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Abstract We consider a class of stochastic dynamical systems, called piecewise deter-
ministic Markov processes, with states (x, σ ) ∈ � × �, � being a region in R

d or the
d-dimensional torus, � being a finite set. The continuous variable x follows a piece-
wise deterministic dynamics, the discrete variable σ evolves by a stochastic jump dynam-
ics and the two resulting evolutions are fully-coupled. We study stationarity, reversibility
and time-reversal symmetries of the process. Increasing the frequency of the σ -jumps,
the system behaves asymptotically as deterministic and we investigate the structure of its
fluctuations (i.e. deviations from the asymptotic behavior), recovering in a non Markov-
ian frame results obtained by Bertini et al. (Phys. Rev. Lett. 87(4):040601, 2001; J. Stat.
Phys. 107(3–4):635–675, 2002; J. Stat. Mech. P07014, 2007; Preprint available online at
http://www.arxiv.org/abs/0807.4457, 2008), in the context of Markovian stochastic interact-
ing particle systems. Finally, we discuss a Gallavotti–Cohen-type symmetry relation with
involution map different from time-reversal.

Keywords Piecewise deterministic Markov processes · Large deviations · Stationary
states · Non-equilibrium processes

A. Faggionato
Dipartimento di Matematica “G. Castelnuovo”, Università “La Sapienza”,
P.le Aldo Moro 2, 00185 Rome, Italy
e-mail: faggiona@mat.uniroma1.it

D. Gabrielli (�)
Dipartimento di Matematica, Università dell’Aquila, Coppito, 67100 L’Aquila, Italy
e-mail: gabriell@univaq.it

M. Ribezzi Crivellari
Dipartimento di Fisica, Università Roma Tre, Via della vasca navale 84, 00146 Rome, Italy
e-mail: ribezzi@fis.uniroma3.it

http://www.arxiv.org/abs/0807.4457
mailto:faggiona@mat.uniroma1.it
mailto:gabriell@univaq.it
mailto:ribezzi@fis.uniroma3.it


260 A. Faggionato et al.

1 Introduction

Piecewise deterministic Markov processes (PDMPs) are stochastic dynamical systems
whose state is described by a pair (x, σ ), where x is a continuous variable and σ is a dis-
crete variable. We take x ∈ � and σ ∈ �, � being a region in R

d or the d-dimensional torus,
� being a finite set. Motivated by applications to biochemical processes [13], we call x and
σ the mechanical and the chemical variable (or state) of the system, respectively. The chem-
ical state σ evolves by a random jump dynamics, while in the time intervals in which the
chemical state is kept constant and equal to some σ , the mechanical state x evolves accord-
ing to the deterministic σ -dependent ODE ẋ(t) = Fσ (x(t)). Since the probability rates of
chemical jumps can depend on x, the mechanical state x and the chemical one σ are dynam-
ically fully-coupled. In our analysis, we restrict to time-homogeneous PDMPs, i.e. both the
vector fields Fσ (x) and the probability rate λr(σ,σ ′|x) for a chemical jump from σ to σ ′ at
the x-mechanical state are time-independent. Above, λ is a positive parameter we will play
with in order to analyze some special regime. The above models can be used to describe
the overdamped motion of a particle in a viscous fluid under alternating force fields, as well
as some biochemical processes like molecular motors and gene regulation (see [13]; for a
detailed discussion of molecular motors see [15, 20, 22, 23]).

PDMPs are broadly used in applied sciences and engineering, and are a typical example
of what is called a stochastic hydrid system in control theory [8]. A mathematical analysis
of PDMPs has been started by Davis in [9] and the interested reader can find a detailed
mathematical treatment in [10]. Our interest here is mainly theoretical and inspired by the
physics of out-of-equilibrium systems. In particular, our investigation concerns the steady
state, the time-reversed process, the deviations of the system from its typical behavior at
large λ, a special fluctuation–dissipation relation and a Gallavotti–Cohen-type symmetry
relation. We discuss our results in more detail.

In general, under mixing assumptions, the steady state (stationary probability measure)
is unique and has density ρλ(x,σ ) on �×� which solves a system of differential equations
with zero-flux boundary conditions. We give exact solutions in dimension one, while for any
dimension we isolate a class of exactly solvable models for which ρλ has the special form

ρλ(x,σ ) = c(λ)e−λS(x)ρ(x, σ ), (1.1)

where c(λ) is a normalization factor depending only on λ. Given the stationary measure ρλ,
we consider the time-reversed (adjoint) version of the PDMP and we show that it is again
a PDMP, with inverted vector fields and transition rates λr+ which depend on the direct
rates r and on the stationary measure ρλ. In particular, our PDMPs typically describe out-
of-equilibrium systems, since reversibility appears only in the trivial case of vanishing force
fields. For exactly solvable models as in (1.1) we show that r+(·, ·|x) does not depend on λ

and that special symmetry relations hold.
In order to study the deviations of the system from its typical behavior, we introduce

a scaling procedure forcing the system to behave deterministically in the asymptotic limit.
Simply, we take the limit λ ↑ ∞. As result, the timescale of chemical jumps becomes infin-
itesimal w.r.t. the timescale of the mechanical evolution and the dynamics is a combination
of slow and fast motions. As one would expect, an averaging principle holds: the slow mo-
tion is well approximated by averaging the effect of the fast motion, considering the fast
(chemical) variable as locally equilibrated. In order to be more precise, let us assume that
for any x ∈ � the continuous-time Markov chain on � with jump rates r(·, ·|x) (x being
interpreted as frozen variable) is irreducible and therefore has a unique invariant probabil-
ity measure μ(·|x) on �. Then the above high frequency limit implies that, whenever the
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mechanical state of the PDMP is x, the chemical state is given by σ with probability well
approximated by μ(σ |x), while with probability tending to 1 the mechanical evolution x(t)

is well approximated by the deterministic path x∗(t) solving the Cauchy system{
ẋ∗(t) = F̄ (x∗(t)),
x∗(0) = x0,

(1.2)

x0 being the initial mechanical state and F̄ being the averaged vector field

F̄ (x) =
∑
σ∈�

μ(σ |x)Fσ (x).

The above averaging principle corresponds to a law of large numbers for the mechanical
evolution and, introducing suitable spaces and topologies, it can be extended to the joint
evolution (x(t), σ (t)) (see Sect. 3.4). A rigorous derivation of the averaging principle as
well as the large deviations (LD) principle for PDMPs can be found in the companion pa-
per [12].

Considering the chemical variable as hidden and taking the limit λ ↑ ∞, we analyze the
structure of fluctuations of the mechanical variable, i.e. deviations from its asymptotic deter-
ministic behavior (1.2), following ideas and results of [1, 2, 4, 5] for stochastic interacting
particle systems. A key identity observed in [2] is the Fluctuation–Dissipation (FD) relation

L(x, ẋ) = ∇V (x) · ẋ + L+(x,−ẋ), (1.3)

where V denotes the static LD functional of the steady state (in exactly solvable models
as in (1.1), V = S), while L and L+ are such that the LD functionals for the mechanical
dynamics of the PDMP and its time-reversed version are obtained by integrating along the
mechanical trajectories x(t) the functions L(x, ẋ) and L+(x, ẋ), respectively. As observed
in [1, 2, 4, 5] and recalled in Sect. 10, whenever the FD relation is satisfied, several physical
properties concerning the relaxation of the system hold. In [2] the authors derive the above
FD relation from the definition of the time-reversed process and from the Markov property
of the processes under considerations (the direct one and the time-reversed one). In our
case, the mechanical evolution x(t) is typically non Markovian, hence the validity of the FD
relation has to be investigated. When the dependence on the parameter λ of the transition
rates λr+ is linear or almost linear, as in the case of 1D system or in the case of exactly
solvable model with stationary measure (1.1), we can apply again our LD principle for
λ-rescaled PDMPs. Then, we show the validity of the FD relation for the entire class of
solvable PDMPs whose stationary measures satisfies (1.1) as well for PDMPs with two
chemical states on the one dimensional torus for which the stationary measure is not of the
form (1.1).

We briefly discuss a Gallavotti–Cohen-type symmetry relation for PDMPs. The natural
symmetry for this class of processes is different from time-reversal and the corresponding
action functional has a direct physical interpretation. We obtain in this way examples an-
swering a question raised at the end of Sect. 2.2 in [18]. See also [17] and [19] for other
examples and for more details and references on the Gallavotti–Cohen symmetry in the
framework of stochastic dynamics.

The paper is organized as follows. In Sect. 2 we give a detailed description of the model
and comment our basic assumptions. In Sect. 3 we collect and comment all the results of the
paper. Proofs and details are contained in the subsequent sections.
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We conclude with a remark. Being stochastic dynamical systems, PDMPs can have very
different behaviors and show special features. When possible we have tried to keep our
analysis at a general level, thus requiring some mathematical abstraction. On the other hand,
special dynamical mechanisms have been discussed directly by means of examples. More-
over, even in very simple examples standard stochastic tools used in the paper as the Markov
generator can become very delicate and subtle. The interested reader can find some insights
in Appendix and can refer to [10] for a general theory.

2 The Model

We consider stochastic models with state space � × �, where � is a finite set and �

is either a domain (i.e. open and connected subset) of R
d with regular boundary ∂�, or

the closure of a domain of R
d with regular boundary, or the d-dimensional torus R

d/Z
d .

A generic element of the state space is denoted by (x, σ ). Inspired by power-stroke models
of molecular motors, we call the variables x ∈ � and σ ∈ � the mechanical state and the
chemical state of the system, respectively. Their joint stochastic evolution can be described
as follows. The mechanical state x evolves continuously, while the chemical state σ jumps
at random times. When the chemical state is σ , the mechanical state evolves according to
the ordinary differential equation

ẋ(t) = Fσ (x(t)), (2.1)

where, for any σ ∈ �, Fσ (x) ∈ R
d is a vector field. If � is the d-dimensional torus, in the

above equation x is thought of as element of a box in R
d with periodic boundary conditions.

We assume that the vector fields Fσ have continuous extension to the closure � and satisfy
the Lipschitz condition

|Fσ (x) − Fσ (y)| ≤ Kσ |x − y|, ∀x, y ∈ �, (2.2)

for appropriate constants Kσ . Moreover, we assume that the mechanical evolution remains
confined inside the region �. This assumption together with (2.2) implies existence and
uniqueness of the mechanical trajectory.

The chemical state σ performs a jump stochastic dynamics with rates depending on the
mechanical state. More precisely, the jump rates are continuous functions r(σ,σ ′|x) : � ×
� × � → [0,∞). Without loss of generality we assume that

r(σ,σ |x) = 0, ∀(x, σ ) ∈ � × �.

Moreover, we set

γ (σ |x) =
∑
σ ′∈�

r(σ,σ ′|x). (2.3)

Given the initial state (x0, σ0) ∈ �×�, we consider the random variable τ1 with distribution

P(τ1 > t) =
{

e−λ
∫ t

0 γ (σ0|x0(s))ds , t ≥ 0,

1, t < 0.
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In the above formula λ is a positive parameter and x0(s) is the solution of the Cauchy
problem {

ẋ(t) = Fσ0(x(t)),

x(0) = x0.
(2.4)

The evolution of the system (mechanical state and chemical state) in the time interval [0, τ1)

is given by (x0(s), σ0). The chemical state σ(τ1) is then chosen in � according to the distri-
bution

P(σ (τ1) = σ) = r(σ0, σ |x(τ1))

γ (σ0|x(τ1))
.

In general, we denote by τk the random time of the k-th chemical jump and by (xk(s), σ (τk))

the state of the system at time s ∈ [τk, τk+1). We have that xk(s) solves (2.4) for the vector
field Fσ(τk) with initial condition xk(τk) := xk−1(τk) and that τk+1 is a random variable with
distribution

P(τk+1 > t) =
{

e
−λ
∫ t
τk

γ (σ (τk)|xk(s))ds
, t ≥ τk,

1, t < τk.
(2.5)

The chemical state σ(τk+1) is then chosen in � according to the distribution

P(σ (τk+1) = σ) = r(σ (τk), σ |x(τk+1))

γ (σ (τk)|x(τk+1))
.

In order to have a well-defined dynamics for all positive times we require that a.s. the family
of jump times τk has no accumulation point. This is always true if limk↑∞ τk = +∞ a.s.

The natural path space of the process (x(·), σ (·)) is given by the cartesian product

C([0, T ],�) × D([0, T ],�). (2.6)

The first component is the space of continuous functions from [0, T ] to �, while the second
component is the Skorokhod space of functions from [0, T ] to �, which are right continuous
and have left limits. We note that, due to relation (2.1), the mechanical trajectory {x(t)}t∈[0,T ]
is a piecewise differentiable function and it holds

ẋ(s) = Fσ(s)(x(s)), (2.7)

for any s ∈ [0, T ] where {σ(t)}t∈[0,T ] is continuous.
Given a point (x, σ ) ∈ � × �, we denote by P

λ
x,σ and E

λ
x,σ the law of the process

(x(·), σ (·)) starting in (x, σ ) and the associated expectation, respectively. When the initial
condition is a probability measure ν on � × � we use the symbols P

λ
ν and E

λ
ν respectively.

The above stochastic process (x(·), σ (·)) is called Piecewise Deterministic Markov
Process (PDMP) [9, 10]. In control theory, it is a typical example of stochastic hybrid sys-
tem [8]. Although the evolution of the mechanical state as well the evolution of the chemical
state are not Markovian, as proven in [9, 10] the joint evolution (x(·), σ (·)) is a strong
Markov process, whose Markov generator is formally

Lf (x,σ ) = Fσ (x) · ∇f (x,σ ) + λ
∑
σ ′∈�

r(σ,σ ′|x)
(
f (x,σ ′) − f (x,σ )

)
(2.8)
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where f : � × � → R. For any fixed x ∈ �, we call the x-dependent Markov generator
Lc[x] on � given by

Lc[x]f (σ) =
∑
σ ′∈�

r(σ,σ ′|x)
(
f (σ ′) − f (σ)

)
(2.9)

as chemical part of the generator L. Hence, we can write

Lf (x,σ ) = Fσ (x) · ∇f (x,σ ) + λLc[x]f (x,σ ).

Note that Lc[x] is the Markov generator of a continuous-time Markov chain on � where
jumps from σ to σ ′ take place with probability rate r(σ,σ ′|x). We will assume that for
any fixed x ∈ �, this Markov chain is irreducible and consequently has a unique stationary
measure μ(·|x), that we call quasistationary measure. In the particular case of two chemical
states, e.g. � = {0,1}, this condition reduces to the positivity of the rates r(0,1|x) and
r(1,0|x). In this case, the quasistationary measure is also reversible w.r.t. the Markov chain
on � with generator Lc[x] and is given by

μ(0|x) = r(1,0|x)

r(0,1|x) + r(1,0|x)
, μ(1|x) = r(0,1|x)

r(0,1|x) + r(1,0|x)
. (2.10)

2.1 Absence of Accumulation Points in {τk}k

As already stated, in order to have a well-defined dynamics for all positive times we require
that a.s. the family of random jump times τk has no accumulation point. This fact is implied
for example by the condition

sup
{x∈�}

max
{σ∈�}

γ (σ |x) < ∞. (2.11)

Indeed, calling C the l.h.s. of (2.11), due to (2.5) we get that P(τk+1 − τk > t) ≥ e−Cλt . This
allows to build a coupling between the family of random jump times τk and a Poisson point
process (PPP) on (0,∞) with density Cλ such that all jump times τk belong to the PPP.
Since a.s. the PPP has no accumulation point, the same property holds for the family of
jump times τk and this proves our claim.

One can even weaken condition (2.11). Due to the irreducibility assumption for Lc[x], the
absence of accumulation points for the family of jump times τk is implied by the condition

sup
{x∈�}

min{σ∈�}γ (σ |x) < +∞ (2.12)

and some other additional assumptions. Without trying to give some general criterion, in or-
der to explain the mechanism we have in mind we discuss in Appendix A an example where
(2.12) is valid and (2.11) is violated, while the family of jump times τk has no accumulation
point.

We will mainly be interested in models such that a.s. the family of random jumps times
τk is infinite. A sufficient condition to obtain this behavior is given by

inf{x∈�} min{σ∈�} γ (σ |x) > 0. (2.13)

In fact, with arguments similar to the ones after (2.11), it can be shown that the family of
jump times dominates a PPP. We discuss in Appendix B an example of a PDMP that violates
(2.13) and has a.s. a finite number of chemical jumps.
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2.2 Confinement in �

As already stated, we assume that the mechanical trajectory x(t) remains confined inside �.
If � is the d-dimensional torus, this assumption is trivially satisfied. Let us consider the
case � ⊂ R

d . Then, it is necessary that there is zero flux through the boundary. A sufficient
condition is given by

Fσ (x) · n(x) ≤ 0, ∀σ ∈ �, x ∈ ∂�, (2.14)

where · denotes the Euclidean scalar product in R
d , while n(x) denotes the outward normal

to ∂�. If � includes its boundary ∂�, the above condition is enough to have confinement,
otherwise one can require in addition to (2.14) that

Fσ (x) = 0 ∀x ∈ ∂� s.t. Fσ (x) · n(x) = 0. (2.15)

This condition excludes the presence of orbits tangent to the boundary at some point.
Another condition assuring the confinement of x(t) is the following. We take � ⊂ R

d

open for simplicity. For any σ ∈ � and x0 ∈ ∂�, consider the trajectory x(t) starting in
x0 with reversed vector field −Fσ (x), namely ẋ(t) = −Fσ (x(t)). If this trajectory is well
defined in some time interval [0, t0) such that x(t) ∈ � for all t ∈ (0, t0), then one can require
that ∫ t0

0
γ (σ |x(s))ds = +∞. (2.16)

We claim that the mechanical evolution is kept bounded inside � by a stochastic mechanism.
In fact, condition (2.16) guarantees that if the mechanical trajectory is pointing towards x0,
with probability one there is a jump to a new chemical state before reaching x0. Now again,
if the mechanical trajectory associated to the new chemical state is pointing towards a point
x1 ∈ ∂�, with probability one there is a jump to a new chemical state before reaching x1. In
order to reach the boundary ∂� in a finite time, the system should perform infinite chemical
jumps in that time interval, which is not possible due to our assumptions. In the examples
discussed below, the above two criteria for the mechanical confinement inside open �’s are
often dual: if the system is confined due to (2.14) and (2.15), the time-reversed system will
be confined due to (2.16).

2.3 Markov Generator

As discussed in [10], if the jump rates r(σ,σ ′|x) are not uniformly bounded, it is a difficult
task to characterize exactly the domain D(L) of the generator L. Moreover, D(L) could not
contain very regular functions. Let us stress this last point by means of a simple example
discussed in detail in Appendix A. We take � = (0,1), � = {0,1}, F0(x) = −1, F1(x) = 1,
r(0,1|x) = 1/x, r(1,0|x) = 1/(1 − x). The associated PDMP satisfies all our assumptions.
Indeed, Lc[x] has a unique invariant measure, the number of jumps in a finite interval is
finite a.s. due to (2.12) (see Appendix A), while the mechanical confinement in � is implied
by (2.16). As discussed in Appendix A, the very regular function f (x,σ ) = σ does not
belong to the domain D(L).

We will see that the time-inversion of a mechanically confined PDMP is a PDMP with
unbounded jump rates, hence this case cannot be considered as exceptional in our analy-
sis. On the other hand, all the above technical problems concerning the Markov genera-
tor can be avoided by working with a weaker notion of generator, the extended genera-
tor, introduced by Davis. We refer the interested reader to [9, 10], while for the sake of
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simplicity we will often keep the discussions involving the Markov generators at a formal
level.

3 Main Results

In this section we present and comment our main results. We collect them into several Propo-
sitions, some of which are real mathematical propositions with a rigorous proof, while oth-
ers are facts derived by arguments outlined in a more physical style, which anyway can
be made rigorous. The results concerning large deviations and fluctuation theory are stated
with a sloppy notation, avoiding some mathematical technicalities. Again, with additional
work one can fill the gaps. Finally, in order to shorten formulas from now on we write
{x(t), σ (t)}t∈[0,T ] for the trajectory of the PDMP in the time interval [0, T ], omitting the
brackets in (x(t), σ (t)).

3.1 Stationarity

Our results concerning stationarity are derived by standard methods in the theory of stochas-
tic processes. The details are discussed in Sect. 5.

A probability measure (distribution) ρλ on � × � is called invariant, or stationary, if
for any time t ≥ 0 the pair (x(t), σ (t)) is distributed according to ρλ when the process has
initial distribution ρλ. In this case, the process can be univocally defined for all times t ∈ R

requiring that its law does not change under time-shifts.
Existence and uniqueness of the stationary distribution of a PDMP can be non trivial and

the analysis can be very model-dependent. If � is bounded one can deduce the existence of a
stationary distribution as follows. Fixed any initial distribution ν, we write νs for the law of
(x(s), σ (s)) under P

λ
ν . By compactness arguments (cf. [6]), the family of Cesaro averages

ν̃t := t−1
∫ t

0 νsds admits a subsequence ν̃tn , with tn ↑ ∞, converging to some probability
measure ν∗ on �̄ × �. If � is closed or if � is open and ν∗(∂�) = 0, then by standard
arguments one can show that ν∗ is a stationary probability measure for the PDMP. The fact
that ν∗(∂�) = 0 for � ⊂ R

d can be verified for example if, when approaching the boundary,
the system typically jumps to a chemical state σ with a vector field Fσ of order one pointing
inside �. We will come back to this mechanism in Appendix A. Other existence criteria are
given in [10].

The following differential characterization of ρλ holds:

Proposition 3.1 Suppose that ρλ =∑
σ ρλ(x, σ )dxδσ is an invariant distribution for the

PDMP such that ρλ(·, σ ) ∈ C1(�) for all σ ∈ �. Then

λ
∑
σ ′∈�

(
ρλ(x,σ ′)r(σ ′, σ |x) − ρλ(x,σ )r(σ,σ ′|x)

)= ∇ · (ρλ(x,σ )Fσ (x)
)

(3.1)

for all (x, σ ) ∈ �◦ × �, �◦ being the interior part of �. Moreover, if � is an open subset of
R

d and supσ,σ ′,x r(σ, σ ′|x) < ∞, then(
ρλ(x,σ )Fσ (x) · n(x)

)∣∣
x∈∂�

= 0, ∀σ ∈ �. (3.2)

If � is the closure of a domain in R
d the boundary condition can differ from (3.2),

depending on the dynamics of the PDMP at the boundary.
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3.2 Reversibility

The results of this subsection are direct consequence of the general theory of Markov
processes but reveal some interesting and hidden symmetries of PDMPs. The proofs are
discussed in Sect. 6.

If the PDMP is stationary we can define its time-reversed version. To this aim, we intro-
duce the time-reversal operator T on C(R,�) × D(R,�) setting

T
[{

x(t), σ (t)
}

t∈R

] := {x(−t), σ (−t)
}

t∈R
. (3.3)

Above we understand that the path we take in the r.h.s. of (3.3) is the unique path in
C(R,�) × D(R,�) given by (x(−t), σ (−t)) at all continuity points t . If P

λ
ρλ

is the law
of the original process, then P

λ,+
ρλ

:= P
λ
ρλ

◦ T −1 is the law of the time-reversed (adjoint)
process. If the two laws coincide, one says that the process with law P

λ
ρλ

is reversible and
that ρλ is a reversible measure for the process.

Proposition 3.2 If the process P
λ
ρλ

is stationary, then P
λ,+
ρλ

is the law of the PDMP with state
space � × �, initial distribution ρλ, force fields

F+
σ (x) := −Fσ (x) (3.4)

and jump rates λr+(σ,σ ′|x) where

r+(σ,σ ′|x) := r(σ ′, σ |x)
ρλ(x, σ ′)
ρλ(x, σ )

. (3.5)

Since by the above proposition P
λ,+
ρλ

is a PDMP, by considering the transition probability
kernels of P

λ,+
ρλ

one can easily define the adjoint process with arbitrary initial distribution ν.
We will denote P

λ,+
ν its law on C(R+,�) × D(R+,�).

We point out that for the definition (3.5) of the reversed rates one has to assume some
spatial irreducibility of the system implying the positivity of ρλ(x,σ ). Moreover, due to the
above result, the generator of the adjoint process can be written as

L+f (x,σ ) = −Fσ (x) · ∇f (x,σ ) + λ
∑
σ ′∈�

r(σ ′, σ |x)
ρλ(x, σ ′)
ρλ(x, σ )

(
f (x,σ ′) − f (x,σ )

)
. (3.6)

We can write (3.6) as

L+f (x,σ ) = −Fσ (x) · ∇f (x,σ ) + λL+
c [x]f (x,σ ). (3.7)

We stress that L+
c [x] denotes the chemical part of the adjoint generator L+. In general, this

is different from the operator Lc[x]+, defined as the adjoint in L2(μ(·|x)) of the chemical
part Lc[x] of the generator L:

L+
c [x] �= Lc[x]+. (3.8)

Note that in general the reversed rates can be λ-dependent, thus implying that the chemi-
cal part L+

c [x] of the adjoint generator can also be λ-dependent. Due to the irreducibility of
Lc[x] and identity (3.5), L+

c [x] is irreducible for all x ∈ �. We call μ+(·|x) the quasistation-
ary measure associated to L+

c [x] and we remark that it can be λ dependent. The following
result holds:
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Proposition 3.3 If for any fixed x ∈ � the chemical part Lc[x] of the direct generator L is
reversible with respect to the quasistationary measure μ(·|x), then also the chemical part of
the adjoint process L+

c [x] is reversible with respect to its quasistationary measure μ+(·|x)

for any x ∈ � and moreover it holds

μ+(σ |x) = ρ2
λ(x, σ )

μ(σ |x)Zλ(x)
, (3.9)

where Zλ(x) is the normalization constant.

Finally, a comment about reversibility: due to our results, the direct PDMP can be re-
versible only if all the vector fields Fσ are identically zero. In this case the mechanical state
remains constant and the model reduces to the continuous time Markov chain σ(·).

3.3 Exactly Solvable Models

In this subsection we present our first main result concerning a class of models whose in-
variant distribution can be explicitely computed by a method outiled below. All proofs are
postponed to Sect. 8, while examples and applications are discussed in Sect. 9.

In Sect. 7 we discuss some 1D models (� interval or 1D torus) with two chemical states,
for which it is possible to compute explicitly the invariant distribution. In the general case
this can be a very difficult task, but our exact solutions of the 1D models suggest to look for
invariant distributions of the form

ρλ(x,σ ) = c(λ)e−λS(x)ρ(x, σ ), (3.10)

where c(λ) is a normalization factor depending only on λ, S(x) is a function depending only
on x and ρ(x,σ ) is a measure density on � × � non depending on λ.

If the PDMP has invariant distribution of the form (3.10), then due to Proposition 3.2 the
rates r+ of the adjoint process do not depend on λ:

r+(σ,σ ′|x) = r(σ ′, σ |x)
ρ(x,σ ′)
ρ(x,σ )

. (3.11)

In particular, the chemical part L+
c [x] of the adjoint generator L+ as well as its quasistation-

ary measure μ+(·|x) do not depend on λ. Moreover, if Lc[x] is reversible with respect to
the quasistationary measure μ(·|x), then (3.9) becomes

μ+(σ |x) = ρ2(x, σ )

μ(σ |x)Z(x)
. (3.12)

Let us now analyze when (3.10) can be a solution of the stationary equations (3.1):

Proposition 3.4 The function (3.10) solves (3.1) for any λ > 0 if and only if for any σ ∈ �

it holds{
∇ · (ρ(x,σ )Fσ (x)) = 0,∑

σ ′∈�(ρ(x,σ )r(σ,σ ′|x) − ρ(x,σ ′)r(σ ′, σ |x)) = ∇S(x) · (ρ(x,σ )Fσ (x)).
(3.13)
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The first equation in (3.13), one for any fixed σ ∈ �, can be written as

∇ϕ(x,σ ) · Fσ (x) = −∇ · Fσ (x), (3.14)

where we set ϕ(x,σ ) = logρ(x,σ ) (here and below we suppose that ρ(x,σ ) > 0 for all
(x, σ ) ∈ � × � due to some mixing property of the system). Under the same assumption,
the second equation, one for any fixed σ ∈ �, can be written in the equivalent form

γ (σ |x) − γ +(σ |x) = ∇S(x) · Fσ (x). (3.15)

Equation (3.14) is a non-homogeneous transport equation along the orbits of the vector
fields Fσ . The important fact is that, as σ varies, these equations are uncoupled, hence one
can easily integrate them, as discussed in Sect. 8.2, and determine ρ(x,σ ) up to arbitrary
initial data.

Once determined ρ(x,σ ), we need to find a function S satisfying the second group of
equations in (3.13). To this aim let us set

D(x,σ ) :=
∑
σ ′∈�

(
ρ(x,σ )r(σ,σ ′|x) − ρ(x,σ ′)r(σ ′, σ |x)

)
. (3.16)

Proposition 3.5 Assume that there exists �(x) ⊆ � with the property that the vectors
{ρ(x,σ )Fσ (x)}σ∈�(x), are linearly independent and satisfy

Span{ρ(x,σ )Fσ (x)}σ∈�(x) = Span{ρ(x,σ )Fσ (x)}σ∈� = R
d , (3.17)

where span denotes the spanned vector space. For any σ ∗ �∈ �(x) denote by cσ (σ ∗, x) the
unique real numbers such that

ρ(x,σ ∗)Fσ∗(x) =
∑

σ∈�(x)

cσ (σ ∗, x)ρ(x,σ )Fσ (x). (3.18)

Moreover, let {Ai,σ (x)}σ∈�(x)

i∈{1,...,d} be the d × d matrix such that Ai,σ (x) = ρ(x,σ )Fσ (x) · ei ,
where (ei,1 ≤ i ≤ d) denotes the canonical basis of R

d .
Then there exists a function S : � → R solving the second group of equations in (3.13) if

and only if

D(x,σ ∗) =
∑

σ∈�(x)

cσ (σ ∗, x)D(x,σ ) ∀σ ∗ �∈ �(x) (3.19)

and the differential form ω on � defined as

ω =
d∑

i=1

( ∑
σ∈�(x)

A−1
σ,i (x)D(x,σ )

)
dxi (3.20)

is exact. In this case it holds

S(x) =
∫

γx∗,x

ω + S(x∗), (3.21)

where x∗ is an arbitrary point in � and γx∗,x is an arbitrary path in � from x∗ to x, while
S(x∗) can be arbitrarely chosen.
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We recall that, when the domain � is simply connected, exactness of ω is equivalent to
say that

∂xi

( ∑
σ∈�(x)

A−1
σ,j (x)D(x,σ )

)
= ∂xj

( ∑
σ∈�(x)

A−1
σ,i (x)D(x,σ )

)
, ∀i �= j. (3.22)

Above we have outlined a method to construct solutions of (3.1) having the special
form (3.10). To ensure that these solutions coincide with the invariant distributions of the
PDMP, one has to impose the boundary conditions (3.2) if � is a bounded domain in R

d ,
or periodic boundary conditions in x if � is the d-dimensional torus. This has to be done,
when possible, using the arbitrariness in the initial data in the above construction. Several
examples will be discussed in Sect. 9.

We end with some remarks. The assumption (3.17) together with independence implies
that d = |�(x)|. Moreover, since ρ(x,σ ) > 0, (3.17) is equivalent to the condition

Span{Fσ (x)}σ∈�(x) = Span{Fσ (x)}σ∈� = R
d . (3.23)

Since by definition (3.16) the sum
∑

σ∈� D(x,σ ) must be zero and since by (3.13) it holds
D(x,σ ) = ∇S(x) · (ρ(x,σ )Fσ (x)), it must be

∇S(x) ·
(∑

σ∈�

ρ(x,σ )Fσ (x)

)
= 0. (3.24)

In particular, the orbits of the vector field
∑

σ∈� ρ(x,σ )Fσ (x) must lie inside the level
curves of S.

3.4 Averaging and Large Deviation Principles in the High Frequency Limit

We concentrate now on the asymptotic behavior of our PDMPs and their time-reversed ver-
sions as the parameter λ diverges to infinity. By this limit, the frequency of chemical jumps
diverges and the timescale of chemical jumps becomes infinitesimal w.r.t. the relaxation time
of the mechanical state. In this subsection we recall some of our results rigorously proved
in [12], concerning the high frequency regime. This results will be the starting point for the
fluctuation theory presented in the next subsections.

Let us first fix some notation. Writing � = {σ1, . . . , σ|�|}, we associate to a chemical
trajectory {σ(t)}t∈[0,T ] ∈ D([0, T ],�) the following time-dependent d-dimensional vector

{
σ(t)

}
t∈[0,T ] → {

χ(t)
}

t∈[0,T ] = {(χσ1(t), . . . , χσ|�|(t)
)}

t∈[0,T ] ,

where

χσ (t) =
{

1, if σ(t) = σ,

0, if σ(t) �= σ.

We denote by M([0, T ]) the space of nonnegative finite measures on the interval [0, T ],
endowed with the weak convergence topology. Then we isolate the subspace M0([0, T ]) ⊂
M([0, T ]) given by the measures that are absolutely continuous w.r.t. the Lebesgue mea-
sure. We can interpret {χ(t)}t∈[0,T ] as an element of the cartesian product M0([0, T ])�

by identifying χσ (t) with the measure χσ (t)dt . If our PDMP starts in the state (x0, σ0),
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we can think its evolution {x(t),χ(t)}t∈[0,T ] as an element of the following subset Yx0 of
C([0, T ],�) × M0([0, T ])� :

Yx0 =
{
{x(t),χ(t)}t∈[0,T ] ∈ C([0, T ],�) × M0([0, T ])� :
∑
σ∈�

χσ (t) = 1 a.e., x(t) = x0 +
∫ t

0

∑
σ∈�

χσ (s)Fσ (x(s))ds

}
. (3.25)

In the above formula and hereafter we identify measures in M0([0, T ]) with their cor-
responding densities. It can be proved (cf. [12]) that Yx0 is a compact subspace of
C[0, T ] × M[0, T ]� , with the topology defined from the metric

d
({x(t),χ(t)}t∈[0,T ], {x̄(t), χ̄(t)}t∈[0,T ]

)
= sup

t∈[0,T ]
|x(t) − x̄(t)| +

∑
σ∈�

sup
0≤t≤T

∣∣∣∣
∫ t

0

[
χσ (s) − χ̄σ (s)

]
ds

∣∣∣∣. (3.26)

The following averaging and dynamic large deviations principles hold:

Proposition 3.6 [12]

(i) Given (x, σ ) ∈ � × �, define the mean vector field F̄ (x) as

F̄ (x) =
∑
σ∈�

μ(σ |x)Fσ (x). (3.27)

Given the initial state (x0, σ0) of the PDMP, call {x∗(t),χ∗(t)}t∈[0,T ] the unique element
of Yx0 such that ⎧⎪⎨

⎪⎩
ẋ∗(t) = F̄ (x∗(t)),
x∗(0) = x0,

χ∗
σ (t) = μ(σ |x∗(t)).

(3.28)

Then,

lim
λ→∞ P

λ
x0,σ0

[
{x(t),χ(t)}t∈[0,T ] ∈ Yx0 :

d
({

x(t),χ(t)
}

t∈[0,T ],
{
x∗(t),χ∗(t)

}
t∈[0,T ]

)
> δ
]

= 0, ∀δ > 0, (3.29)

where the law P
λ
x0,σ0

of the PDMP starting at (x0, σ0) and having parameter λ is thought
of as a probability distribution on Yx0 .

(ii) Set W := {(σ,σ ′) ∈ � × � : σ �= σ ′} and, for any (x,χ) ∈ � × [0,1]� define

j (x,χ) := sup
z∈(0,∞)�

∑
(σ,σ ′)∈W

χσ r(σ,σ ′|x)

[
1 − zσ ′

zσ

]
. (3.30)

Then, for any fixed path {x̂(t), χ̂(t)} ∈ Yx0 , it holds

P
λ
x0,σ0

[
{x(t),χ(t)}t∈[0,T ] ∈ Yx0 : {x(t),χ(t)

}
t∈[0,T ] ≈ {x̂(t), χ̂(t)

}
t∈[0,T ]

]
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∼ e−λJ[0,T ]({x̂(t),χ̂ (t)}t∈[0,T ]), (3.31)

where the rate functional J[0,T ] : Yx0 → [0,∞) is given by

J[0,T ]
({

x(t),χ(t)
}

t∈[0,T ]
) :=

∫ T

0
j
(
x(t),χ(t)

)
dt. (3.32)

In the above formula (3.31) the symbol ≈ means closeness in the metric of Yx0 while
the symbol ∼ means asymptotic logarithmic equivalence in the limit of diverging λ. A more
precise statement can be found in [12].

If, given x ∈ �, the chemical part Lc[x] of the generator is reversible w.r.t. the quasi-
stationary measure μ(·|x), then one can solve the variational problem (3.30) (see [12] for
details) getting

j (x,χ) =
∑

σ

γ (σ |x)χσ −
∑

(σ,σ ′)∈W

√
μ(σ |x)

μ(σ ′|x)
r(σ,σ ′|x)

√
χσ

√
χσ ′ . (3.33)

In particular if � = {0,1} one gets

j (x,χ) =
(√

χ0r(0,1|x) −√χ1r(1,0|x)
)2

. (3.34)

3.5 LDP for the Mechanical State

It is natural to analyze the statistical behavior of the mechanical variables alone, since often
the chemical variables remain hidden to direct observations. The following result can be eas-
ily obtained from the LD Principle in Proposition 3.6 by means of the contraction principle
[11] and we omit the proof:

Proposition 3.7 Given an element {x̂(t)}t∈[0,T ] ∈ C([0, T ],�), for each initial state (x0, σ0)

it holds

P
λ
x0,σ0

({x(t)}t∈[0,T ] : {x(t)}t∈[0,T ] ≈ {x̂(t)}t∈[0,T ]
)∼ e

−λJm[0,T ]({x̂(t)}t∈[0,T ]), (3.35)

where the rate functional Jm
[0,T ] : C([0, T ],�) → [0,∞] is defined as

Jm
[0,T ]

({x(t)}t∈[0,T ]
) := inf

{{χ(t)}t∈[0,T ]:{x(t),χ(t)}t∈[0,T ]∈Yx0 }
J[0,T ]

({x(t),χ(t)}t∈[0,T ]
)
. (3.36)

In particular,

Jm
[0,T ]

({x(t)}t∈[0,T ]
)=

{∫ T

0 jm(x(t), ẋ(t))dt, if x(·) ∈ Y m
x0

,

+∞, otherwise,
(3.37)

where

Y m
x0

:=
{{

x(t)
}

t∈[0,T ] : ∃{χ(t)}t∈[0,T ] s.t. {x(t),χ(t)}t∈[0,T ] ∈ Yx0

}
,

and the density jm(x, ẋ) is given by

jm(x, ẋ) = inf
{χ : ẋ=∑σ χσ Fσ (x)}

j (x,χ). (3.38)

In the above formula, χ varies among vectors in [0,1]� such that
∑

σ χσ = 1.
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In general an explicit computation of jm depends on the specific model we are dealing
with. In formula (3.38) we are minimizing over all possible convex decompositions of the
vector ẋ with respect to the collection of vectors {Fσ (x)}σ∈� . A special case is when for
any x ∈ � the collection of vectors {Fσ (x)}σ∈� are the vertices of a simplex, i.e. the vectors
{Fσj

− Fσ1 : 2 ≤ j ≤ |�|} are independent (writing � = {σj : 1 ≤ j ≤ |�|}). In this case
if the vector ẋ belong to C({Fσ (x)}σ∈�), where the symbol C(·) denotes the convex hull,
then there exists a unique probability measure on �, χF (ẋ), such that ẋ =∑σ χF

σ (ẋ)Fσ (x).
The χF (ẋ) are called the barycentric coordinates of ẋ with respect to the collection of
vectors {Fσ (x)}σ∈� . The upper index F indicates the dependence on the vector fields, the
dependence on x is understood. When ẋ �∈ C({Fσ (x)}σ∈�) then the infimum in (3.38) is over
an empty set and we obtain

jm(x, ẋ) =
{

j (x,χF (ẋ)), if ẋ ∈ C ({Fσ (x)}σ∈�) ,

+∞, otherwise.
(3.39)

We will compute the rate density jm(x, ẋ) in specific examples.

3.6 LDP for the Time-Reversed Process

In this subsection we compute large deviation rate functionals for the time-reversed version
of the PDMPs in the class of exactly solvable models introduced in Sect. 3.3. This compu-
tation follows from the results mentioned in Sect. 3.4, since for our exactly solvable models
the chemical part of the adjoint generator is λ-independent. In this investigation, a key role
is played by the symmetries pointed out in Sect. 3.3

Since the adjoint (time-reversed) process of our PDMP is again a PDMP with reversed
vector fields, the space on which it is natural to study the adjoint process and its limiting
behavior is Y +

x0
having the same definition of Yx0 (cf. (3.25)) but with Fσ replaced by −Fσ .

For models having invariant measure of the form (3.10), the rates r+ of the adjoint process
do not depend on λ so that a LDP for the adjoint process can be obtained using again the
results of [12]:

Proposition 3.8 Consider a PDMP having an invariant measure of the form (3.10). Then
we have

P
λ,+
x0,σ0

({
x(t),χ(t)

}
t∈[0,T ] ∈ Y +

x0
: {x(t),χ(t)

}
t∈[0,T ] ≈ {x̂(t), χ̂(t)

}
t∈[0,T ]

)

∼ e
−λJ+

[0,T ]({x̂(t),χ̂ (t)}t∈[0,T ]), (3.40)

where

J+
[0,T ]

({
x(t),χ(t)

}
t∈[0,T ]

) :=
∫ T

0
j+(x(t),χ(t)

)
dt,

j+(x,χ) := sup
z∈(0,∞)�

∑
(σ,σ ′)∈W

χσ r+(σ,σ ′|x)

[
1 − zσ ′

zσ

]
.

(3.41)

In the above formula P
λ,+
x0,σ0

is the probability measure on Y +
x0

induced by the adjoint process
with parameter λ and initial condition (x0, σ0).
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Let us assume now, as done for (3.33), that for all x ∈ � the chemical part Lc[x] of the
direct generator is reversible w.r.t. the quasistationary measure μ(·|x). Then we know that
the same property holds for the adjoint process with μ(·|x) replaced by μ+(·|x). In this case,
similarly to (3.33) and using relations (3.11) and (3.12), we obtain

j+(x,χ) =
∑

σ

γ +(σ |x)χσ −
∑

(σ,σ ′)∈W

√
μ(σ |x)

μ(σ ′|x)
r(σ,σ ′|x)

√
χσ

√
χσ ′ . (3.42)

As the reader can check, the proof of the LDP in [12] remains valid for PDMPs
with λ-dependent rates r(σ,σ ′, λ|x) obtained as perturbation of λ-independent rates, i.e.
r(σ,σ ′, λ|x) = r(σ,σ ′|x)(1+o(1)). Hence, the above result (3.40) can be extended to more
general processes with invariant measures not of the form (3.10). We will discuss an example
in Sect. 11.2.

Similarly to Proposition 3.7 one can consider the LD rate functional J
m,+
[0,T ] : C([0, T ],�)

→ [0,∞] for the evolution of the mechanical state in the adjoint process.

Proposition 3.9 Consider a PDMP having an invariant distribution of the form (3.10).
Given an element {x̂(t)}t∈[0,T ] ∈ C([0, T ],�), for each initial state (x0, σ0) it holds

P
λ,+
x0,σ0

({x(t)}t∈[0,T ] : {x(t)}t∈[0,T ] ≈ {x̂(t)}t∈[0,T ]
)∼ e

−λJ
m,+
[0,T ]({x̂(t)}t∈[0,T ]), (3.43)

where the rate functional J
m,+
[0,T ] : C([0, T ],�) → [0,∞] is defined as

J
m,+
[0,T ]

({x(t)}t∈[0,T ]
)= inf

{{χ(t)}t∈[0,T ]:{x(t),χ(t)}t∈[0,T ]∈Y +
x0 }

J+
[0,T ]({x(t),χ(t)}t∈[0,T ]). (3.44)

In particular,

J
m,+
[0,T ]

({x(t)}t∈[0,T ]
)=

{∫ T

0 j+
m (x(t), ẋ(t))dt, if x(·) ∈ Y m,+

x0
,

+∞, otherwise,
(3.45)

where

Y m,+
x0

:=
{
{x(t)}t∈[0,T ] : ∃{χ(t)}t∈[0,T ] s.t. {x(t),χ(t)}t∈[0,T ] ∈ Y +

x0

}
and the density j+

m (x, ẋ) is given by

j+
m (x, ẋ) = inf

{χ : ẋ=−∑σ χσ Fσ (x)}
j+(x,χ). (3.46)

In the above formula, χ varies among vectors in [0,1]� such that
∑

σ χσ = 1.

If the collection of vectors {Fσ (x)}σ∈� are the vertices of a simplex for any x ∈ �, then
this holds also for the vectors {−Fσ (x)}σ∈� and consequently we have

j+
m (x, ẋ) =

{
j (x,χ−F (ẋ)), if ẋ ∈ C ({−Fσ (x)}σ∈�) ,

+∞, otherwise.
(3.47)

Trivially, C({−Fσ (x)}σ∈�) = −C({Fσ (x)}σ∈�) and χ−F (ẋ) = χF (−ẋ).
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3.7 Fluctuation Theory

In this subsection we present our second main result concerning the fluctuations of the me-
chanical state of our PDMPs, following ideas and results developed in [1, 2, 4, 5] for in-
teracting particle systems and inspired by the Freidlin and Wentzell theory for diffusion
processes [14]. As we will show, PDMPs are a natural source of examples where the macro-
scopic fluctuation theory applies. A key identity in this theory is given by the Fluctuation–
Dissipation (FD) relation (1.3). In [2] this relation is a direct consequence of the Markov
property, while the mechanical evolution of our PDMPs is not Markov. Hence, the FD re-
lation cannot be taken for granted in our case. On the other hand, as stressed in Sect. 4,
its validity automatically implies several interesting consequences without any request of
Markovianity.

Proofs and details are given in Sects. 4 and 10. In particular, in Sect. 4 we review the main
ideas of the macroscopic fluctuation theory of Bertini et al. in the framework of stochastic
processes having continuous trajectories in �. In Sects. 10.1 and 10.2 we prove respectively
Propositions 3.10 and 3.11. In Sect. 10.3 we propose a conjecture concerning the FD rela-
tion. Finally, in Sect. 10.4 we discuss as example the FD relation in the case of 1D PDMPs
with two chemical states. Other results related to fluctuations in 1D PDMP are presented in
the next subsection.

Since {x(t)}t≥0 is not Markov, there is not a natural notion of invariant distribution. This
has to be replaced by the projection ρ̂λ on the x component of the invariant distribution of
the PDMP:

ρ̂λ(x) :=
∑

σ

ρλ(x, σ ). (3.48)

The following static LDP holds:

Proposition 3.10 Consider a PDMP having an invariant measure of the form (3.10). Then
for any fixed x∗ ∈ � it holds

ρ̂λ

(
x ∈ � : x ≈ x∗

)∼ e−λV (x∗), (3.49)

where the rate functional V is given by

V (x) = S(x) − inf
y∈�

S(y). (3.50)

The above proposition states that, up to an additive constant, the function S coincides
with the rate functional V . As the reader can easily check, this fact together with the follow-
ing main result implies the FD relation (1.3) with Lagrangians given by jm and j+

m :

Proposition 3.11 Consider a PDMP having an invariant measure of the form (3.10). Then
for any x ∈ � and ẋ ∈ R

d , the following symmetry relation holds

jm(x, ẋ) = ∇S(x) · ẋ + j+
m (x,−ẋ). (3.51)

3.8 One Dimensional Models

We present the third group of our main results concerning exactly computations for 1D
PDMPs with two chemical states. The proofs of Proposition 3.12 and of the first two points
of Proposition 3.13 are given in Sect. 7, while the third point of Proposition 3.13 is proved
in Sect. 11.2.
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We first consider the case � = (a, b) and � = {0,1}. For simplicity we restrict to non
vanishing vector fields (the general case leads to a much richer discussion, cf. [21]). Triv-
ially, if the vector fields have the same sign, then a mechanical drift is present and no sta-
tionarity can exist. The case of opposing vector fields and �-confinement due to (2.14) is
treated in the next proposition:

Proposition 3.12 Take � = (a, b) ⊂ R and � = {0,1}. Consider vector fields F0,F1 such
that (i) F0(x) < 0 and F1(x) > 0 for all x ∈ (a, b), (ii) F0(a) = F1(b) = 0, and assume that
the jump rates r(0,1|x), r(1,0|x) are positive and bounded from above. Then the PDMP
has a unique stationary distribution and this has density

ρλ(x, i) = e
−λ
∫ x
x∗ (

r(0,1|z)
F0(z)

+ r(1,0|z)
F1(z)

)dz

Z|Fi(x)| , i = 0,1, (3.52)

where x∗ is a generic element of (a, b), when the normalization constant Z exists.
If the jump rates vary in the interval (c1, c2) with c1, c2 > 0, while F1(x) and F0(x) are

of order one near a and b respectively, then Z is well defined.

Note that for the 1D example in Appendix B the normalization of (3.52) is not possible
and the invariant probability measures are not absolutely continuous.

We point out the above stationary distribution has the form (3.10). Moreover, due to (3.5)
the λ-independent jump rates of the time-reversed process are

{
r+(0,1|x) = r(1,0|x)

|F0(x)|
|F1(x)| ,

r+(1,0|x) = r(0,1|x)
|F1(x)|
|F0(x)| .

Due to the above formula, if F0(b) < 0 and F1(a) > 0, then the �-confinement of the time-
reversed process is related to (2.16), while in the direct process the �-confinement is related
by (2.14).

We consider now the toroidal case � = R/Z. In the formulas below we will think of the
jump rates and of the vector fields also as periodic functions on R, with period 1.

Proposition 3.13 Let � be the 1D torus R/Z and let � = {0,1}. Consider non vanishing
vector fields F0,F1 on � and assume that r(0,1|x), r(1,0|x) > 0 for all x ∈ �. Define
S : R → R as

S(x) :=
∫ x

0

(
r(0,1|z)
F0(z)

+ r(1,0|z)
F1(z)

)
dz, x ∈ R. (3.53)

Then the following holds:

(i) The PDMP has a unique invariant distribution, and this has density{
ρλ(x,0) := k

F0(x)

∫ x+1
x

[ r(1,0|y)

F1(y)
eλ(S(y)−S(x))]dy,

ρλ(x,1) := k
F1(x)

∫ x+1
x

[ r(0,1|y)

F0(y)
eλ(S(y)−S(x))]dy,

(3.54)

where k is the normalizing constant, always well defined.
(ii) if the function S is periodic with period 1, or equivalently if the equilibrium condition∫ 1

0

(
r(0,1|z)
F0(z)

+ r(1,0|z)
F1(z)

)
dz = 0 (3.55)
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is satisfied, then setting C(λ) = ∫ 1
0

r(1,0|y)

F1(y)
eλS(y)dy (3.54) read

{
ρλ(x,0) = kC(λ)

F0(x)
e−λS(x),

ρλ(x,1) = −kC(λ)

F1(x)
e−λS(x),

(3.56)

and in particular the invariant distribution is of the form (3.10).
(iii) For any fixed x∗ ∈ � it holds

ρ̂λ

(
x ∈ � : x ≈ x∗

)∼ e−λW(x∗), (3.57)

where the rate functional W is given by

W(x) = inf
y∈[x,x+1]

(
S(x) − S(y)

)− inf
x∈[0,1]

inf
y∈[x,x+1]

(
S(x) − S(y)

)
. (3.58)

Moreover for any point x ∈ � where W is differentiable it holds the FD relation

jm(x, ẋ) = ∇W(x) · ẋ + j+
m (x,−ẋ). (3.59)

We point out that condition (3.55) can hold only if the vector fields F0 and F1 have
opposite sign. We will show that, independently from the periodicity of S, the function W is
always periodic in such a way that it can be interpreted as a function on the torus �. When
S is periodic then W = S up to an additive constant. Finally we remark that in general
W has flat parts. In fact it is possible to show that the geometric construction by which
W is obtained coincides with the Freidlin and Wentzell construction for a one dimensional
diffusion on the one dimensional torus. This is discussed at pp. 191–192 in [14]. Formula
(3.58) gives a compact and simple representation for this construction.

3.9 A Gallavotti–Cohen-Type Symmetry

In this subsection we exhibit in the framework of PDMPs a Gallavotti–Cohen (G-C) sym-
metry with involution different from time reversal. Other examples of this type have been
discussed for example in [17] and [19]. Details are postponed to Sect. 12.

Let us briefly recall a result of [18]. Consider an involution R on the path space of a
stochastic process, i.e. a map from the path space into itself such that R2 = 1. Assume
also that the measure Pst ◦ R−1 is absolutely continuous w.r.t. Pst , where Pst denotes the
stationary law of the process. Then the random variable

WT := − 1

2T
log

d(Pst ◦ R−1)

dPst

∣∣∣∣
t∈[−T ,T ]

(3.60)

satisfies the G-C-type symmetry

Est

(
e−sWT

)= Est

(
e−(1−s)WT

)
, (3.61)

where Est denotes the expectation w.r.t. Pst and s is a real parameter.
Differently from the examples discussed in [18], for PDMPs it is natural to consider

involutions R different from time reversal. Indeed, given a trajectory {x(t), σ (t)}t∈[−T ,T ]
of the PDMP, solving in particular ẋ(t) = Fσ(t)(x(t)), then the time reversed trajectory is
typically not a trajectory of the PDMP if the vector fields Fσ are not identically zero. In the
case of PDMPs one needs to find an involution R on the path space preserving the relation
ẋ(t) = Fσ(t)(x(t)). This is easily done for a suitable class of models:
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Lemma 3.14 Consider a PDMP such that for any σ ∈ � and any x ∈ � there exists a
unique σ ′ ∈ � such that Fσ ′(x) = −Fσ (x). Call Rx the involution on � that associates to
every σ the corresponding σ ′ characterized as above. Then the map R defined as

R
[{

x(t), σ (t)
}

t∈[−T ,T ]
] := {x(−t),Rx(−t)σ (−t)

}
t∈[−T ,T ] (3.62)

is an involution on the path space preserving the relation ẋ(t) = Fσ(t)(x(t)).

The proof of the above lemma is omitted since very simple. An example of such a PDMP
is given by � = R

2/Z
2, � = {1,2,3,4} and vector fields Fi = ei , where e1 and e2 constitute

the canonical basis of R
2 and e3 = −e1, e4 = −e2. Then Rx1 = 3, Rx2 = 4, Rx3 = 1 and

Rx4 = 2.
If we consider models satisfying additional assumptions we obtain an explicit form of

the functional (3.60) having a direct physical interpretation:

Proposition 3.15 In the same setting of Lemma 3.14, assume that the jump rates satisfy the
generalized detailed balance condition

r(σ,σ ′|x) = exp{H(σ,x) − H(σ ′, x)}r(Rxσ
′,Rxσ |x), (3.63)

for a suitable bounded energy function H : � ×� → R, and that the function γ (·|·) satisfies

γ (σ |x) = γ (Rxσ |x), ∀(x, σ ) ∈ � × �. (3.64)

Then, as T → ∞,

WT = 1

2T

∫ T

−T

∇H(σ(s), x(s)) · ẋ(s)ds + o(1)

= 1

2T

∫ T

−T

∇H(σ(s), x(s)) · Fσ(s)(x(s))ds + o(1), (3.65)

which is the averaged mechanical work done on the system by the external force fields ∇H

apart negligible errors as T ↑ ∞.

We note that conditions (3.63) and (3.64) are satisfied if the rates are defined as

r(σ,σ ′|x) := exp
{[H(σ,x) − H(σ ′, x)]/2

}
, (3.66)

for an energy function H satisfying the symmetry condition

H(σ,x) = H(Rxσ, x), ∀(x, σ ) ∈ � × �. (3.67)

4 Fluctuation Theory for Stochastic Processes on �

We reformulate the results of [1, 2, 4, 5] in the simpler context of processes with trajectories
in C([0, T ],�) and discuss consequences of the FD relation (1.3).

We consider a λ-parameterized family of Markov stochastic processes with trajectories
in C([0, T ],�), satisfying a sample path LD principle as the parameter λ diverges to +∞.
This means that, fixed {x̂(t)}t∈[0,T ] ∈ C([0, T ],�), it holds

P
λ
x0

(
{x(t)}t∈[0,T ] : {x(t)}t∈[0,T ] ≈ {x̂(t)

}
t∈[0,T ]

)
∼ e

−λI
x0[0,T ]({x̂(t)}t∈[0,T ]), (4.1)
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where P
λ
x0

denotes the law on C([0, T ],�) induced by the λ-parameterized process with
initial configuration x0 ∈ �. As a prototype one can take diffusions on � = R

d with noise
of order

√
1/λ as in the Freidlin and Wentzell theory [14].

We further assume that for any fixed λ the λ-parameterized process admits a unique
invariant distribution ρλ. Then the adjoint process can be defined and has ρλ as unique in-
variant distribution. We assume that also the λ-parameterized family of adjoint processes
satisfies a LD principle as λ diverges, i.e. (4.1) remains valid with P

λ
x0

and I
x0
[0,T ] re-

placed by P
λ,+
x0

and I
x0,+
[0,T ] , respectively. In addition, we assume that there exist densities

L(x, ẋ), L+(x, ẋ) : �×R
d → [0,∞) such that for any initial configuration x0 the rate func-

tionals I
x0
[0,T ] and I

x0,+
[0,T ] admit an integral representation of the form

I
x0
[0,T ]

({x(t)}t∈[0,T ]
) =

{∫ T

0 L(x(t), ẋ(t))dt, if x(·) ∈ Xx0 ,

+∞, otherwise,
(4.2)

I
x0,+
[0,T ]

({x(t)}t∈[0,T ]
) =

{∫ T

0 L+(x(t), ẋ(t))dt, if x(·) = X +
x0

,

+∞, otherwise,
(4.3)

for suitable subspaces Xx0 , X +
x0

⊂ C([0, T ],�). This assumption implies in particular that
all paths in Xx0 and X +

x0
starts in x0.

The functions L and L+ are called Lagrangians. Typically, L(x, ẋ) = 0 if and only if
ẋ = F̄ (x) for a suitable vector field F̄ (x) that identifies the law of large numbers of the
model in the limit of diverging λ. In fact, in this case we derive from (4.1) that

lim
λ→+∞ P

λ
x0

(
sup

t∈[0,T ]
|x(t) − x̄(t)| > δ

)
= 0, ∀δ > 0, (4.4)

where {x̄(t)}t∈[0,T ] ∈ C([0, T ],�) solves the Cauchy problem{ ˙̄x(t) = F̄ (x̄(t)),

x̄(0) = x0.
(4.5)

Similarly we require that L+ vanishes along a path {x(t)}t∈[0,T ] if and only if ẋ(t) =
F̄+(x(t)), where the vector field F̄+ identifies the law of large numbers of the adjoint
process in the limit of diverging λ.

Finally we assume that the family of invariant distributions ρλ satisfy a LD principle on
� as λ diverges, with rate function V (x). This means that for any fixed t and for any fixed
x ∈ � it holds

P
λ
ρλ

(x(t) ≈ x) ∼ e−λV (x), (4.6)

where P
λ
ρλ

denotes the law of the stationary process with parameter λ and initial distribu-
tion ρλ. Below we will denote by P

λ,+
ρλ

the law of its adjoint process.
Let us now derive some consequences from our assumptions. By definition we have for

any fixed path x̂(·) ∈ C([−T ,T ],�) that

P
λ
ρλ

(
{x(t)}t∈[−T ,T ] ≈ {x̂(t)

}
t∈[−T ,T ]

)
= P

λ,+
ρλ

(
{x(t)}t∈[−T ,T ] ≈ {x̂(−t)

}
t∈[−T ,T ]

)
. (4.7)

Due to the fact that the processes are Markov and that the path {x(t − T )}t∈[0,2T ] belongs to
the path space Xx(−T ) (referred to the time interval [0,2T ]), while the path {x(T − t)}t∈[0,2T ]
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belongs to the path space Xx(T ) (referred to the time interval [0,2T ]), (4.7) implies the
following relation concerning the LD rate functionals:

V (x̂(−T )) +
∫ T

−T

L(x̂(t), ˙̂x(t))dt = V (x̂(T )) +
∫ T

−T

L+(x̂(−t),− ˙̂x(−t))dt. (4.8)

Dividing both sides of (4.8) by 2T and taking the limit T ↓ 0 we obtain FD relation

L(x, ẋ) = ∇V (x) · ẋ + L+(x,−ẋ), (4.9)

valid for any x, ẋ corresponding to the values x̂(0), ˙̂x(0) for some path x̂(·) as above.
From now on we suppose that the FD relation (4.9) holds, without assuming that the

processes under consideration are Markov. Following [2] we derive some consequences
of (4.9).

A point x∗ ∈ � is called equilibrium point for the λ-parameterized family of processes
if F̄ (x∗) = 0. Then, by the LLN (4.4), the trajectory x̄(t) ≡ x∗ is the limiting path for the
process starting in x∗, thus implying that I

x∗
[0,T ](x̄(·)) = 0, i.e. L(x∗,0) = 0. By means of the

FD relation we obtain that L+(x∗,0) = 0 and consequently x∗ is an equilibrium point also
for the family of adjoint processes, i.e. we have F̄+(x∗) = 0. We restrict now to the case that
the vector field F̄ has a unique equilibrium point x∗, which is a global attractor. This means
that

lim
t→+∞ x(t) = x∗

for any t{x(t)}t∈[0,+∞) solving ẋ = F̄ (x). Note that, due to the previous argument, x∗ is also
the unique equilibrium point of the vector field F̄+. We assume that it is also a global attrac-
tor for F̄+. As simple example satisfying all the above assumptions, consider the family of
reversible diffusions on � = R

d descried by the SDE

ẋ = −∇U(x) + λ− 1
2 ẇ,

where U is a single well potential and w is a standard Brownian motion. In this case

L(x, ẋ) = L+(x, ẋ) = 1

2
|ẋ + ∇U(x)|2,

and V (x) = 2U(x).
Let us introduce the quasi-potential Q(x) as function on � defined by

Q(x) = inf
Ax

∫ 0

−∞
L(x(t), ẋ(t))dt, (4.10)

where

Ax =
{
{x(t)}t∈(−∞,0] : x(0) = x, lim

t→−∞x(t) = x∗
}
.

In the case of multiple equilibrium points and different basins of attraction the definition
has to be suitably modified. We will not consider this situation here, referring to [14] the
interested reader.
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Remark 1 We point out that the rigorous definition of quasi-potential is slightly different
from (4.10). Indeed, since the dynamic LD principles with rate functionals (4.2), (4.3) hold
for finite time intervals, one has to define the quasi-potential as

Q(x) = inf
T ≥0

inf
AT

x

∫ 0

−T

L(x(t), ẋ(t))dt, (4.11)

where

AT
x = {{x(t)}t∈[−T ,0] : x(0) = x , x(−T ) = x∗

}
.

We use definition (4.10) to simplify our discussion, while the interested reader can adapt our
arguments in order to obtain rigorous proofs (see for example [3]).

We now derive an H -Theorem for the quasi-potential. More precisely, we show that the
quasi-potential is a decreasing Lyapunov functional for both the vector field F̄ and for the
vector field F̄+. This means that t → Q(x(t)) is a decreasing function if ẋ(t) = F̄ (x(t)) or
if ẋ(t) = F̄+(x(t)), respectively. In order to justify our claim, we take a path {x(t)}t≥0 such
that ẋ(t) = F̄ (x(t)). Let x = x(0) and x ′ = x(t ′), with t ′ > 0. Given ε > 0 we fix an element
{̃x(t)}t∈[−∞,0] ∈ Ax such that Q(x) differs from I(−∞,0](x̃(·)) at most ε. Then we construct
the following element of Ax′

x̄(t) =
{

x̃(t + t ′), if t ≤ −t ′,
x(t + t ′), if t ∈ (−t ′,0].

Since L(x(t), ẋ(t)) = 0 for all t ≥ 0, we have

Q(x ′) ≤
∫ 0

−∞
L(x̄(t), ˙̄x(t))dt

=
∫ −t ′

−∞
L(̃x(t + t ′), ˙̃x(t + t ′))dt +

∫ 0

−t ′
L(x(t + t ′), ẋ(t + t ′))dt

=
∫ 0

−∞
L(̃x(t), ˙̃x(t))dt ≤ Q(x) + ε.

By the arbitrariness of ε, we deduce that Q(x ′) ≤ Q(x). Therefore, it must be ∇Q(x) ·
F̄ (x) ≤ 0 for all x ∈ �. The same kind of argument can be used for the vector fields F̄+,
thus implying that ∇Q(x) · F̄+(x) ≤ 0.

Let us now show that the quasi-potential Q(x) coincides with the LD rate functional
V (x) of the invariant measures ρλ:

Q(x) = V (x) ∀x ∈ �.

Since L+ is nonnegative, using the FD relation we get for any {x(t)}t∈[−∞,0] ∈ Ax that

∫ 0

−∞
L(x(t), ẋ(t))dt ≥

∫ 0

−∞
∇V (x(t)) · ẋ(t)dt = V (x) − V (x∗) = V (x). (4.12)

The last equality follows from the fact that the rate functional V is zero on the unique
equilibrium point x∗. Indeed, the function V is nonnegative due to the fact that it is a rate
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functional, moreover it must be zero only at x∗ in agreement with the law of large numbers.
Due to the definition of the quasi-potential Q, the above bound (4.12) implies that Q(x) ≥
V (x). In order to prove the reversed inequality, let {x+(t)}t∈[0,∞) be the solution of the
Chauchy problem {

ẋ+(t) = F̄+(x+(t)),

x+(0) = x.
(4.13)

Due to the global attractiveness of x∗ we have

lim
t→+∞x+(t) = x∗,

so that T [{x+(t)}t∈[0,∞)] = {x+(−t)}t∈(−∞,0] ∈ Ax and, by definition of Q(x) and due to the
FD relation (4.9),

Q(x) ≤
∫ 0

−∞
L(x+(−t),−ẋ+(−t))dt = V (x),

thus concluding the proof that Q(x) = V (x). Coming back to the above expression, we then
conclude that the path {x+(−t)}t∈(−∞,0] is the minimizer in (4.10). Hence, we arrive at the
following key observation. Starting from equilibrium at time zero, for λ and T large, if the
system at time T is in state x then with high probability its evolution for times t ∈ [0, T ] is
well approximated by the path x+(T − ·), where x+(·) solves (4.13). More precisely:

lim
T ↑∞

lim
λ↑∞

P
λ
ρλ

({x(t)}t∈[0,T ] ≈ {x+(T − t)}t∈[0,T ]
∣∣x(T ) = x

)
= lim

T ↑∞
lim
λ↑∞ P

λ
ρλ

({x(t)}t∈[−T ,0] ≈ {x+(−t)}t∈[−T ,0]
∣∣x(0) = x

)= 1. (4.14)

We call {x+(−t)}t∈(−∞,0] the exit trajectory, while we call the path {x̄(t)}t∈[0,∞) solving (4.5)
the relax trajectory (motivated by the LLN). When the vector fields F̄ and F̄ + coincide, i.e.

F̄ (x) = F̄+(x), ∀x ∈ �, (4.15)

then the exit/relax trajectories are related by time reversal and using the terminology of
[1, 2] we say that an Onsager-Machlup symmetry holds. When condition (4.15) does not
hold, the exit/relax trajectories are not necessarily related by time reversal and according to
[1, 2] we say that a generalized Onsager-Machlup symmetry holds.

We conclude this subsection justifying the name “Lagrangian” given to L(x, ẋ). From
classical arguments in variational analysis it follows that the quasi-potential Q(x) as defined
in (4.10) solves the Hamilton–Jacobi equation

H(x,∇Q(x)) = 0, (4.16)

where the Hamiltonian H is obtained as Legendre transform of L as

H(x,p) = sup
y∈Rd

(p · y − L(x, y)). (4.17)

It can be shown (see [2] for details) that Q is the maximal solution of (4.16). The l.h.s. of
(4.16) must be zero for the following reason. Due to (4.17) it must be H(x∗,0) = 0, while
due to the fact that Q(x) ≥ Q(x∗) it must be ∇Q(x∗) = 0. Hence, H(x∗,∇Q(x∗)) = 0.
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Clearly the above arguments hold also for the family of adjoint processes. In particular,
the quasi-potential Q solves also Hamilton–Jacobi equation

H+(x,∇Q(x)) = 0, (4.18)

where the Hamiltonian H+ is obtained as Legendre transform of L+ as

H+(x,p) = sup
y∈Rd

(
p · y − L+(x, y)

)
. (4.19)

Note that due to the validity of the FD relation (4.9) we have

H(x,p) = sup
y∈Rd

(p · y − L(x, y))

= sup
y∈Rd

(
p · y − ∇V (x) · y − L+(x,−y)

)
= sup

y∈Rd

(
(∇V (x) − p) · y − L+(x, y)

)= H+(x,∇V (x) − p).

Finally we point out that for PDMPs the vector fields F̄ and F̄+ mentioned above become

{
F̄ (x) =∑σ μ(σ |x)Fσ (x),

F̄+(x) = −∑σ μ+(σ |x)Fσ (x),

where μ(·|x) and μ+(·|x) are the unique invariant measures of Lc[x] and L+
c [x], respec-

tively.

5 Stationarity: Proof of Proposition 3.1

We give here the proof of Proposition 3.1. Let us fist suppose that � is an open subset of R
d

such that supσ,σ ′,x r(σ, σ ′|x) < ∞, or that � is a d-dimensional torus. Due to the stationary
of ρλ it must be

ρλ(Lf ) = 0 (5.1)

for all functions f in the domain of the Markov generator. Let us denote here by F the family
of functions f which are C1 in x, have continuous extension to ∂� and satisfy for some σ

the property: f (x,σ ′) = 0 if σ ′ �= σ . Then, (5.1) for f ∈ F reads∫
�

dxρλ(x,σ )Fσ (x) · ∇f (x,σ )

+ λ
∑
σ ′∈�

∫
�

dxf (x,σ )
(
ρλ(x,σ ′)r(σ ′, σ ) − ρλ(x,σ )r(σ,σ ′)

)= 0. (5.2)

By the Gauss–Green formula, the first integral in the l.h.s. equals∫
∂�

dS(x)f (x,σ )ρλ(x, σ )Fσ (x) · n(x) −
∫

�

dxf (x,σ )∇ · (ρλ(x,σ )Fσ (x)
)
, (5.3)
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where dS denotes the (d − 1)-dimensional surface measure on ∂� and n(x) denotes the
outward normal to ∂� in x. Since (5.2) must hold in particular for all functions f ∈ F with
x-support given by a compact subset of �, we conclude that (3.1) must be satisfied. Then,
due to (5.2), (5.3) and (3.1), the boundary integral in (5.3) must be zero for all functions
f ∈ F. This forces ρλ to have zero flux across the boundary ∂�, thus leading to (3.2). Note
that if � is the closure of a domain in R

d , the system of identities (3.1) must still be valid
for (x, σ ) ∈ �◦ × �, �◦ being the interior part of �, since it follows from (5.1) by taking
arbitrary functions f which are bounded, C1 in x and with x-support strictly included in �◦.

6 Reversibility: Proof of Propositions 3.2 and 3.3

Let us first prove Proposition 3.2. Being aware of the subtle difficulties concerning the do-
main of definition of the generator, we keep this analysis at a very heuristic level. The gen-
erator L+ of the time-reversed process must be the adjoint in L2(ρλ) of the generator L of
the direct process, namely

Eρλ
(gLf ) = Eρλ

(
f L+g

)
(6.1)

for all f,g good enough. Let us take f,g with compact support included in the interior part
�◦ of �. Then the l.h.s. of (6.1) can be written as

∑
σ∈�

∫
�

dxρλ(x,σ )g(x,σ )

[
Fσ (x) · ∇f (x,σ ) + λ

∑
σ ′∈�

r(σ,σ ′|x)
(
f (x,σ ′) − f (x,σ )

)]
.

By a change of variable in the discrete sum and an integration by parts in the mechanical
variable, we obtain

∑
σ∈�

∫
�

dxf (x,σ )

{
−∇ · (ρλ(x,σ )g(x,σ )Fσ (x)

)

+ λ
∑
σ ′∈�

(
r(σ ′, σ |x)ρλ(x, σ ′)g(x,σ ′) − r(σ,σ ′|x)ρλ(x, σ )g(x,σ )

)}
.

Using now (3.1) we get

∑
σ∈�

∫
�

dxf (x,σ )

{
−∇ · (ρλ(x,σ )g(x,σ )Fσ (x)

)+ g(x,σ )∇ · (ρλ(x,σ )Fσ (x)
)

+ ρλ(x,σ )λ
∑
σ ′∈�

(
r(σ ′, σ |x)

ρλ(x, σ ′)
ρλ(x, σ )

g(x,σ ′) − r(σ ′, σ |x)
ρλ(x, σ ′)
ρλ(x, σ )

g(x,σ )

)}
,

that finally becomes

∑
σ∈�

∫
�

dxρλ(x,σ )f (x,σ )

[
−Fσ (x) · ∇g(x,σ ) + λ

∑
σ ′∈�

r(σ ′, σ |x)
ρλ(x, σ ′)
ρλ(x, σ )

× (g(x,σ ′) − g(x,σ )
)]

.

This ends the proof of (3.6) and therefore of Proposition 3.2.
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Let us face now with Proposition 3.3. In order to justify (3.9), one can argue as follows.
The reversibility of Lc[x] is equivalent to the detailed balance condition

μ(σ |x)r(σ,σ ′|x) = μ(σ ′|x)r(σ ′, σ |x), ∀σ,σ ′, ∀x ∈ �. (6.2)

Due to (3.5), this relation is equivalent to

μ(σ |x)r+(σ ′, σ |x)
ρλ(x, σ ′)
ρλ(x, σ )

= μ(σ ′|x)r+(σ,σ ′|x)
ρλ(x, σ )

ρλ(x, σ ′)
,

that can be written as

ρ2
λ(x, σ ′)
μ(σ ′|x)

r+(σ ′, σ |x) = ρ2
λ(x, σ )

μ(σ |x)
r+(σ,σ ′|x).

This equation states that the rates r+ at x satisfy the detailed balance condition with respect

to a measure on � proportional to
ρ2
λ(x,σ )

μ(σ |x)
. The proportionality factor can depend on x and

on λ. This is exactly the content of (3.9).

7 Invariant Distributions of 1D Models with Two Chemical States

In this section we prove Proposition 3.12 and the first two points of Proposition 3.13.
Let us first consider Proposition 3.12. The stationarity equations (3.1) are given by{

λ(ρλ(x,1)r(1,0|x) − ρλ(x,0)r(0,1|x)) = ∂x(ρλ(x,0)F0(x)),

λ(ρλ(x,0)r(0,1|x) − ρλ(x,1)r(1,0|x)) = ∂x(ρλ(x,1)F1(x)),
(7.1)

from which we obtain

∂x

(
ρλ(x,0)F0(x) + ρλ(x,1)F1(x)

)= 0,

and consequently

ρλ(x,0)F0(x) + ρλ(x,1)F1(x) = c. (7.2)

Due to the boundary condition (3.2), we know that c must be zero. Then relation (7.2)
allows to solve (7.1) by separation of variables, leading to (3.52), which is meaningful as
soon as the normalizing constant Z exists. Note that solution (3.52) automatically satisfies
the boundary condition (3.2), since by construction the constant c in (7.2) is zero and by
assumption F0(a) = F1(b) = 0. As the reader can check, (3.52) is the only solution of (3.1)
compatible with the boundary condition (3.2). The last statement in Proposition 3.12 can be
easily verified by the interested reader.

We now prove the first two points in Proposition 3.13. The equations for the stationary
distribution are still (7.1) to which we have to add the periodic boundary conditions

ρλ(0, i) = ρλ(1, i), i = 0,1. (7.3)

It is easy to check that, for any constant k, the expressions in (3.54) are solutions of (7.1)
satisfying the boundary conditions (7.3), since for any x, y ∈ R it holds

S(y) − S(x) = S(y + 1) − S(x + 1). (7.4)
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Moreover, there exists a unique value of k such that the expressions in the r.h.s. of (3.54) are
positive functions, satisfying the normalization condition

∑
σ=0,1

∫ 1
0 ρλ(x,σ )dx = 1. On the

other hand, it is simple to check that the above solution is the only one satisfying (3.1) and
the periodic boundary conditions. This concludes the proof of point (i).

Let us now prove point (ii). Trivially, the equilibrium condition is equivalent to the fact
that S is periodic with period 1. From this periodicity we obtain that

∫ x+1

x

[(
r(1,0|y)

F1(y)
+ r(0,1|y)

F0(y)

)
eλS(y)

]
dy = 1

λ

(
eλS(x+1) − eλS(x)

)= 0. (7.5)

The above identity together with (3.54) implies (3.56).

8 Exactly Solvable Models: Some Proofs

8.1 Proof of Proposition 3.4

Inserting (3.10) in (3.1), we obtain that for any σ ∈ � it must hold

λc(λ)e−λS(x)
∑
σ ′∈�

(
ρ(x,σ ′)r(σ ′, σ |x) − ρ(x,σ )r(σ,σ ′|x)

)

= −λc(λ)e−λS(x)∇S(x) · (ρ(x,σ )Fσ (x)
)+ c(λ)e−λS(x)∇ · (ρ(x,σ )Fσ (x)

)
. (8.1)

Dividing by nonzero terms we get

λ

[∑
σ ′∈�

(
ρ(x,σ ′)r(σ ′, σ |x) − ρ(x,σ )r(σ,σ ′|x)

)+ ∇S(x) · (ρ(x,σ )Fσ (x)
)]

+ ∇ · (ρ(x,σ )Fσ (x)
)= 0. (8.2)

In the above formula we have a first order polynomial in λ and we have equality to zero for
any value of λ if and only if the coefficients of the zero and first order terms are equal to
zero separately. This observation leads to (3.13).

8.2 Integration of (3.14) Along Orbits of Fσ

We distinguish between closed and open orbits.

Closed Orbits Let γ ⊆ � be a closed orbit of the vector field Fσ , let x0 be any element
of γ and let xγ (t) be the parametrization of γ such that xγ (0) = x0 and ẋγ (t) = Fσ (xγ (t))

for all t ∈ [0, T ], where T is the period of the orbit (note that xγ (0) = xγ (T ) = x0). Given
x ′ ∈ γ , let t ′ be the only time in [0, T ] such that x ′ = xγ (t ′). Then (3.14) implies that

ϕ(x ′, σ ) − ϕ(x0, σ ) =
∫ t ′

0
∇ϕ(xγ (s), σ ) · ẋγ (s)ds

=
∫ t ′

0
∇ϕ(xγ (s), σ ) · Fσ (xγ (s))ds
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= −
∫ t ′

0
∇ · Fσ (xγ (s))ds. (8.3)

This implies that a function ϕ satisfying (3.14) can be constructed along γ if and only if the
univalued condition ∫ T

0
∇ · Fσ (xγ (s))ds = 0 (8.4)

is satisfied. Moreover the values of ϕ on γ are uniquely determined from (8.3) once the
initial condition ϕ(x0, σ ) has been arbitrarily fixed.

Open Orbits Let γ ⊆ � be an open orbit of the vector field Fσ and consider x0 ∈ γ . Let
xγ (t) be a parametrization of γ such that ẋγ (t) = Fσ (xγ (t)) and x(0) = x0. Given x ′ ∈ γ ,
let t ′ be the unique time such that xγ (t ′) = x ′. Then (8.3) continues to hold and we can
determine the value of ϕ(x ′, σ ) for any x ′ ∈ γ starting from the arbitrary initial condition
ϕ(x0, σ ).

8.3 Proof of Proposition 3.5

Let us first assume that S solves the second group of equations in (3.13). Due to definition
(3.16), this group of equations reads

D(x,σ ) = ∇S(x) · (ρ(x,σ )Fσ (x)
)
, ∀(x, σ ) ∈ � × �. (8.5)

This means that, for any σ ∈ �, D(x,σ ) is the directional derivative of S at x along the
vector ρ(x,σ )Fσ (x). We recall that, given vectors v, v1, . . . , vk such that v =∑

i civi , it
holds

lim
t→0

S(x + tv) − S(x)

t
=
∑

i

ci∇S(x) · vi =
∑

i

ci lim
t→0

S(x + tvi) − S(x)

t
. (8.6)

From (3.18) and (8.6) we get that (3.19) is a necessary condition for the existence of the
function S solving (3.13).

The definition of the matrix {Ai,σ (x)}σ∈�(x)

i∈{1,...,d} implies that

ρ(x,σ )Fσ (x) =
d∑

i=1

Ai,σ (x)ei, ∀σ ∈ �(x), (8.7)

as well as

ei =
∑

σ∈�(x)

A−1
σ,i (x)ρ(x,σ )Fσ (x), ∀i : 1 ≤ i ≤ d. (8.8)

Since {D(x,σ )}σ∈�(x) must correspond to directional derivatives of a function S on �, due
to (8.6) and (8.8) it must be

∂xi
S(x) =

∑
σ∈�(x)

A−1
σ,i (x)D(x,σ ). (8.9)
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Consider a closed curve γ ⊆ � with parametrization {xγ (t)}t∈[0,T ]. Since γ is closed, it

must be 0 = ∫ T

0 ∇S(xγ (s)) · ẋγ (s)ds. Using (8.9) the above identity becomes

0 =
∫ T

0

d∑
i=1

( ∑
σ∈�(xγ (s))

A−1
σ,i (xγ (s))D(xγ (s), σ )

)
ẋγ,i (s)ds =

∮
γ

ω, (8.10)

where ω is the differential form defined in (3.20). The validity of condition (8.10) for any
closed curve γ is equivalent to require that the ω is exact. Since (8.9) means that dS = ω,
this implies (3.21) and concludes the proof in the case that S is a solution of the second
group of equations in (3.13).

Vice versa, let us prove that all the conditions appearing in Proposition 3.5 imply that
any function S satisfying (3.21) is a solution of (3.13). Since ω is exact, (3.21) is equivalent
to the identity dS = ω, which is equivalent of (8.9). Since by (8.7)

∇S(x) · (ρ(x,σ )Fσ (x)
)=

d∑
i=1

Ai,σ (x)∂xi
S(x),

from (8.9) we derive (8.5) for all (x, σ ) such that σ ∈ �(x). Due to (3.18), (3.19) and addi-
tivity, identity (8.5) extends to all σ ∈ �.

9 Examples of Application of Proposition 3.5

We now exhibit solutions of (3.1) in specific examples by means of the construction outlined
in Proposition 3.5. The reader can easily check that our solutions satisfy the appropriate
boundary conditions so that they correspond to the invariant measure of the PDMPs under
consideration.

9.1 Interval

We apply Proposition 3.5 in order to check Proposition 3.12, of which we keep the as-
sumptions. We fix an arbitrary point x∗ ∈ (a, b). Given x(t) the solution of ẋ = F1(x) with
x(0) = x∗, due to (3.14) for any x ∈ (a, b) the function ϕ(x,1) = logρ(x,1) satisfies

ϕ(x,1) = φ(x∗) −
∫ t

0
∇ · F1(x(s))ds (9.1)

where the time t is such that x(t) = x and φ(x∗) is an arbitrary constant. Since by differen-
tiation it must be ẍ(s)/ẋ(s) = ∇ · F1(x(s)), inserting this identity in (9.1) gives

ϕ(x,1) = φ(x∗) −
∫ t

0

d

ds
(log ẋ(s)) ds = φ(x∗) + log

F1(x∗)
F1(x)

.

The above identity and similar arguments applied to the vector field F0 imply that

{
ρ(x,1) = eφ(x∗) F1(x∗)

F1(x)
,

ρ(x,0) = eψ(x∗) F0(x∗)

F0(x)
,

(9.2)
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where also ψ(x∗) is an arbitrary constant. It remains now to determine the function S and
afterwards to fix the arbitrary constants. Taking �(x) = {1} for any x ∈ �, condition (3.23)
is satisfied. Due to (9.2), we can express the constant c1(0, x) in (3.18) as

c1(0, x) = ρ(x,0)F0(x)

ρ(x,1)F1(x)
= eψ(x∗)F0(x∗)

eφ(x∗)F1(x∗)
. (9.3)

Since in addition D(x,0) = −D(x,1), condition (3.19) is satisfied if and only if c1(0, x) ≡
−1. To this aim we take eψ(x∗) = −1/F0(x∗) and eφ(x∗) = 1/F1(x∗). By this choice, the
differential form (3.20) is given by

ω = D(x,1)

ρ(x,1)F1(x)
dx =

(
r(0,1|x)

F0(x)
+ r(1,0|x)

F1(x)

)
dx. (9.4)

The form ω is trivially exact, being a 1D form on a simply connected domain. Then, by
formula (3.21) and the previous computations, we get (3.52) as a special case of (3.10).

9.2 1D Torus

Let us keep the same assumptions as in Proposition 3.13. Then both F0 and F1 have a closed
orbit that coincide with �. In both cases the univalued condition (8.4) is satisfied due to the
fact that on the periodic orbit x(t) solution of ẋ = Fi(x) with period T we have

∫ T

0
∇ · Fi(x(s))ds =

∫ T

0

d

ds
(log ẋ(s)) ds = 0.

We can repeat all the arguments and computations of the case � = (a, b). The only exception
is that now the form ω given by (9.4) is not automatically exact, since � is not simply
connected. The requirement that

∮
�

ω = 0 is exactly the equilibrium condition (3.55). The
final result coincides with (3.56).

9.3 Triangular Domain

Let us now discuss a simple but non trivial example in dimension d = 2 of a PDMP with
an invariant measure of the form (3.10). Let � ⊆ R

2 be the open triangle with vertices
(0,0), (1,0), (0,1) and let (x, y) denote a generic element of �. The set of chemical states
is � = {1,2,3}. The vector fields associated to the chemical states are obtained from the
gradients of quadratic potentials centered at the vertices of the triangle. More precisely

⎧⎪⎨
⎪⎩

F1(x, y) = − 1
2∇(x2 + y2) = (−x,−y),

F2(x, y) = − 1
2∇((x − 1)2 + y2) = (1 − x,−y),

F3(x, y) = − 1
2∇(x2 + (y − 1)2) = (−x,1 − y).

All the orbits of the above vector fields are open and condition (2.14) is satisfied. More-
over the orbits of the vector fields Fi exit from ∂�+

i ⊂ ∂�, where ∂�+
1 is the segment with

extrema (0,1) and (1,0); ∂�+
2 is the segment with extrema (0,0) and (0,1); ∂�+

3 is the seg-
ment with extrema (0,0) and (1,0). Let us determine the function ϕ(x, y,1) = logρ(x, y,1)

by means of the discussion following (3.14). To this aim, we observe that given (x, y) ∈ �
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the path (x(t), y(t)) := (e−t , e−t y/x) satisfies

⎧⎪⎨
⎪⎩

(ẋ(t), ẏ(t)) = F1(x(t), y(t)), ∀t ≥ t0,

(x(t0), y(t0)) = (x/(x + y), y/(x + y)) ∈ ∂�+
1 ,

(x(t1), y(t1)) = (x, y),

where t0 := log
(
(x + y)/x

)
and t1 := log(1/x). In particular, the above path parameterized

by t ≥ t0 is an orbit of F1 exiting from ∂�+
1 and passing through the point (x, y). Fixed an

arbitrary function φ1 : (0,1) → R we obtain using (8.3)

ϕ(x, y,1) − φ1

(
x

x + y

)
= 2

∫ log 1
x

log x+y
x

dt = −2 log(x + y),

so that ρ(x, y,1) = e
φ1( x

x+y )

(x+y)2 . Note that this can be rewritten as ρ(x, y,1) = a1(x/(x+y))/x2

for a suitable function a1 : (0,1) → R. In conclusion, by similar arguments, we get that

⎧⎪⎨
⎪⎩

ρ(x, y,1) = a1(
x

x+y
) 1

x2 ,

ρ(x, y,2) = a2(
y

1−x
) 1

y2 ,

ρ(x, y,3) = a3(
x

1−y
) 1

x2 ,

(9.5)

for positive functions a1, a2, a3, which can be chosen arbitrarily. Note that the point
(0, y/(1 − x)) is the exit point in ∂�+

2 of the F2-orbit passing through the point (x, y) ∈ �,
while (x/(1 − y),0) is the exit point in ∂�+

3 of the F3-orbit passing through the point
(x, y) ∈ �.

In order to determine the function S of (3.10), for any (x, y) ∈ � we take �(x, y) =
{2,3}. Trivially condition (3.23) is satisfied. Moreover, we can compute c2(1, x, y) and
c3(1, x, y) of (3.18): {

c2(1, x, y) = x
x+y−1

ρ(x,y,1)

ρ(x,y,2)
,

c3(1, x, y) = y

x+y−1
ρ(x,y,1)

ρ(x,y,3)
.

(9.6)

At this point, the check of condition (3.19) depends strongly from the form of the rates
r(·, ·|x, y). Indeed, omitting the dependence from the point (x, y) (for the sake of simplicity)
condition (3.19) becomes

r(1,2) + r(1,3) − ρ(2)

ρ(1)
r(2,1) − ρ(3)

ρ(1)
r(3,1)

= x

x + y − 1

[
r(2,1) + r(2,3) − ρ(1)

ρ(2)
r(1,2) − ρ(3)

ρ(2)
r(3,2)

]

+ y

x + y − 1

[
r(3,1) + r(3,2) − ρ(1)

ρ(3)
r(1,3) − ρ(2)

ρ(3)
r(2,3)

]
. (9.7)

As the reader can easily check, the above identity is automatically satisfied for all kind of
jump rates if

ρ(1)

ρ(3)
= 1 − x − y

y
,

ρ(2)

ρ(3)
= x

y
,

ρ(1)

ρ(2)
= 1 − x − y

x
. (9.8)
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In order to satisfy the above identities it is enough to take a1, a2, a3 in (9.5) as
ai(u) = u

1−u
. By this choice, (9.5) reads⎧⎪⎨

⎪⎩
ρ(x, y,1) = 1/(xy),

ρ(x, y,2) = 1/[y(1 − x − y)],
ρ(x, y,3) = 1/[x(1 − x − y)].

(9.9)

It remains now to compute the form ω given by (3.20), check when it is exact and afterwards
check the boundary condition (3.2). First we observe that

A(x,y) = 1

1 − x − y

( 1−x
y

−1

−1 1−y

x

)
, A−1(x, y) =

(
y(1 − y) xy

xy x(1 − x)

)
.

Therefore

ω = [y(1 − y)D(x, y,2) + xyD(x, y,3)
]
dx + [xyD(x, y,2) + x(1 − x)D(x, y,3)

]
dy.

We have

ω = B(x, y)dx + C(x, y)dy

where (omitting the dependence on (x, y) for simplicity)

B(x, y) = 1 − y

1 − x − y
r(2,1) − 1 − y

x
r(1,2)

+ y

1 − x − y
r(3,1) − r(1,3) + r(2,3) − y

x
r(3,2),

C(x, y) = 1 − x

1 − x − y
r(3,1) − 1 − x

y
r(1,3)

+ x

1 − x − y
r(2,1) − r(1,2) + r(3,2) − x

y
r(2,3).

Note that C(x, y) can be obtained from B(x, y) by exchanging x with y and 2 with 3.
If, motivated by the geometric symmetries of �, we assume that

r(1,2|x, y) = r(1,3|y, x), r(2,1|x, y) = r(3,1|y, x), r(2,3|x, y) = r(3,2|y, x)

then

ω = B(x, y)dx + B(y, x)dy.

In this case, since � is simply connected, ω is exact if and only if ∂yB(a, b) = ∂yB(b, a)

(cf. (3.22)), i.e. the function ∂yB is symmetric.
Let us discuss an example, where the above condition is satisfied. We take r(σ,σ ′|x, y)

= 1 for all σ �= σ ′. Then one easily compute the above B(x, y) and C(x, y), getting

ω = 2x + y − 1

x(1 − x − y)
dx + 2y + x − 1

y(1 − x − y)
dy, (9.10)

which is exact since the domain � is simply connected and condition (3.22) is satisfied.
Integrating the form ω as in (3.21), we obtain up to an arbitrary constant

S(x, y) =
∫

γ

ω = − logx − logy − log(1 − x − y). (9.11)
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By collecting our results (9.9) and (9.11), we obtain that the invariant measure is of the form
(3.10) and that

ρλ = (
ρλ(x, y,1), ρλ(x, y,2), ρλ(x, y,3)

)
= c(λ)

(
xλ−1yλ−1(1 − x − y)λ, xλyλ−1(1 − x − y)λ−1, xλ−1yλ(1 − x − y)λ−1

)
.

Above, c(λ) is the normalization constant, which is well-defined as the reader can easily
check. Finally, we observe that the above invariant measure satisfies the boundary condi-
tion (3.2).

Note that, due to (9.5), (3.2) can be satisfied only if S diverges to −∞ when ap-
proaching the boundary of the triangle �. This is a strong restriction. For example, if we
tale r(3,2|x, y) = r(2,3|x, y) = 0, r(2,1|x, y) = r(3,1|x, y) = 1 − x − y, r(1,2|x, y) =
r(1,3|y, x) = x, we obtain that ω = dS where S is a constant function, thus leading to a
solution of the stationary equations (3.1), but not satisfying the boundary condition (3.2).

9.4 2D Torus

We take � = R
2/Z

2 and � = {0,1}. We call (x, y) a generic element of � and choose vector
fields {

F0(x, y) = (f (x, y),0),

F1(x, y) = (0, g(x, y)),

where f and g are regular functions which never vanish on �. The chemical part of the
generator is determined by the transition rates r(i, i − 1|x, y) i = 0,1. The first group of
equations in (3.13) can be easily solved:{

ρ(x, y,0) = φ(y)

f (x,y)
,

ρ(x, y,1) = φ̃(x)

g(x,y)
;

where φ and φ̃ are arbitrary functions. Moreover we have that

A−1(x, y) =
(

1
φ(y)

0
0 1

φ̃(x)

)
,

hence ω can be written as

ω =
(

r(0,1|x, y)

f (x, y)
− φ̃(x)r(1,0|x, y)

φ(y)g(x, y)

)
dx+

(
r(1,0|x, y)

g(x, y)
− φ(y)r(0,1|x, y)

φ̃(x)f (x, y)

)
dy. (9.12)

Fix arbitrary points x∗, y∗ ∈ [0,1] and consider the associated fundamental cycles on �{
γ 1(t) = (t, y∗), t ∈ [0,1],
γ 2(t) = (x∗, t), t ∈ [0,1].

The exactness of (9.12) is equivalent to imposing conditions (3.22) with the additional con-
ditions ∮

γ 1
ω =

∮
γ 2

ω = 0. (9.13)
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If we call H(x,y) = φ(y)r(0,1|x, y)/f (x, y) and G(x,y) = φ̃(x)r(1,0|x, y)/g(x, y), then
we can write ω as

ω = H(x,y) − G(x,y)

φ(y)
dx + G(x,y) − H(x,y)

φ̃(x)
dy,

hence the above exactness conditions become⎧⎪⎪⎨
⎪⎪⎩

∫ 1
0 H(x∗, y)dy = ∫ 1

0 G(x∗, y)dy,∫ 1
0 H(x,y∗)dx = ∫ 1

0 G(x,y∗)dx,

∂x(
G(x,y)−H(x,y)

φ̃(x)
) = ∂y(

H(x,y)−G(x,y)

φ(y)
).

Examples of rates r(i, i − 1|x, y) satisfying these conditions can be easily constructed.

9.5 Square Domain

We consider the open square � ⊆ R
2 with vertices (0,0), (0,1), (1,0) and (1,1). The

chemical states are � = {0,1,2,3} with associated vector fields

F0(x, y) = (−x,−y), F1(x, y) = (1 − x,−y),

F2(x, y) = (−x,1 − y), F3(x, y) = α(1 − x,1 − y),

where α is a positive parameter and (x, y) is a generic element of �. We choose the jump
rates as

r(0,1|x, y) = r(0,2|y, x) = q(x, y), r(1,0|x, y) = r(2,0|y, x) = r(x, y),

r(1,3|x, y) = r(2,3|y, x) = Q(x,y), r(3,1|x, y) = r(3,2|y, x) = R(x, y),

where q , r , Q and R are arbitrary positive functions and moreover r(1,2|x, y) =
r(2,1|x, y) = 0.

Proceeding as in the previous examples we obtain a solution of the form (3.10) if we
require that the rates satisfy the following relations: there exists a function G(x,y) such that{

q(x, y) − Q(x,y) = G(x,y)x,

r(x, y) − R(x,y)

α
= G(x,y)(1 − x)

and there exists a symmetric function s(x, y) and a function φ such that

xR(x, y) − α(1 − x)Q(x, y) = αx(1 − x)

(∫ y

z

dus(x,u) + φ(x)

)
,

where z ∈ (0,1). Under the above conditions we have a solution of the form (3.10) with

S(x, y) =
∫ x

z

dw

∫ y

z

dus(w,u) +
∫ x

z

dwφ(w) +
∫ y

z

duφ(u),

and

ρ(x, y,0) = 1

xy
, ρ(x, y,1) = 1

y(1 − x)
,
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ρ(x, y,2) = 1

x(1 − y)
, ρ(x, y,3) = 1

α(1 − x)(1 − y)
.

Boundary conditions (3.2) are not necessarily satisfied.

10 Fluctuation Theory: Proof of Propositions 3.10 and 3.11

10.1 Proof of Proposition 3.10

It is easy to compute limλ→∞ λ−1 log ρ̂λ(x), and derive a LD principle for ρ̂. To this aim,
first observe that the function S in (3.10) is univocally determined up to an additive constant.
From now on, we denote by S the unique function satisfying (3.10) normalized in such a
way that infx∈� S(x) = 0. By this choice, it is simple to see that

lim
λ→∞λ−1 log ρ̂λ(x) = −S(x).

Comparing with (4.6), we deduce that S(x) = V (x), namely the function S coincides with
the LD rate functional of the measures ρ̂λ.

10.2 Proof of Proposition 3.11

We first establish for the class of models satisfying (3.10), a special symmetry concerning
the rate densities j and j+ defined in (3.30) and (3.41):

Lemma 10.1 Suppose that the invariant distribution ρλ of the PDMP satisfies (3.10). Then,
it holds

j (x,χ) − j+(x,χ) =
∑

σ

χσ (γ (σ |x) − γ +(σ |x)). (10.1)

Proof If Lc[x] and consequently also L+
c [x] are reversible w.r.t. the corresponding quasi-

stationary measures, then (10.1) follows directly from the explicit expressions (3.33) and
(3.42). In the general case, using also (3.5), we can write the variational expressions (3.30)
and (3.41) as

j (x,χ) =
∑

σ

χσ γ (σ |x) − inf
z∈(0,+∞)�

( ∑
(σ,σ ′)∈W

χσ r(σ,σ ′|x)
zσ ′

zσ

)
, (10.2)

j+(x,χ) =
∑

σ

χσ γ +(σ |x) − inf
z∈(0,+∞)�

( ∑
(σ,σ ′)∈W

χσ ′r(σ,σ ′|x)
ρ(x,σ )zσ

ρ(x,σ ′)zσ ′

)
. (10.3)

Let us first assume that χσ > 0 for any σ ∈ �. Setting z̃σ := χσ

ρ(x,σ )zσ
, the variational expres-

sion in (10.3) can then be written as

inf
z̃∈(0,+∞)�

( ∑
(σ,σ ′)∈W

χσ r(σ,σ ′|x)
z̃σ ′

z̃σ

)
,

that coincides with the variational expression in (10.2). Relation (10.1) now follows imme-
diately.
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We consider now the case that there exists some σ ∈ � for which χσ = 0. For simplicity
we assume χσ1 = 0 and χσ > 0 for any σ �= σ1. The general case can be proved in the same
way. Let us define �1 := {σ ∈ � : σ �= σ1} and W 1 := {(σ,σ ′) ∈ W : σ �= σ1, (σ

′ �= σ1)}. We
want to show that

inf
z∈(0,+∞)�

∑
(σ,σ ′)∈W

χσ r(σ,σ ′|x)
zσ ′

zσ

= inf
z∈(0,+∞)�

1

∑
(σ,σ ′)∈W1

χσ r(σ,σ ′|x)
zσ ′

zσ

. (10.4)

The r.h.s. of (10.4) is clearly less or equal than the l.h.s. To prove the opposite inequality
take z ∈ (0,+∞)�1

and consider zε := (ε, z) ∈ (0,+∞)� . We have that

lim
ε→0

∑
(σ,σ ′)∈W

χσ r(σ,σ ′|x)
zε
σ ′

zε
σ

=
∑

(σ,σ ′)∈W1

χσ r(σ,σ ′|x)
zσ ′

zσ

,

and this implies (10.4). This argument shows that we can write (10.2) and (10.3) as

j (x,χ) =
∑

σ

χσ γ (σ |x) − inf
z∈(0,+∞)�

1

∑
(σ,σ ′)∈W1

χσ r(σ,σ ′|x)
zσ ′

zσ

, (10.5)

j+(x,χ) =
∑

σ

χσ γ +(σ |x) − inf
z∈(0,+∞)�

1

∑
(σ,σ ′)∈W1

χσ ′r(σ,σ ′|x)
ρ(x,σ )zσ

ρ(x,σ ′)zσ ′
. (10.6)

If we introduce z̃σ := χσ

ρ(x,σ )zσ
for any σ ∈ �1 the variational expression in (10.6) can be

written as

inf
z∈(0,+∞)�

1

∑
(σ,σ ′)∈W1

χσ r(σ,σ ′|x)
z̃σ ′

z̃σ

,

which coincides with the variational expression in (10.5). Relation (10.1) now follows di-
rectly. �

Using (3.15) (valid for each σ ∈ �), which are equivalent to the second group of identities
in (3.13), we obtain that (10.1) of the above lemma can be written as

j (x,χ) − j+(x,χ) = ∇S(x) ·
(∑

σ

χσ Fσ

)
. (10.7)

Observe that in order to compute both jm(x, ẋ) and j+
m (x,−ẋ) we need to minimize respec-

tively j and j+ over χ subject to the same constraint
∑

s χsFσ (x) = ẋ. Recalling (10.7), we
get for any fixed x and ẋ that

jm(x, ẋ) = inf
{χ : ∑s χsFσ (x)=ẋ}

j (x,χ)

= ∇S(x) · ẋ + inf
{χ : ∑s χsFσ (x)=ẋ}

j+(x,χ)

= ∇S(x) · ẋ + j+
m (x,−ẋ). (10.8)

That corresponds to the FD relation (4.9) since, as already observed, S(x) = V (x). From
(10.7) we obtain also that the minimizers χ for the computation of both jm(x, ẋ) and
j+
m (x,−ẋ) coincide. We point out that in the case of computable LD rate functionals as in
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(3.39) and (3.47), identity (10.8) follows directly from (3.33), (3.42) and the simple relation
χF

σ (ẋ) = χ−F
σ (−ẋ).

Remark 2 It is interesting to note that we can obtain a simple explicit expression for the
entropy production, i.e. the rate of variation of S along the orbits of the vector fields F̄

and F̄+. Given x(t) a solution of (4.5), using (3.15) we have

∇S(x) · ẋ = ∇S(x) · F̄ (x) =
∑

σ

μ(σ |x)∇S(x) · Fσ (x) =
∑

σ

μ(σ |x̄)(γ (σ |x) − γ +(σ |x)).

(10.9)
Likewise given x+ a solution of (4.13) we have

∇S(x+) · ẋ+ =
∑

σ

μ+(σ |x+)(γ +(σ |x+) − γ (σ |x+)). (10.10)

10.3 A Conjecture

As already observed, the validity of the FD relation for PDMPs with invariant measures of
the form (3.10) follows from the identity (10.8). This key identity can be rewritten as

jm(x, ẋ) = ∇W · ẋ + G(x,−ẋ), (10.11)

where W = S and G(x,−ẋ) = j+
m (x,−ẋ). In this subsection, we desire to present a conjec-

ture related to (10.11). In general, the computation of the quasi-potential (4.10) for PDMPs
not having invariant measure of the form (3.10) is non trivial. We will discuss a specific
example of this type in the next subsection. A possible purely variational approach to this
problem is as follows. Suppose we can decompose the dynamic LD rate density as in (10.11),
where now G(x, ẋ) is a nonnegative function, which is zero only when ẋ = G(x), with G

a vector field having x∗ has the unique global attractive equilibrium point. Then from the
general arguments in Sect. 4 we have that W coincides in fact with the quasi-potential Q.
Inspired by the structure of the rate functionals for PDMPs we can search for G having a
specific form. For simplicity we discuss only the case of computable rates of the form (3.39)
when the chemical part of the generator is reversible for any x and consequently j is given
by (3.33). In this case given a positive ψ(σ,x) we can search for a G of the form

G(x, ẋ) =
∑

σ

γ̃ (σ |x)χ−F
σ (ẋ) −

∑
(σ,σ ′)∈W

√
μ(σ |x)

μ(σ ′|x)
r(σ,σ ′|x)

√
χ−F

σ (ẋ)

√
χ−F

σ ′ (ẋ),

where

γ̃ (σ |x) :=
∑
σ ′

r(σ ′, σ |x)
ψ(σ ′, x)

ψ(σ, x)
.

To verify (10.11) we need to find a function W such that for any x, ẋ it holds

∑
σ

(γ (σ |x) − γ̃ (σ |x))χF
σ (ẋ) = ∇W · ẋ =

∑
σ

(∇W · Fσ (x))χF
σ (ẋ). (10.12)

To derive the above condition we used χF
σ (ẋ) = χ−F

σ (−ẋ). Condition (10.12) is verified if
and only if for any σ ∈ � and for any x ∈ � we have that γ (σ |x)− γ̃ (σ |x) is the directional
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derivative of W at x along the direction Fσ (x). In this case the vector field G is given by

G(x) = − 1

Z(x)

∑
σ

ψ2(σ, x)

μ(σ |x)
Fσ (x),

where Z(x) :=∑
σ

ψ2(σ,x)

μ(σ |x)
. If we can find the positive functions ψ in such a way that the

above requirements are satisfied then the function W obtained in (10.12), appropriately nor-
malized, coincides with the quasi-potential. In this case we obtain also that F̄+ in fact coin-
cides with G. We do not discuss this issue here.

10.4 An Example

We now illustrate with an example the validity of the general results discussed in Sect. 10.2
and their consequences. We consider the 1D models of Sect. 3.8. The explicit formulas that
we obtain will be useful in the discussion of the fluctuation theory for 1D PDMPs on the
torus.

In this case the quasistationary measures for the direct and adjoint chemical generators
can be easily computed and we have

⎧⎨
⎩

F̄ (x) = r(1,0|x)

r(1,0|x)+r(0,1|x)
F0(x) + r(0,1|x)

r(1,0|x)+r(0,1|x)
F1(x),

F̄+(x) = −(
r(1,0|x)F 2

0 (x)

r(1,0|x)F 2
0 (x)+r(0,1|x)F 2

1 (x)
F1(x) + r(0,1|x)F 2

1 (x)

r(1,0|x)F 2
0 (x)+r(0,1|x)F 2

1 (x)
F0(x)).

(10.13)

Note that x ∈ � is an equilibrium point for F̄ if and only if r(1,0|x)F0(x) + r(0,1|x)F1(x)

= 0. The same equation characterizes the equilibrium points of F̄+, thus implying that F̄ and
F̄+ have the same equilibrium points in �. Moreover we have that both relations F̄ (x) > 0
and F̄ +(x) > 0 holds if and only if r(1,0|x)F0(x) + r(0,1|x)F1(x) > 0, so that also the
stability of the equilibrium points for both vector fields is the same. We point out that, since
F0(a) = F1(b) = 0, the adjoint vector field F̄+ has two additional equilibrium points at the
boundary ∂� = {a, b}, which are necessary unstable.

Note that there are models such that the vector field F̄ has many stable equilibrium
points. In this case the definition of the quasi-potential Q(x) in (4.10) has to be modified
considering separately the different basin of attraction. We do not discuss this possibility.

For a vector ẋ ∈ C{F0(x),F1(x)} we have that

χF
0 (ẋ) = F1(x) − ẋ

F1(x) − F0(x)
, χF

1 (ẋ) = ẋ − F0(x)

F1(x) − F0(x)
.

Using the results of Sect. 3.4 (see (3.34) and (3.39)), we get

jm(x, ẋ) =
(√

r(0,1|x)(F1(x) − ẋ)

F1(x) − F0(x)
−
√

r(1,0|x)(ẋ − F0(x))

F1(x) − F0(x)

)2

(10.14)

for all x ∈ � and ẋ ∈ C(F0(x),F1(x)). Since similarly to (3.34) + (3.39) it holds

j+
m (x, ẋ) =

(√
χ−F

0 (ẋ)r+(0,1|x) −
√

χ−F
1 (ẋ)r+(1,0|x)

)2

, (10.15)
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observing that χ−F (ẋ) = χF (−ẋ) for all ẋ ∈ C(−F0(x),−F1(x)) we conclude that

j+
m (x, ẋ) =

(√
r(1,0|x)|F0(x)|(F1(x) + ẋ)

F1(x)(F1(x) − F0(x))
−
√

r(0,1|x)F1(x)(−ẋ − F0(x))

|F0(x)|(F1(x) − F0(x))

)2

(10.16)

for all x ∈ � and ẋ ∈ C(−F0(x),−F1(x)). The validity of the FD relation (4.9) can now be
checked directly recalling that in this case

∇S(x) = r(0,1|x)

F0(x)
+ r(1,0|x)

F1(x)
. (10.17)

Also the validity of the H-Theorem can be checked directly, we have in fact

∇S(x) · F̄ (x) = −
(r(1,0|x)

√
|F0(x)|
F1(x)

+ r(0,1|x)

√
F1(x)

|F0(x)| )
2

r(0,1|x) + r(1,0|x)
,

and

∇S(x) · F̄+(x) = − (r(0,1|x)F1(x) + r(1,0|x)F0(x))2

r(0,1|x)F 2
1 (x) + r(1,0|x)F 2

0 (x)
,

whose non-positivity is immediate. Finally we can also explicitly compute the Hamiltonian

H(x,p) = sup
y∈C{F0(x),F1(x)}

[
py − jm(x, y)

]
,

and check that (10.17) is its maximal solution. The solution to this variational problem is
given by

H(x,p) = pẋ(x,p) − jm(x, ẋ(x,p)),

where

ẋ(x,p) = 1

2
(F1(x) + F0(x)) + 1

2
(F1(x) − F0(x))

ε(x,p)√
ε(x,p)2 + 4

and

ε(x,p) =
(

(F1(x) − F0(x))
p√

r(0,1|x)r(1,0)|x)
+ r(0,1|x) − r(1,0|x)√

r(1,0|x)r(0,1|x)

)
.

It can be checked that the Hamilton–Jacobi equation H(x,∇S) = 0 holds. We refer the
reader to [21] for these computations and for more details on the one dimensional models
on a bounded domain.
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11 Fluctuation Theory for the 1D Torus with Two Chemical States

11.1 Time Reversed Process

From the explicit expression (3.54) of the stationary measure ρλ, we can compute the jump
rates of the time-reversed process:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

r+(0,1|x) = r(1,0|x)
F0(x)

F1(x)

∫ x+1
x [ r(0,1|y)

F0(y)
eλS(y)]dy∫ x+1

x [ r(1,0|y)
F1(y)

eλS(y)]dy
,

r+(1,0|x) = r(0,1|x)
F1(x)

F0(x)

∫ x+1
x [ r(1,0|y)

F1(y)
eλS(y)]dy∫ x+1

x [ r(0,1|y)
F0(y)

eλS(y)]dy
.

(11.1)

Note that in general, the above rates are λ-dependent. They are λ-independent when the
equilibrium condition (3.55) holds. In this case from (7.5) we conclude that⎧⎨

⎩
r+(0,1|x) = −r(1,0|x)

F0(x)

F1(x)
,

r+(1,0|x) = −r(0,1|x)
F1(x)

F0(x)
.

(11.2)

Remember that in this case the vector fields have opposite sign so that the above rates are
positive.

When condition (3.55) is violated then rates (11.1) can be λ-dependent. In this case
we can study the asymptotic behavior of ρλ as λ ↑ ∞ using some classical results (see
for example [7]) that we recall for the reader’s convenience. Let f and S be smooth real
functions on the interval [a, b]. If S(y) < S(a) for any y ∈ (a, b] and S ′(a) < 0, then it
holds

lim
λ→∞

∫ b

a
f (y)eλS(y)dy

eλS(a)λ−1
= − f (a)

S ′(a)
. (11.3)

If there exists y∗ ∈ (a, b) such that S(y) < S(y∗) for any y ∈ [a, b] different from y∗ and
moreover S ′′(y∗) < 0, then it holds

lim
λ→∞

∫ b

a
f (y)eλS(y)dy

eλS(y∗)λ− 1
2

= f (y∗)

√
− 2π

S ′′(y∗)
. (11.4)

Let us suppose that the function S defined by (3.53) is regular and that for any x ≥ 0 the
maximum of the function S in the closed interval [x, x + 1] is assumed in at most one point
of the open interval (x, x + 1). This fact is guaranteed if for example S(z1) �= S(z2) for any
pair of critical points z1 and z2 (i.e. such that S ′(z1) = S ′(z2) = 0). If F0 and F1 have the
same sign, this is always true since the function S is strictly increasing or strictly decreasing.
Moreover, note that in general x and x + 1 cannot be both maximum points of the function
S on [x, x + 1], since due to (7.4) the identity S(x) = S(x + 1) would imply the periodicity
of S. In addition to the previous assumptions, we require that S ′′(y) < 0 if the maximum
of S on the interval [x, x + 1] is reached at the internal point y. We point out that by the
methods discussed in [7] more general cases can be considered.

Given x ≥ 0, we define y(x) ∈ [x, x + 1] as follows. We require that S(y(x)) =
maxy∈[x,x+1] S(y). If the maximum point in [x, x + 1] is unique, then y(x) is univocally
determined from the above condition. The only other possibility is that there is a maximum
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point at the boundary and a maximum point in the interior of the interval [x, x + 1]. In this
case, we define y(x) as the unique maximum point inside (x, x + 1).

From the results (11.3) and (11.4) it is easy to derive that⎧⎨
⎩

r+(0,1|x) = r(1,0|x)
F0(x)

F1(x)

r(0,1|y(x))F1(y(x))

r(1,0|y(x))F0(y(x))
+ o(1),

r+(1,0|x) = r(0,1|x)
F1(x)

F0(x)

r(1,0|y(x))F0(y(x))

r(0,1|y(x))F1(y(x))
+ o(1),

(11.5)

where by o(1) we indicate a term which is infinitesimal as λ diverges. Note that the first
terms in the r.h.s. of (11.5) are λ-independent.

Note that if y(x) ∈ {x, x + 1}, by the periodicity of Fσ (x) and r(σ,σ ′|x) formula (11.5)
reduces to {

r+(0,1|x) = r(0,1|x) + o(1),

r+(1,0|x) = r(1,0|x) + o(1).
(11.6)

This is always true if the vector fields F0 and F1 have the same sign, since in this case the
function S is monotone. On the other hand, if y(x) ∈ (x, x + 1), then necessarily it holds

∇S(y(x)) = r(0,1|y(x))

F0(y(x))
+ r(1,0|y(x))

F1(y(x))
= 0, (11.7)

and (11.5) reduces to

{
r+(0,1|x) = −r(1,0|x)

F0(x)

F1(x)
+ o(1),

r+(1,0|x) = −r(0,1|x)
F1(x)

F0(x)
+ o(1).

(11.8)

11.2 Fluctuation Theory

We discuss now the fluctuation theory for our PDMP on the torus, proving between other
point (iii) of Proposition 3.13.

If the equilibrium condition (3.55) holds, then we know that the invariant measure has
the form (3.10) and therefore the validity of relation (4.9) follows from the general argument
of Sect. 10.2. We consider here the general case, without assuming (3.55).

Starting from the exact expression (3.54) of the invariant measure we can derive the LD
functional of ρ̂λ. We have that

lim
λ→∞λ−1 log ρ̂λ(x) = lim

λ→∞λ−1 log
(
ρλ(x,0) + ρλ(x,1)

)
= sup

y∈[x,x+1]

(
S(y) − S(x)

)+ c =: −W(x), (11.9)

where c is an appropriate additive constant related to the normalization factor k = k(λ)

in (3.54). Formula (11.9) follows from the fact that for arbitrary a(λ) and b(λ) it holds

lim
λ→+∞ λ−1 log

(
a(λ) + b(λ)

)= max
{

lim
λ→+∞λ−1 loga(λ), lim

λ→+∞λ−1 logb(λ)
}
,

and from the Laplace theorem [11]. Note that the function W defined in (11.9), due to the
validity of (7.4), satisfy the periodicity condition W(x) = W(x + 1) and consequently it
can be interpreted as a function on the torus � = R/Z. The constant c appearing in (11.9)
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can be computed observing that, since
∫

�
ρ̂λ(x)dx = 1, the Laplace theorem implies that

infx∈[0,1] W(x) = 0. Therefore, it must be

c = − sup
x∈[0,1]

sup
y∈[x,x+1]

(
S(y) − S(x)

)
.

The above function W is the LD functional for the measure ρ̂λ. If the function S is
periodic, then it is simple to check that W(x) = S(x) − miny∈[0,1] S(y). In the general case,
W is a nonnegative function that can be flat on subregions of �.

Let us now verify the validity of the FD relation (4.9), with L(x, ẋ) = jm(x, ẋ),
L+(x, ẋ) = j+

m (x, ẋ) and V = W . For simplicity, we assume the same conditions discussed
after (11.4). The function y(x) is defined as in the paragraph below (11.4). First we need to
compute ∇W . We have that in the points where W is differentiable it holds

∇W(x) = ∇S(x) − ∇S(y(x))∇y(x). (11.10)

When y(x) ∈ (x, x + 1) we have that (11.10) becomes

∇W(x) = ∇S(x), (11.11)

due to the fact that ∇S(y(x)) = 0. When y(x) ∈ {x, x + 1} then (11.10) becomes

∇W(x) = 0, (11.12)

due to the fact that ∇S(x) = ∇S(x + 1) and ∇y(x) = 1. Note that this second alternative
holds for any x if the vector fields F0 and F1 have the same sign so that in this case W is
identically zero.

The Lagrangian jm(x, ẋ) can be computed by means of (3.34) and (3.39), getting that its
expression coincides with (10.14). The Lagrangian j+

m (x, ẋ) can be computed by adapting
the arguments in [12]. We get that its expression can be obtained from (10.15) where instead
of the λ-dependent rates r+ we have to use their asymptotic limit value given by (11.5). We
obtain for all x ∈ � and ẋ ∈ C(−F0(x),−F1(x))

j+
m (x, ẋ) =

(√
r(1,0|x)B(x)(F1(x) + ẋ)

F1(x) − F0(x)
−
√

r(0,1|x)(ẋ + F0(x))

B(x)(F0(x) − F1(x))

)2

, (11.13)

where B(x) := F0(x)

F1(x)

r(0,1|y(x))F1(y(x))

r(1,0|y(x))F0(y(x))
.

We can now compute jm(x, ẋ) − j+
m (x,−ẋ) obtaining

ẋ
[r(1,0|x)(1 + B(x)) − r(0,1|x)(1 + B−1(x))]

F1(x) − F0(x)

+ r(0,1|x)(F1(x) + F0(x)B−1(x)) − r(1,0|x)(F0(x) + F1(x)B(x))

F1(x) − F0(x)
. (11.14)

The validity of the FD relation for points x where W is differentiable follows now directly
from the fact that if y(x) ∈ {x, x + 1} then B(x) = r(0,1|x)

r(1,0|x)
, while if y(x) ∈ (x, x + 1) then

B(x) = −F0(x)

F1(x)
(recall (11.7)). In particular the second term in (11.14) is identically zero.

Finally we point out that in the general case the quasi-potential cannot be defined directly
as in (4.10). Indeed, the hypothesis of existence, uniqueness and global attractiveness of the
equilibrium point of F̄ could be violated. We cannot then identify directly W with the quasi-
potential.
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Assuming (3.63) and (3.64), it is easy to compute (3.60) using standard methods for jump
processes (see for example [16]). One gets up to boundary terms

WT = 1

2T

∑
i

{H(σ(τ−
i ), x(τi)) − H(σ(τi), x(τi))}. (12.1)

The boundary terms are due to the fact that in (3.60) we are considering stationary measures.
In the case of compact phase space � × � they are negligible in the limit of diverging T . In
the above formula (12.1) the sum is over the jump times τi of {σ(t)}t∈[−T ,T ] and we denote
the left limit as σ(t−) := lim�↓0 σ(t − �). Since for any trajectory it holds

H(σ(T ), x(T )) − H(σ(−T ), x(−T )) =
∫ T

−T

∇H(σ(s), x(s)) · ẋ(s)ds

+
∑

i

{H(σ(τi), x(τi)) − H(σ(τ−
i ), x(τi))},

in the case of bounded energy functions H we can derive from (12.1) the first identity in
(3.65). The second identity follows from the relation ẋ(t) = Fσ (x(t)).
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Appendix A: An Example of 1D PDMP with Singular Features

We consider the 1D PDMP such that � = (0,1), � = {0,1}, F0(x) = −1, F1(x) = 1,
r(0,1|x) = 1/x, r(1,0|x) = 1/(1 − x). This PDMP satisfies all our assumptions. Indeed,
Lc[x] has a unique invariant measure μ(·|x) given by (2.10), while the mechanical confine-
ment in � is implied by (2.16). Moreover, we claim that the number of jumps in a finite
interval is finite a.s. due to (2.12) (note that (2.11) is violated). To this aim suppose by
contradiction that the family of jump times τk is a sequence converging to some τ∗ < ∞.
Before time τ∗ the mechanical state must be eventually in (0,3/4] or in [1/4,1) (otherwise
it should evolve with arbitrarily large velocity). Let us consider for example the first case.
Then, the system must be infinite times in the chemical state σ = 1 and, once it jumps into
σ = 1, it remains in this chemical state for a random time typically of order one. This is in
contradiction with the fact that τk+1 − τk converges to zero.

Let us now take λ = 1 and show another special feature of our simple PDMP: the regular
function f (x,σ ) = σ does not belong to the domain of the classical (i.e. not extended)
Markov generator. To this aim, it is enough to show that starting at (x0,0) it holds

lim sup
t↓0

sup
x0∈(0,1)

t−1
P

1
x0,0(σt = 1) = ∞. (A.1)

To this aim we observe that P
1
x0,0(σt = 1) can be bounded from below by the probability that

the process makes only one chemical jump in the time interval [0, t] and, as the reader can
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compute, this equals

x−1
0

∫ x0

0

1 − x0 + 2s − t

1 − x0 + s
ds ≥ x−1

0

∫ x0

0
(1 − x0 + 2s − t)ds = 1 − t

for x0 < t . This observation implies (A.1).
Finally, we come back to the observations about the existence of the invariant measure

collected in Sect. 3.1. We take (x0, σ0) as initial state and write νt for the distribution at
time t . By compactness arguments, we know that the sequence of probability measures
ν̃t := t−1

∫ t

0 νsds admits a subsequence weakly converging to a probability measure ν∗ on
the closure �̄×�. Let us show that ν∗ has support on �×�, thus implying that ν∗ describes
a steady state of the PDMP. Consider the interval Iε = (0, ε), ε < 1. When the mechanical
state enters in the interval Iε , the chemical state of the system must be 0. After a time of
order O(ε) the system jumps into the chemical state 1 keeping this value for a time O(1).
During this interval x(t) moves on the right with constant velocity, spending at most O(ε)

time inside Iε . Hence, in a time interval of order O(1) the mechanical state is in Iε for at
most O(ε) time. This implies that ν̃t (Iε × �) ≤ cε, for each t . It is simple to conclude that
the limiting measure ν∗ must give zero weight to {0} × �. The same conclusion holds for
the set {1} × �, thus proving that ν∗({0,1} × �) = 0.

Appendix B: An Example of 1D PDMP with a Finite Number of Jumps

We take here � = [0,1] and � = {0,1}. The vector fields are given by F0(x) = −x and
F1(x) = 1 − x and the jump rates by r(0,1|x) = x and r(1,0|x) = 1 − x.

Let us consider the process with initial condition given by (x∗,0), with x∗ a generic
element of �. We can easily compute the probability that there are no chemical jumps

P
λ
(x∗,0)

(
σ(t) = 0, ∀t ∈ R

+)= e−λx∗ ∫+∞
0 e−t dt = e−λx∗ ≥ e−λ. (B.1)

A similar estimate can be obtained also if we consider the process starting from the chemical
state 1. The above result (B.1) states that every time the process jumps into a new chemical
state σ , with positive probability uniformly bounded from below by e−λ it will never more
change its chemical state and consequently the mechanical variable will definitely evolve
according to the ODE ẋ = Fσ (x). As a consequence it is easy to derive that this PDMP has
a.s. a finite number of jumps and that the invariant measures are of the form

cδ(x)δσ,0 + (1 − c)δ(x − 1)δσ,1, c ∈ [0,1].
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