is an acyclic digraph we can
define also a new directed acyclic graph (V,E) that is called its transitive
reduction: it is the minimal acyclic digraph having the same transitive clo-
sure as (V,E), i.e., such that for any digraph (V, F ) with (V,E) = (V, F ) we
have E ⊆ F . When the original digraph (V,E) is acyclic and |V | < +∞, it
can be shown that (V,E) is uniquely determined (see [1] section 4.3).

A partial order relation ≤ on V is a subset S ⊆ V × V satisfying the
properties of reflexivity, antisymmetry and transitivity. When (x, y) ∈ S we
write x ≤ y and the pair (V,≤) is called a partially ordered set or simply a
poset. Then, as can be easily checked, if we set E = S \ {(x, x);x ∈ V }, the
pair (V,E) gives an acyclic digraph whose transitive closure coincides with
itself. On the other hand, any acyclic digraph (V,E) induces a partial order
on V through the relation x ≤ y ⇔ x = y or (x, y) ∈ E. So, a poset can
be described with an acyclic digraph.

Note that such a description is not unique, since different digraphs can
have the same transitive closure. However, when V is finite, it is uniquely
identified as the transitive reduction (V,E) and it is called the Hasse dia-
gram of the poset.
When |V | = +∞, it is not always possible to define the transitive reduction
(think, as an example, to the set of rationals); nevertheless, any acyclic di-
graph has a well defined transitive closure and consequently it determines a
partial order on V . Any countable infinite poset can be described in terms
of an acyclic digraph.

2.3 Couplings and flows

Let µ1 and µ2 be two probability measures on a poset (V,≤).
A coupling between µ1 and µ2 is a probability measure ρ on V × V such
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that { ∑
y∈V ρ(x, y) = µ1(x) , ∀x ∈ V ,∑
x∈V ρ(x, y) = µ2(y) , ∀y ∈ V .

We say that a coupling ρ is compatible with the partial order ≤ if

ρ{(x, y) : x ≤ y} = 1 .

We say that µ2 stochastically dominates µ1 with respect to the partial order
≤ and write µ1 � µ2 if, for any bounded increasing function f : V −→ R
(i.e., a function such that f(x) ≤ f(y) whenever x ≤ y in V ) we have

µ1(f) ≤ µ2(f)

where µ(f) = Eµ(f) denotes expectation with respect to µ.

Let (V,E) be a digraph.
A flow on (V,E) is a map Q : E → R+. The divergence of Q at x ∈ V is
defined by

divQ(x) :=
∑

y:(x,y)∈E

Q(x, y)−
∑

y:(y,x)∈E

Q(y, x) . (2.2)

When |V | = +∞ the divergence is not always well defined. In this case we
say that the divergence of a flow Q exists and is given by (2.2) if both series
appearing in the r.h.s. of (2.2) are convergent for any x ∈ V .
We denote by E(Q) the elements (x, y) ∈ E such that Q(x, y) > 0. We say
that a flow is acyclic if the digraph (V,E(Q)) is acyclic. Given a directed
path γ = (x0, . . . , xn) on (V,E), we associate to it the flow Qγ defined by

Qγ(x, y) :=

{
1 if (x, y) ∈ γ ,
0 otherwise .

(2.3)

On the set of flows on a fixed digraph there is a natural partial order struc-
ture defined by Q ≤ Q′ if Q(x, y) ≤ Q′(x, y) for any (x, y) ∈ E.

2.4 Finitely decomposable flows

We say that a flow Q on the digraph (V,E) is finitely decomposable if there
exists a countable family of finite self avoiding directed paths {γn}n∈N and
a sequence {qn}n∈N of weights qn ≥ 0 with

∑
n qn < +∞, such that

Q =
∑
n

qnQγn . (2.4)
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Note that in an acyclic digraph any path is self avoiding. If |V | < +∞ then
any flow is finitely decomposable since we have for example

Q =
∑

(x,y)∈E

Q(x, y)Q(x,y) .

A finitely decomposable flow is not necessarily summable since we have∑
(x,y)∈E

Q(x, y) =
∑
n

qn|γn| (2.5)

and the r.h.s. of (2.5) can be infinite. Note that a finite decomposition (2.4)
of a finitely decomposable flow induces naturally a finite measure on Γ, the
countable set of all finite self-avoiding paths on (V,E). This is simply∑

n

qnδγn , (2.6)

where δ is the delta Dirac measure.
Since the paths in (2.4) are self avoiding, every single path γn may contribute
just once to the outgoing or ingoing flux at a single site. This implies that
the divergence of a finitely decomposable flow is well defined and it is given
by

divQ(x) =
∑

{n : γ−n =x}
qn −

∑
{n : γ+n =x}

qn . (2.7)

2.5 A third equivalent statement in Strassen Theorem

Our main result is the following.

Theorem 2.1 Let (V,≤) be a countable partial order and let (V,E) be a di-
rected acyclic graph such that its transitive closure (V,E) induces the partial
order ≤. The following statements are equivalent.

1. µ1 � µ2 ,
2. there exists a finitely decomposable flow Q on (V,E) such that

divQ = µ1 − µ2 .
3. there exists a compatible coupling between µ1 and µ2 .

We recall that Strasseen Theorem states the equivalence between stochas-
tic domination µ1 � µ2 and the existence of a compatible coupling between
µ1 and µ2. Statement (2) shows that finding such a coupling is equivalent
to solve a flow on network problem.
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If V is finite then any flow is finitely decomposable and moreover the
digraph (V,E) can be conveniently fixed as the Hasse diagram (V,E) of the
poset.

In general it is not easy to verify if a flow Q is finitely decomposable, so
we state a sufficient and a necessary condition.
Let (V,E) be an infinite digraph. An invading sequence of vertices {Vn}n∈N
is a sequence of subsets Vn ⊆ V such that |Vn| < +∞, Vn ⊆ Vn+1 and
∪nVn = V . Given a flowQ we say that it has zero flux towards infinity (see [3]
for the original definition and related results) if there exists an invading
sequence of vertices such that

lim
n→+∞

 ∑
x∈Vn,y 6∈Vn

Q(x, y)

 = 0 .

We have the following sufficient condition.

Proposition 2.2 Let Q be a flow on an infinite acyclic digraph (V,E) such
that divQ = µ1 − µ2. If Q has zero flux towards infinity, then it is finitely
decomposable.

Next proposition gives a necessary condition.

Proposition 2.3 Let Q be a flow on an infinite digraph (V,E). If Q is
finitely decomposable then for all invading sequences

lim
n→+∞

sup
{
Q(x, y) : {x, y} ∩ {V \ Vn} 6= ∅

}
= 0 . (2.8)

Propositions 2.2 and 2.3 are proved in Section 4.

3 Proof of Theorem 2.1

We discuss the proofs of all the implications apart (1) ⇔ (3) that is the
content of the classic Strassen Theorem. The proofs of our Theorem can be
obtained using one of the two cycles of implications : (1)⇒ (3)⇒ (2)⇒ (1)
or (1)⇒ (2)⇒ (3)⇒ (1). We give the proofs of all the implications since they
are interesting in themselves and give insight to the geometric structures
involved. Remarkably the proof (2) ⇒ (3) is constructive, uses ideas from
mass transportation theory and shows how to construct a coupling starting
from an acyclic finite decomposable flow.

We discuss before the arguments needed to prove the Theorem in the
finite case |V | < +∞ and then show how to extend them to the infinite
countable case.
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3.1 The finite case

In this Section we consider the case |V | < +∞.

3.1.1 (2) ⇒ (1) Let Q be a finite flow such that divQ = µ1−µ2. Then by
a discrete integration by parts we have

µ2(f)− µ1(f) = −
∑
x∈V

f(x) divQ(x) =
∑

(x,y)∈E

Q(x, y) (f(y)− f(x)) ≥ 0 ,

for any increasing function f .

3.1.2 (1) ⇒ (2) Farkas Lemma (see [16] volume A section 5.4) states that,
given an n × m matrix A and b ∈ Rn, there exists x ∈ (R+)m such that
Ax = b if and only if for any y ∈ Rn such that AT y ∈ (R+)m the inequality
y·b ≥ 0 holds (where · denotes the Euclidean scalar product). Let us consider

the adjacency matrix A of (V,E). It is a |V | × |E| matrix whose rows and
columns are labeled respectively with the vertices of V and the edges of E
and it is defined by fixing equal to +1 the element corresponding to the row
x and the column (x, y), and by fixing equal to −1 the element corresponding
to the row y and the column (x, y). All the remaining elements in the column
(x, y) are set equal to 0. With this definition, given a flow Q we have

divQ(x) = AQ(x) .

Moreover given a function f : V → R we have that

−AT f(x, y) = f(y)− f(x) .

The function f is increasing if and only if AT f(x, y) ≤ 0 for any (x, y) ∈ E.
The result now follows applying Farkas Lemma with the matrix A coinciding
with the adjacency matrix and taking the vector b = µ1 − µ2.

3.1.3 (3)⇒ (2) Suppose that there exists a compatible coupling ρ between
µ1 and µ2. If x ≤ y and x 6= y there exists at least one directed path in (V,E)
going from x to y. Fix one of them arbitrarily and call it γ(x,y). Recalling
definition (2.3), we construct the flow

Q :=
∑

{x,y∈V :x 6=y}

ρ(x, y)Qγ(x,y) . (3.1)
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This flow is finitely decomposable by definition and it satisfies divQ =
µ1−µ2. Indeed, using (2.7), the fact that ρ is a compatible coupling between
µ1 and µ2 and the fixed paths, we have

divQ(x) =
∑

γ : γ−=x

ρ(γ−, γ+)−
∑

γ : γ+=x

ρ(γ−, γ+) (3.2)

=
∑
y :x≤y

ρ(x, y)−
∑
y : y≤x

ρ(y, x) = µ1(x)− µ2(x) . (3.3)

3.1.4 (2) ⇒ (3) Let Q be a flow on a finite acyclic digraph (V,E) such
that divQ = µ1− µ2. In order to generate a compatible coupling ρ between
µ1 and µ2, we use a variation of the algorithmic construction in [13] that
is a discrete version of the original decomposition due to S.K. Smirnov on
bounded domains of Rn [17] and associates a coupling to a finite acyclic
flow.
Define V− := {x ∈ V : µ1(x) > µ2(x)} and V+ := {x ∈ V : µ2(x) > µ1(x)}.
First of all we show that it is possible to decompose the flow like

Q =
∑
n

qnQγn (3.4)

where the paths γn are such that γ−n ∈ V− and γ+
n ∈ V+ for any n. Consider

any finite decomposition of Q and suppose that for example there exists a
site x ∈ V− and a m such that γ+

m = x (the other cases can be handled
similarly). Since by definition µ1(x) > µ2(x) there exist necessarily some
paths {γn}n∈N of the decomposition such that γ−n = x for any n ∈ N and
moreover

∑
n∈N qn > qm. We can then find some weights {q′n}n∈N such

that
∑

n∈N q
′
n = qm and q′n ≤ qn. With these weights we construct the new

decomposition∑
n∈N

[
q′nQγm?γn + (qn − q′n)Qγn

]
+

∑
n6∈N∪m

qnQγn . (3.5)

Since (V,E) is acyclic the paths obtained by concatenation are still self
avoiding. Performing a finite number of times a procedure of this type the
final decomposition will have the required property.

Consider now a decomposition such that γ−n ∈ V− and γ+
n ∈ V+ for any

n. This condition immediately implies that∑
{n : γ−n =x}

qn = µ1(x)− µ2(x) , x ∈ V− . (3.6)
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By (2.7) we get∑
n

qn =
∑
x∈V−

∑
{n : γ−n =x}

qn =
∑
x∈V−

[
µ1(x)− µ2(x)

]
=

1

2

∑
x

|µ1(x)− µ2(x)| .

(3.7)
In particular we deduce that the l.h.s. of (3.7) is smaller or equal than 1.

Using this special decomposition we can construct the coupling. We define

ρ(x, y) :=

{
min {µ1(x), µ2(x)} if x = y ,∑
{n : γ−n =x ,γ+n =y} qn if x 6= y . (3.8)

Using (3.6) and the analogous formula for V+ it is easy to verify that ρ
defined in (3.8) is a coupling between µ1 and µ2. This coupling is clearly
compatible since if there exists a γn such that γ−n = x and γ+

n = y then
necessarily x ≤ y. This completes the proof.

Note that for the coupling given above we have∑
x 6=y

ρ(x, y) =
∑
n

qn =
1

2

∑
x

|µ1(x)− µ2(x)| , (3.9)

so that any coupling constructed in this way is an optimal one.

3.2 The infinite case

In this Section we extend the proof to the infinite case.

3.2.1 (2) ⇒ (1) Let Q be a finitely decomposable flow such that divQ =
µ1 − µ2. Then, recalling (2.7) and using the summability of the weights qn,
we have for any increasing function f ∈ L∞(V )

µ2(f)− µ1(f) = −
∑
x∈V

f(x) divQ(x) =
∑
n

qn
(
f
(
γ+
n

)
− f

(
γ−n
))
≥ 0 .

3.2.2 (1) ⇒ (2) We start with a preliminary result. Let D ⊆ L1(V ) be
the subset of functions that can be obtained as divergence of a finitely de-
composable flow. The subset D is clearly convex and we have the following
result.

Lemma 3.1 The subset D is closed in L1(V ).

Proof: Let {f (n)}n ⊂ D be a sequence which converges to f in L1(V ).
Since f (n) ∈ D then there exists a sequence of finitely decomposable flows



12 Gabrielli and Minelli

Q(n) such that divQ(n) = f (n). We need to show that there exists a finitely
decomposable flow Q such that divQ = f . Let us write the finite decom-

position of Q(n) as Q(n) =
∑

k q
(n)
k Q

γ
(n)
k

. Consider εn a sequence of positive

numbers converging to 0 when n→ +∞. Fix k∗n as the minimal integer such

that
∑

k>k∗n
q

(n)
k ≤ εn and consider the finite flows Q̃(n) :=

∑
k≤k∗n q

(n)
k Q

γ
(n)
k

.

Let us call also f̃ (n) := div Q̃(n). By construction, using (2.7), we have∑
x |f̃ (n)(x) − f (n)(x)| ≤ 2εn so that f̃ (n) also converges to f in L1(V ).

Let W
(n)
− := {x ∈ V : f̃ (n)(x) > 0} and W

(n)
+ := {x ∈ V : f̃ (n)(x) <

0}. Since Q̃(n) are finite flows we can construct finite decompositions like

in Section 3.1.4 such that each path γ̃
(n)
k of the decompositions satisfies

γ̃
(n),−
k ∈ W

(n)
− and γ̃

(n),+
k ∈ W

(n)
+ . Let q̃

(n)
k be the corresponding weigths.

We fix, arbitrary and once for all, for any pair of different vertices x ≤ y
one path γx,y going from x to y. The final flows that we construct are

Q̂(n) :=
∑

k q̃
(n)
k Qγ

γ̃
(n),−
k

,γ̃
(n),+
k

. Clearly we have div Q̂(n) = div Q̃(n) = f̃ (n).

By (2.6) (using the suitable weights and paths), the sequence of flows{
Q̂(n)

}
n∈N

induces a sequence
{
M (n)

}
n∈N of finite measures on the set Γ

of finite self avoiding paths. Let us show that this sequence is tight and
{M (n)(Γ)}n is uniformly bounded, so that Prohorov theorem applies. Since

the paths of the decomposition exit from vertices in W
(n)
− and end in vertices

in W
(n)
+ , for each n, we have that relation (3.7) holds and consequently we

have ∑
γ

M (n)(γ) =
∑
k

q̃
(n)
k =

1

2

∑
x

∣∣∣f̃ (n)(x)
∣∣∣ . (3.10)

Since {f̃ (n)} converges to f in L1(V ), we have that the r.h.s. of (3.10)
converges to 1

2

∑
x |f(x)| < +∞ and this implies that the l.h.s. of (3.10) is

uniformly bounded.
Now, let {Vn}n be an invading sequence of vertices and define

Ṽn := {z : ∃x, y ∈ Vn with z ∈ γx,y} .

We define also Γn :=
{
γ ∈ Γ : γ ⊆ Ṽn

}
. We have

M (n) (Γck) ≤
∑

{γ : {γ−,γ+}∩V ck 6=∅}
M (n)(γ) =

∑
x 6∈Vk

∣∣∣f̃ (n)(x)
∣∣∣ .

Tightness follows now directly from (3.11), the convergence of f̃ (n) to f
and the summability of f . By Prohorov theorem, the sequence is relatively
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compact. Let M =
∑

k qkδγk be the weak limit of a subsequence of {M (n)}n
and let us consider the finitely decomposable flow Q :=

∑
k qkQγk . Then, at

least along a subsequence {n′}, using the weak convergence of {M (n′)}n′ to
M and the (point-wise) convergence of f̃ (n′) to f , we have

divQ(x) =
∑

k : γ−k =x

qk −
∑

k ,: γ+k =x

qk

= lim
n′→+∞

 ∑
γ : γ−=x

M (n′)(γ)−
∑

γ : γ+=x

M (n′)(γ)


= lim

n′→+∞
f̃ (n′)(x) = f(x) .

This means that Q is a finite decomposable flow such that divQ = f and
consequently f ∈ D �

Let us suppose that µ2(f) − µ1(f) ≥ 0 for any increasing function f ∈
L∞(V ). This can be written as 〈f, µ2 − µ1〉V ≥ 0 where µ2 − µ1 ∈ L1(V )
and 〈·, ·〉V is the L∞(V ), L1(V ) dual paring defined by

〈f, g〉V :=
∑
x∈V

f(x)g(x) , f ∈ L∞(V ) , g ∈ L1(V ) . (3.11)

Let Qe for e ∈ E be the flow defined by (2.3) for the elementary path γ
given by the single edge e. A function f ∈ L∞(V ) is increasing if and only if
∇f ∈ L∞(E), defined for (x, y) ∈ E by ∇f(x, y) = f(y)− f(x), is such that

〈∇f,Qe〉E ≥ 0 , ∀e ∈ E , (3.12)

where 〈·, ·〉E is the dual pairing for functions on edges.

We need to show that µ1− µ2 ∈ D. Let us suppose by contradiction that
this is not the case. Since D is convex and closed, by Hahn-Banach Theorem
we deduce that there exists an f∗ ∈ L∞(V ) such that{

〈f∗,divQ〉V < 0 , ∀ Q finitely decomposable ,
〈f∗, µ1 − µ2〉V > 0 .

(3.13)

In particular by the first inequality we have that

−〈f∗, divQe〉V = 〈∇f∗, Qe〉E > 0 , ∀e ∈ E ,

which means that f∗ is increasing. This fact together with the second in-
equality in (3.13) gives a contradiction.
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3.2.3 (3) ⇒ (2) The proof of this implication is equal to the finite case.

3.2.4 (2) ⇒ (3) We need to extend the construction done in the finite case
to the infinite one. Let Q be a finitely decomposable flow such that divQ =
µ1−µ2. Let {Vn}n be an invading sequence of vertices such that ∪k≤nγk ⊆ Vn
where the paths γk are the ones involved in the finite decomposition (2.4)
of Q.

For each n we consider the finite digraph having vertices Vn ∪ {g} where
g is a ghost site. The set of edges En contains all edges (x, y) ∈ E such
that x, y ∈ Vn, moreover it contains the edges (g, z) or (z, g) with z ∈
Vn if respectively there exists an (x, z) ∈ E such that x 6∈ Vn or there
exists an (z, y) ∈ E such that y 6∈ Vn. The digraph (Vn ∪ {g}, En) is not
necessarily acyclic. Starting from the flow Q on (V,E) we construct a flow
Qn on (Vn ∪ {g}, En) as follows

Qn(x, y) :=


Q(x, y) if x, y ∈ Vn ,∑

z 6∈Vn Q(x, z) if y = g , x ∈ Vn∑
z 6∈Vn Q(z, y) if x = g , y ∈ Vn .

(3.14)

The series appearing in (3.14) are convergent since Q has a well defined
divergence. We have

divQn(x) =

{
divQ(x) = µ1(x)− µ2(x) , if x ∈ Vn ,∑

y 6∈Vn
(
µ1(y)− µ2(y)

)
, if x = g .

In general the flow Qn will not be acyclic, but by removing cycles we can
obtain an acyclic flow Q∗n having the same divergence as Qn. This is done
in two steps. The first one is as follows. Consider a path γk of the finite
decomposition of Q such that it exits from and enters in Vn several times.
This is possible only if k > n. After the identification of all the sites outside
Vn with the single ghost site g the path will not be anymore self–avoiding
(see Figure 1). If we remove the cycles that have been created (all of which
will contain the ghost site) the self–avoiding path that we obtain will exit
from Vn or enter in Vn at most once. The corresponding transformation on
the flow Qn is the following. Let us consider the example of Figure 1 and call
Ck the cycle in (Vn ∪ {g}, En) created after the identification of all the sites
outside Vn with the single ghost site g. By construction we have qkQCk ⊆ Qn
so that Qn−qkQCk is still a flow on (Vn∪{g}, En) having the same divergence
as Qn since closed paths do not contribute to the divergence. We consider
iteratively each path γk of the original cyclic decomposition with k > n and
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Figure 1 A path γk entering and exiting several times in and from Vn (left). The same
path after the identification of the sites outside Vn with the ghost site g (right). The cycle
Ck containing g has to be removed.

remove the cycles as illustrated above. After this deletion procedure the flow
Q1
n obtained is still not necessarily acyclic.

The second step is as follows. Since the digraph (Vn ∪ {g}, En) is finite
we can consider a finite number of cycles C ′i and weights q′i such that Q∗n :=
Q1
n−
∑

i q
′
iQC′i is acyclic (see for example the construction in [5]). The choice

of the cycles and weights in this last step is arbitrary.

To the values of the flow Q∗n on edges entering or exiting from the ghost
site g can contribute only the paths γk with k > n. Moreover the deletion
procedure outlined above guarantees that every single path γk with k > n
may contribute no more than once to the total flux entering in g (that is∑

x∈Vn Q
∗
n(x, g)) or to the total flux exiting from g (that is

∑
x∈Vn Q

∗
n(g, x)).

This means that we have the bounds{ ∑
x∈Vn Q

∗
n(x, g) ≤

∑
k>n qk ,∑

x∈Vn Q
∗
n(g, x) ≤

∑
k>n qk .

(3.15)

Let us now consider the flow Q̃∗n such that Q̃∗n(x, y) = Q∗n(x, y) when both x
and y belong to Vn and Q̃∗n(x, y) = 0 otherwise. The flow Q̃∗n can be naturally
interpreted as a flow on the original digraph (V,E) and by construction
Q̃∗n ≤ Q. We have also

div Q̃∗n(x) = µ1(x)− µ2(x) + δn(x) , x ∈ Vn , (3.16)

where by (3.15) we have ∑
x

|δn(x)| ≤ 2
∑
k>n

qk . (3.17)
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We define the following sequences of measures on V

µ
(n)
1 (x) :=


µ1(x) + δn(x) if x ∈ Vn , δn(x) > 0 ,
µ1(x) if x ∈ Vn , δn(x) ≤ 0 ,
0 if x 6∈ Vn ,

(3.18)

µ
(n)
2 (x) :=


µ2(x)− δn(x) if x ∈ Vn , δn(x) < 0 ,
µ2(x) if x ∈ Vn , δn(x) ≥ 0 ,
0 if x 6∈ Vn .

(3.19)

We have div Q̃∗n = µ
(n)
1 − µ

(n)
2 and

∑
x

(
µ

(n)
1 (x)− µ(n)

2 (x)
)

= 0. Since∣∣∣E (Q̃∗n)∣∣∣ < +∞ we can apply the finite algorithmic construction used in the

proof of Theorem 2.1 (which works also for pairs of finite measures having
the same total mass) obtaining from the acyclic flow Q̃∗n a measure ρ(n) on

V × V such that
∑

x ρ
(n)(x, y) = µ

(n)
2 (y) and

∑
y ρ

(n)(x, y) = µ
(n)
1 (x). Since

the mass is transported along edges of the original digraph (V,E) we deduce
that ρ(n)(x, y) = 0 if x 6≤ y. Now, let us show that the measures {ρ(n)}n have
total mass uniformly bounded and form a tight family. The bound on the
mass follows by∑

x

∑
y

ρ(n)(x, y) =
∑
x

µ
(n)
1 (x) ≤

∑
x

[µ1(x) + |δn(x)|] ≤ 1 + 2
+∞∑
k=1

qk .

The tightness follows by the following argument. Fix an arbitrary ε > 0 and
let m∗ be an integer number such that

max {µ1 (V c
m∗) , µ2 (V c

m∗)} < ε ,

where the upper index c denotes the complementary set. Fix also n∗ such
that 2

∑+∞
k=n∗ qk < ε. Then we have for any n > n∗ and m > m∗

ρ(n)
(

(Vm × Vm)c
)

= ρ(n)
(
V c
m × Vm

)
+ ρ(n)

(
Vm × V c

m

)
+ ρ(n)

(
V c
m × V c

m

)
≤ ρ(n)

(
V × V c

m

)
+ ρ(n)

(
V c
m × V

)
= µ

(n)
2 (V c

m) + µ
(n)
1 (V c

m)

≤ µ2(V c
m) + µ1(V c

m) +
∑
x

|δn(x)| ≤ 3ε .

By Prohorov theorem there exists a subsequence, that we still call {ρ(n)}n,
that is weakly convergent. Let us call ρ its weak limit. Since by (3.17), (3.18)

and (3.19) µ
(n)
i (x)→ µi(x) for any x we immediately obtain∑

y

ρ(x, y) = lim
n→+∞

∑
y

ρ(n)(x, y) = lim
n→+∞

µ
(n)
1 (x) = µ1(x) .
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A similar result holds for µ2. This means that ρ is a coupling between µ1

and µ2. Since ρ(n)(x, y) = 0 when x 6≤ y this will be true also for the limiting
measure ρ. This completes the proof.

4 Proof of Propositions 2.2 and 2.3

In this section we give the proofs of the auxiliary Propositions 2.2 and 2.3
that are useful to identify finitely decomposable flows.

Proof of Proposition 2.2: Consider the invading sequence {Vn}n for which
the outgoing flux towards infinity

∑
x∈Vn,y 6∈Vn Q(x, y) =: φ+

n is converging
to zero when n diverges. Since∑

x∈Vn,y 6∈Vn

Q(x, y)−
∑

x 6∈Vn,y∈Vn

Q(x, y) = µ1(Vn)− µ2(Vn) , (4.1)

then also the incoming flux from infinity
∑

x 6∈Vn,y∈Vn Q(x, y) := φ−n is con-
verging to zero when n diverges. All the series in (4.1) are convergent since
|Vn| < +∞ and the series appearing in the definition of divQ (2.2) are
supposed to be summable.

For each n we consider the finite digraph having vertices Vn ∪ g− ∪ g+

where g± are ghost sites. The set of edges En contains all edges (x, y) ∈ E
such that x, y ∈ Vn, moreover it contains edges of type (g−, z) or (z, g+) with
z ∈ Vn if respectively there exists an (x, z) ∈ E such that x 6∈ Vn or there
exists an (z, y) ∈ E such that y 6∈ Vn. Since the original graph is acyclic
also this new finite digraph is acyclic. Starting from the flow Q on (V,E) we
associate to it a flow Qn on (Vn ∪ g− ∪ g+, En) as follows

Qn(x, y) :=


Q(x, y) if x, y ∈ Vn ,∑

z 6∈Vn Q(x, z) if y = g+ , x ∈ Vn∑
z 6∈Vn Q(z, y) if x = g− , y ∈ Vn .

We have

divQn(x) = divQ(x) = µ1(x)− µ2(x) , x ∈ Vn .

We have also divQn(g−) = φ−n and divQn(g+) = −φ+
n . Let us introduce

two sequences of measures on Vn ∪ g− ∪ g+ defined as

µ
(n)
1 (x) :=


µ1(x) if x ∈ Vn ,
φ−n if x = g−
0 if x = g+ ,

(4.2)
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µ
(n)
2 (x) :=


µ2(x) if x ∈ Vn ,
φ+
n if x = g+

0 if x = g− .
(4.3)

Then Qn is a flow on a finite acyclic digraph and moreover divQn = µ
(n)
1 −

µ
(n)
2 . Applying the finite algorithmic construction of Section 3.1.4 we obtain

a finite decomposition

Qn =
∑
m

q(n)
m Q

γ
(n)
m

(4.4)

for suitable weights q
(n)
m and paths γ

(n)
m . The paths γ

(n)
m are self–avoiding

paths on the digraph (Vn ∪ g− ∪ g+, En) but to every path γ on this digraph
it can be easily associated a self–avoiding path γ̃ on the original digraph
(V,E). This is done simply transforming any edge (g−, x) ∈ γ into an ar-
bitrary edge (y, x) ∈ E(Q) with y 6∈ Vn and any edge (x, g+) ∈ γ into an
arbitrary edge (x, y) ∈ E(Q) with y 6∈ Vn. After this identification we obtain
an acyclic finitely decomposable flow on (V,E)

Q̃n :=
∑
m

q(n)
m Q

γ̃
(n)
m
. (4.5)

By construction we have

Q̃n(x, y) = Q(x, y) , (4.6)

for any n big enough so that x, y ∈ Vn.
Recall that Γ is the countable set of all finite self-avoiding paths on the

digraph (V,E). Let also Γn ⊆ Γ be the subset of all the paths γ ⊆ Vn. To
the decomposition (4.5) we associate by (2.6) a finite measure on Γ given by

M (n) :=
∑
m

q(n)
m δ

γ̃
(n)
m
. (4.7)

We now show that
{
M (n)

}
n

is a tight sequence of measures with total mass

uniformly bounded. Recall that the coefficients q
(n)
m in (4.7) are the same of

(4.4) so that by (3.9) they satisfy∑
γ∈Γ

M (n)(γ) =
∑
m

q(n)
m =

1

2

[
φ+
n + φ−n +

∑
x∈Vn

|µ1(x)− µ2(x)|
]
.

Since φ±n are converging to zero we have an uniform bound on the total
mass. Moreover we have

M (n) (Γck) =
∑

{
m : γ̃

(n)
m ⊆V ck

} q(n)
m +

∑
{
m : γ̃

(n)
m ∩Vk 6=∅ , γ̃

(n)
m ∩V ck 6=∅

} q(n)
m . (4.8)



Stochastic monotonicity from an Eulerian viewpoint 19

The first term on the right hand side of (4.8) is 0 when n ≤ k. When n > k
can be estimated using (3.6) as∑

{
m : γ̃

(n)
m ⊆V ck

} q(n)
m ≤

∑
x 6∈Vk

∑
{
m : γ̃

(n)−
m =x

} q(n)
m

≤
∑
x 6∈Vk

∣∣∣µ(n)
1 (x)− µ(n)

2 (x)
∣∣∣ ≤ φ+

n + φ−n +
∑
x 6∈Vk

|µ1(x)− µ2(x)| . (4.9)

The second term in (4.8) can be directly estimated by φ+
k +φ−k independently

of n. With these bounds the tightness of the sequence of measures
{
M (n)

}
n

can be easily established using the condition of zero flux towards infinity.
By Prohorov theorem we can then extract a subsequence that we still call
{M (n)}n which weakly converges to a finite measure M :=

∑
m qmδγ̃m on Γ.

The function that associate to any path γ the value 1 if (x, y) ∈ γ and zero
otherwise is continuous and bounded on Γ endowed of the discrete topology.
By (4.6) we deduce that if we construct the flow Q̃ :=

∑
m qmQγ̃m then

we have that Q̃(x, y) = limn→+∞ Q̃n(x, y) = Q(x, y). This means that Q̃
coincides with the original flow Q. Since Q̃ is clearly finitely decomposable
we are done �

Proof of Proposition 2.3: Let us suppose by contradiction that
∑

n qnQγn
is a finite decomposition of Q and that (2.8) does not converge to zero for
an invading sequence. This means that there exists an ε and an infinite
sequence of edges {ei}i∈N such that Q(ei) > ε for any i. Let n∗ be such that∑

n>n∗ qn < ε. Let ei∗ such that ei∗ 6∈ ∪n≤n∗γn. Then we have

ε < Q(ei∗) =
∑
n>n∗

qnQγn(ei∗) < ε ,

a contradiction �

5 Examples

In this section we discuss some examples of applications of Theorem 2.1.
Even if simple they are conceptually important since we use arguments that
are different from the usual ones. In example 5.1 we obtain the classic con-
dition for stochastic monotonicity on Z. Instead of construct a coupling we
need just to perform a discrete integration. The same happens in example
5.2. In example 5.3 we show that the problem of stochastic monotonicity
has a dual problem coinciding with the non emptiness of a polyhedron in
a space whose dimension is the number of independent cycles of the Hasse
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diagram. A discrete Poisson equation can be relevant in this dual problem.
Example 5.4 is a special issue of 5.3. In example 5.5 we generalize a classic
construction. A coupling of two random variables can be constructed writing
them as functions of a common random variable. If the functions satisfy a
monotonicity property then the coupling is a monotone one. We show that
there is a similar construction for flows that works under less restrictive
conditions on the functions. In Example 5.6 we show that there is a natural
construction for flows that is the counterpart of the product coupling. The
mechanism is a bit tricky and works due to the presence of a telescopic sum.
In Example 5.7 we obtain very shortly the result of [6].

5.1 The one dimensional case

We discuss the simplest countable poset, that is Z with the usual partial
order relation. We want to get the well known [10] necessary and sufficient
conditions to have µ1 � µ2, using item (2) of Theorem 2.1. In this case the
partial order can be described by the Hasse diagram corresponding to the
acyclic digraph (Z, E) where E = {(x, x+ 1)}x∈Z. The condition divQ =
µ1 − µ2 reads

Q(x, x+ 1)−Q(x− 1, x) = µ1(x)− µ2(x) ,

and with a finite telescopic sum for any y < x we get

Q(x, x+ 1)−Q(y, y + 1) =

x∑
z=y+1

(
µ1(z)− µ2(z)

)
. (5.1)

By Proposition 2.3 a necessary condition to have that Q is finitely decom-
posable is that limy→−∞Q(y, y + 1) = 0. Taking the limit y → −∞ in (5.1)
we then get

Q(x, x+ 1) =

x∑
z=−∞

(µ1(z)− µ2(z)) . (5.2)

This means that there is at most one finitely decomposable flow having
divergence equal to µ1 − µ2 that is (5.2). Consider the invading sequence
Vn := {−n, . . . , n}. The flux exiting from Vn coincides with Q(n, n + 1)
that by (5.2) is converging to zero when n→ +∞. By Proposition 2.2 Q is
finitely decomposable. The last condition that Q has to satisfy to be a flow
is Q(x, x+ 1) ≥ 0 for any x ∈ Z. This condition reads

x∑
z=−∞

(µ1(z)− µ2(z)) = F1(x)− F2(x) ≥ 0 , ∀x ∈ Z , (5.3)

where Fi(x) :=
∑x

z=−∞ µi(z) is the distribution function of the measure µi.
This is the classic condition to have µ1 � µ2 in this case.
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5.2 Finite and infinite trees

We consider the case of posets described by digraphs (V,E) such that the
associated graph (V, E) is a tree. We discuss both the finite and the infinite
case.

Let us start with the finite case. Removing one edge of E the graph is
divided into two connected components. If the edge that has been removed

is {x, y} and x ≤ y we call T
{x,y}
− the connected component containing x and

T
{x,y}
+ the connected component containing y. Using a discrete Gauss Green

identity we get that there is a unique solution to the equation divQ = µ1−µ2

that is

Q(x, y) =
∑

z∈T {x,y}−

(
µ1(z)− µ2(z)

)
. (5.4)

The left hand side of (5.4) is the flux from T
{x,y}
− to T

{x,y}
+ while the right

hand side is the sum of the divergences in T
{x,y}
− . Since Q has to be a flow

on (V,E) it must be positive and this gives∑
z∈T e−

(µ1(z)− µ2(z)) ≥ 0 , ∀e ∈ E (5.5)

that is the necessary and sufficient condition to have µ1 � µ2.
If (V, E) is an infinite tree then the equation divQ = µ1 − µ2 has not an

unique solution. However, if Q is a finitely decomposable flow we have

Q(x, y) =
∑

{n : γ−n ∈T
{x,y}
− }

qn −
∑

{n : γ+n ∈T
{x,y}
− }

qn

=
∑

{z∈T {x,y}− }

divQ(z) =
∑

{z∈T {x,y}− }

(µ1(z)− µ2(z)) . (5.6)

This means that there is at most one finitely decomposable solution to the
equation divQ = µ1−µ2 that is still given by (5.4). Indeed, as in subsection
5.1, using Proposition 2.2 it can be easily shown that this solution is finitely
decomposable. The positivity Q gives the same condition (5.5) of the finite
case.

5.3 A dual problem

We consider the case |V | < +∞. A discrete vector field on (V, E) is a map
φ on pairs of ordered vertices (x, y) with {x, y} ∈ E satisfying the condition
φ(x, y) = −φ(y, x).
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Let Λ(E) be the vector space of discrete vector fields on (V, E). This is a
|E| dimensional vector space. The following are classic results (see [4] or [5]
for a short introduction) and we give just a short informal overview. A
discrete vector field φ is a gradient if there exists a function f : V → R such
that φ(x, y) = f(y) − f(x). The divergence at x ∈ V of a discrete vector
field φ is defined by div φ(x) :=

∑
y : {x,y}∈E φ(x, y). We have the orthogonal

decomposition
Λ(E) = Λg(E)⊕ Λd(E) ,

where Λg(E) is the |V | − 1 dimensional subspace of gradient discrete vector
fields and Λd(E) is the |E| − |V |+ 1 dimensional subspace of divergence free
discrete vector fields. The orthogonality is with respect to the scalar product∑

{x,y}∈E

φ(x, y)ψ(x, y) , φ, ψ ∈ Λ(E) .

A basis for Λd(E) is obtained choosing a suitable collection of divergence
free discrete vector fields naturally associated to elementary independent
cycles. Fix (V, T ) a spanning tree of (V, E), in particular |T | = |V | − 1. For
any e ∈ E \ T the graph (V, T ∪ {e}) contains an unique cycle with distinct
vertices. Let us fix an arbitrary orientation on this cycle. On the graph
(V, T ∪ {e}) there exists a unique, up to a multiplicative factor, divergence
free discrete vector field φe. This is defined by fixing φe(x, y) = 1 if (x, y)
belongs to the oriented cycle, φe(x, y) = −1 if (y, x) belongs to the oriented
cycle and φe(x, y) = 0 otherwise. The collection {φe}e∈E\T is a basis of
Λd(E).

All the discrete vector fields satisfying

div φ = µ1 − µ2 (5.7)

are given by

φ∗ +
∑
e∈E\T

αeφe , (5.8)

where the αe are arbitrary real numbers and φ∗ is an arbitrary solution to
(5.7), for example of gradient type.

Let (V,E) be the Hasse diagram of a finite poset and let (V, E) be the
corresponding undirected graph. Consider also µ1 and µ2 two probability
measures on V . The flows on (V,E) having divergence coinciding with µ1−µ2

are in bijection with the discrete vector fields on (V, E) having the same
divergence and such that φ(x, y) ≥ 0 when (x, y) ∈ E. The bijection is
through the natural identification Q(x, y) = φ(x, y) when (x, y) ∈ E. The
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remaining values of the discrete vector field are fixed by the antisymmetry
condition.

Using the above construction we obtain that there exists a flow on (V,E)
having divergence µ1−µ2 if and only if the following conditions are satisfied.
For edges {x, y} ∈ E that do not belong to any cycle of the basis, we have to
impose φ∗(x, y) ≥ 0 when (x, y) ∈ E. If we call E′ the set of remaining edges,
we have to impose that there exists a collection of real numbers {αe}e∈E\T
such that

φ∗(x, y) +
∑
e

αeφe(x, y) ≥ 0 , ∀(x, y) ∈ E′ . (5.9)

Recall that φe(x, y) is taking just the values−1, 0,+1. Conditions (5.9) in the
α variables is equivalent to the statement that a polyhedron on R|E|−|V |+1

obtained as the intersection of |E′| half-spaces (one for each (x, y) ∈ E′) is
not empty. The interesting feature is that it is a geometric problem on a
space of dimension equal to the number of independent cycles of the Hasse
diagram.

Consider for example the Hasse diagram of Figure 2 (left) having one
single cycle and such that E′ = E. Since the Hasse diagram has only one
independent cycle the stochastic monotonicity condition will reduce to a
one dimensional problem. Choosing arbitrarily one orientation we can label
vertices as V := {1, 2, . . . , n} and the edges as E :=

{
{x, x + 1}

}n
x=1

where
the sum is modulo n. Equation (5.8) reduces to

φα := φ∗ + αφ , (5.10)

where φ(x, x+ 1) = 1 for any x, α is an arbitrary real number and φ∗ is any
given discrete vector field such that div φ∗ = µ1−µ2. We can fix for example

φ∗(x, x+ 1) =
x∑
y=1

(
µ1(y)− µ2(y)

)
, x = 1, . . . , n . (5.11)

Let E+ := {(x, y) ∈ E : y = x+ 1} and E− the complementary set. Con-
ditions (5.9) become{

φ∗(x, y) + α ≥ 0 , (x, y) ∈ E+ ,
φ∗(x, y)− α ≥ 0 , (x, y) ∈ E− , (5.12)

that are equivalent to the single inequality

max
(x,y)∈E+

{
x∑
z=1

(
µ2(z)− µ1(z)

)}
≤ min

(x,y)∈E−

{
y∑
z=1

(
µ2(z)− µ1(z)

)}
. (5.13)
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Figure 2 An Hasse diagram with one single cycle such that E′ = E (left). The special
case of the Hasse diagram of an elementary lattice (right).

Condition (5.13) is a necessary and sufficient condition to have µ1 � µ2 on
a poset like the one on the left of Figure 2. If we consider the special case
on the right hand side of Figure 2 (5.13) becomes

∣∣µ1(B)− µ2(B)
∣∣+ ∣∣µ1(C)− µ2(C)

∣∣ ≤ (µ1(A)− µ2(A)
)
−
(
µ1(D)− µ2(D)

)
.

(5.14)
It is not immediate to get the single inequality (5.14) without condition (2)
of Theorem 2.1.

5.4 The two dimensional case

Let us consider for simplicity two probability measures µ1 and µ2 on the set
V = Z2∩([0, N ]× [0,M ]). We denote by≤ the usual partial order relation on
Z2, i.e., (x1, x2) ≤ (y1, y2) if xi ≤ yi for i = 1, 2. Then (V,≤) is a poset with
Hasse diagram as in Figure 3. We apply the general framework of section 5.3.
The number of independent cycles is NM and in Figure 3 it is shown a choice
of a basis of cycles one for each face of the squared lattice. The problem of
establishing wether µ1 � µ2 is equivalent to the problem of determining if a
polyhedron in dimension NM identified by 2NM + M + N inequalities is
empty or not. The inequalities are one for each edge of the Hasse diagram.
Let α (x1, x2) be the real variable associated to the elementary cycle centered
in
(
x1 + 1

2 , x2 + 1
2

)
. Let also φ∗ be a solution of (5.7). We can for example

consider

{
φ∗
(
(x1, x2), (x1 + 1, x2)

)
= 1

2

(
[F1 − F2] (x1, x2)− [F1 − F2] (x1, x2 − 1)

)
,

φ∗
(
(x1, x2), (x1, x2 + 1)

)
= 1

2

(
[F1 − F2] (x1, x2)− [F1 − F2] (x1 − 1, x2)

)
,

(5.15)
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Figure 3 The Hasse diagram for a finite bi-dimensional grid and the oriented independent
elementary cycles associated to the elementary faces of the lattice.

where for i = 1, 2, Fi(x1, x2) :=
∑

(y1,y2)≤(x1,x2) µi(y1, y2) is the distribution
function of µi. Recalling (5.9), the inequalities can be summarized by{

[F1−F2](x1,x2)−[F1−F2](x1−1,x2)
2 ≥ α(x1, x2)− α(x1 − 1, x2) ,

[F1−F2](x1,x2)−[F1−F2](x1,x2−1)
2 ≥ α(x1, x2 − 1)− α(x1, x2) ,

(5.16)

that have to be satisfied for any vertex (x1, x2) of the grid. Clearly, when
in (5.16) it appears a variable α associated to an elementary face outside of
the grid we mean that its value is zero.

A complete characterization of when inequalities (5.16) determine a non
empty polyhedron is difficult but it can be given in some special cases like
for example a strip (M = 1). However it is easy to find sufficient conditions
to have µ1 � µ2. For example choosing α = ±1

2 [F1 − F2] we deduce that if
F1 − F2 is increasing in one of the two coordinates then µ1 � µ2.

A similar scheme can be developed for planar posets.

5.5 A generalized construction

A very general and much used construction of a compatible coupling is
obtained considering two functions G1 and G2 defined on a set Ω, taking
values on the poset (V,≤) and such that G1(ω) ≤ G2(ω) for any ω ∈ Ω.
For simplicity of notation we consider the case Ω countable but the general
case can be handled similarly. Given a random variable U taking values on
Ω the joint law ρ of the random variables (X1, X2) = (G1(U), G2(U)) is a
compatible coupling between the distribution µ1 of X1 and the distribution
µ2 of X2 so that µ1 � µ2. Using flows the argument is as well elementary.
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For any x ≤ y fix a path γx,y on (V,E). Then∑
ω∈Ω

P(U = ω)QγG1(ω),G2(ω)
=
∑
x,y

ρ(x, y)Qγx,y

is a flow with divergence coinciding with µ1 − µ2. The coupling argument
does not work if G1 6≤ G2 while the flow argument can still work generalizing
this classic construction.

We illustrate the simplest possible approach that can be generalized in
several ways. Recall that (V, E) is the un-oriented graph associated to (V,E).
To any pair x, y ∈ V (not necessarily ordered) we associate a fixed path γx,y
in (V, E) going from x to y. This is a sequence (x0, x1, . . . xn) such that
x0 = x, xn = y and {xi, xi+1} ∈ E . To any path γ on (V, E) we associate the
discrete vector field φγ defined by

φγ(u, v) :=


1 if (u, v) ∈ γ
−1 if (v, u) ∈ γ
0 otherwise .

(5.17)

We consider the discrete vector field

φ =
∑
ω∈Ω

P(U = ω)φγG1(ω),G2(ω)
=
∑
x,y

ρ(x, y)φγx,y . (5.18)

If φ(x, y) ≥ 0 for any (x, y) ∈ E then the flow on (V,E) defined by Q(x, y) =
φ(x, y) has divergence µ1−µ2 and we deduce µ1 � µ2. The basic idea is the
following. It may happen that G1(U) 6≤ G2(U) that corresponds to negative
flows across some edges in (V,E). Nevertheless the total net flow across each
edge is positive and this is enough to prove µ1 � µ2.

A simple illustrative case is the following. Let U1 be a random variable
taking values on V = Z2 ∩ ([0, N ]× [0,M ]) and having distribution µ. The
random variable U2 is obtained moving the random lattice point U1 uni-
formly at random on one of its 4 nearest neighbors vertices of Zd. If this point
is outside the rectangle [0, N ] × [0,M ] then U2 = U1. We fix U = (U1, U2)
and X1 = G1(U1, U2) = U1 and X2 = G2(U1, U2) = U2. We have that the
law of

(
G1(U1, U2), G2(U1, U2)

)
is not a monotone coupling of µ1 = µ and

µ2 the law of X2. The discrete vector field (5.18) is however{
φ (x, x+ (1, 0)) = 1

4 [µ(x)− µ(x+ (1, 0))] x1 = 0, . . . , N − 1; x2 = 0, . . . , N ,
φ (x, x+ (0, 1)) = 1

4 [µ(x)− µ(x+ (0, 1))] x1 = 0, . . . , N ; x2 = 0, . . . , N − 1 .
(5.19)

We deduce immediately that if µ is decreasing (i.e. µ(x) ≥ µ(x+ (1, 0)) and
µ(x) ≥ µ(x + (0, 1)) for edges belonging to the rectangle) then the vector
field is positive along increasing directions and µ1 � µ2.
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5.6 Product couplings and flows

Let (V,≤) be a finite poset with associated the Hasse diagram (V,E) and
consider the product partial order on V N . An element η ∈ V N is written as
η = (η(1), . . . , η(N)) and for η, ξ ∈ V N we write η ≤ ξ if η(i) ≤ ξ(i) for any
i. Given η ∈ V N , x ∈ V and i = 1, . . . , N we denote by

ηix = (η(1), . . . , η(i− 1), x, η(i+ 1), . . . , η(N))

the element of V N with η(i) replaced by x. The Hasse diagram (V N , EN )
for the product poset has a directed edge (η, ξ) if and only if ξ = ηix for some
i, x and (η(i), x) ∈ E.

Let µi1 and µi2 i = 1, . . . , N be a collection of probability measures on V
such that for any i we have µi1 � µi2.

Then for the product measures we have
⊗N

i=1 µ
i
1 �

⊗N
i=1 µ

i
2: indeed, if

ρi is a monotone coupling between µi1 and µi2 then
⊗N

i=1 ρ
i is a monotone

coupling between
⊗N

i=1 µ
i
1 and

⊗N
i=1 µ

i
2.

Let us illustrate that there is an equivalent construction with flows. Let
Qi be a flow on (V,E) such that divQi(x) = µi1(x)− µi2(x). Let us define

γi(η) =

∏
j<i

µj2(η(j))

∏
j>i

µj1(η(j))

 (5.20)

and observe that (5.20) does not depend on η(i). We define the flow Q on
(V N , EN ) as

Q(η, ηix) = γi(η)Qi(η(i), x) . (5.21)

Then we have

divQ(η) =
N∑
i=1

γi(η)
∑
y∈V

[
Qi(η(i), y)−Qi(y, η(i))

]
=

N∑
i=1

γi(η)
[
µi1(η(i))− µi2(η(i))

]
=

N∏
i=1

µi1(η(i))−
N∏
i=1

µi2(η(i)) (5.22)

where the last equality follows from the special form (5.20) since the sum
in the second line of (5.22) is telescopic and only the initial and final terms
survive.
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5.7 Lattices

For an integer N ≥ 2, consider the lattice V := {0, 1}N with the usual
partial order. An element η ∈ V has the form η = (η(1), . . . , η(N)) with
η(i) ∈ {0, 1}. The Hasse diagram associated is (V,E) where (η, η′) ∈ E if
and only if η′ is obtained by η changing one coordinate of η from 0 to 1. The
digraph on the right of Figure 2 is the Hasse diagram for this poset when
N = 2.

A classic sufficient condition to have stochastic monotonicity is the Holley
condition [6] that is

µ2(η ∨ ξ)µ1(η ∧ ξ) ≥ µ2(η)µ1(ξ) ∀η, ξ ∈ V . (5.23)

In (5.23) given η, ξ ∈ V we call η ∨ ξ and η ∧ ξ the elements of V defined by

(η ∨ ξ) (i) := max {η(i), ξ(i)} , (η ∧ ξ) (i) := min {η(i), ξ(i)} .

An alternative sufficient condition to have µ1 � µ2 is discussed in [7].
This condition is very simple and natural and is the following.

Hosaka condition: if µ1 − µ2 is a not increasing function then µ1 � µ2.

Differently from the Holley condition depends just on the difference be-
tween the two measures and can be easily proved using flows. The proof in [7]
is also elementary but it assumes Holley result while our proof is completely
independent. The result is strictly related to the geometry of the poset. It
is possible indeed to construct posets (with Hasse diagram being a tree for
example) for which µ1 − µ2 is not increasing but nevertheless µ1 6� µ2.

Our proof is by induction. For N = 2 a necessary and sufficient condition
to have µ1 � µ2 is (5.14). It is easy by a direct inspection to check that if
µ1−µ2 is non increasing then (5.14) holds. Let us now assume that if µ1−µ2

is not increasing then µ1 � µ2 for a fixed N and show that we can deduce
that the same holds also for N + 1. Any η ∈ {0, 1}N+1 is of the form (η̃, 0)
or (η̃, 1) with η̃ ∈ {0, 1}N . We define

(µ̃1 − µ̃2) (η̃) :=
[µ1(η̃, 1)− µ2(η̃, 1)] + [µ1(η̃, 0)− µ2(η̃, 0)]

2
. (5.24)

Since µ1−µ2 is non increasing on {0, 1}N+1 then also µ̃1−µ̃2 is non increasing
on {0, 1}N . By induction, there exists a flow Q̃ on the Hasse diagram of the
poset of order N such that div Q̃ = µ̃1 − µ̃2. Now, consider the flow Q on
the Hasse diagram of the poset of order N + 1 defined as follows: for any
directed edge (η̃, ξ̃) of the Hasse diagram of order N we pose

Q((η̃, 1), (ξ̃, 1)) = Q((η̃, 0), (ξ̃, 0)) = Q̃
(
η̃, ξ̃
)
,
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while, for all the remaining edges we fix Q(η, η′) = 0. We have

divQ(η̃, 1) = divQ(η̃, 0) = div Q̃ (η̃) = (µ̃1 − µ̃2) (η̃) . (5.25)

We now define another flow Qa on the Hasse diagram of order N + 1 as
follows: for any η̃ ∈ {0, 1}N we pose

Qa((η̃, 0), (η̃, 1)) :=
[µ1(η̃, 0)− µ2(η̃, 0)]− [µ1(η̃, 1)− µ2(η̃, 1)]

2
. (5.26)

We fix then Qa(η, η′) = 0 for all the remaining edges. This is a well defined
flow since the right hand side of (5.26) is non-negative being µ1 − µ2 not
increasing. Using (5.25) and (5.26) we obtain that the flow Q+Qa satisfies
div(Q+Qa) = µ1 − µ2 and the proof is complete.
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