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AVERAGING AND LARGE DEVIATION PRINCIPLES FOR

FULLY–COUPLED PIECEWISE DETERMINISTIC MARKOV

PROCESSES AND APPLICATIONS TO MOLECULAR MOTORS

A. FAGGIONATO, D. GABRIELLI, AND M. RIBEZZI CRIVELLARI

Abstract. We consider Piecewise Deterministic Markov Processes (PDMPs) with a
finite set of discrete states. In the regime of fast jumps between discrete states, we prove
a law of large number and a large deviation principle. In the regime of fast and slow
jumps, we analyze a coarse–grained process associated to the original one and prove its
convergence to a new PDMP with effective force fields and jump rates. In all the above
cases, the continuous variables evolve slowly according to ODEs. Finally, we discuss some
applications related to the mechanochemical cycle of macromolecules, including strained–
dependent power–stroke molecular motors. Our analysis covers the case of fully–coupled
slow and fast motions.

Key words: piecewise deterministic Markov process, averaging principle, large deviations,
molecular motors.
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1. Introduction

Several systems in physics, chemistry, biology, control and optimization theory present
a multiscale character due to interacting parts evolving on different relevant timescales. In
the case of two relevant timescales, the dynamics is a combination of slow and fast motions
and often the slow motion is supposed to be well approximated by averaging the effect of
fast motion, considering the fast variables as locally equilibrated. This is the content of
the averaging principle, which has been successfully applied in several contests. We just
mention few examples. One of its first applications has been the study, due to Newton, of
the precession of the equinoxes (see [A] for averaging methods in mechanics). An example
in quantum mechanics is given by the Born-Oppenheimer approximation, based on the
fact that electrons move much faster than nuclei. Recently, averaging methods have been
applied also to model climate–weather interactions (see for example [CMP]).

The validity of the averaging principle has been rigorously proved for several models
assuming that the fast motion is independent of the slow one, assumption which is not
fulfilled by many real systems where fast and slow variables influence each other. A rig-
orous proof in a stochastic fully–coupled case, with additional results on large deviations,
has been provided by [V1] and [V2] (the former contains errors, recently corrected in the
latter). There the author considers a system described by variables (xt, σt) ∈ M × N , M
and N being differential manifolds, such that the slow variable xt evolves according to an
ODE depending both on xt and σt, while the fast variable σt undergoes a diffusion with
local drift and variance depending again both on xt and σt. In [K] the author has given
among other an alternative proof of the averaging and large deviation principles for the
fully–coupled model as above, with the extension that the fast variable σt varies in N ×Γ,
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N being a differentiable manifold and Γ a finite set, by diffusion on N and random jumps
in Γ.

We consider here a fully–coupled system whose state is described by a slow variable xt

varying in a differentiable manifold M (for simplicity of notation we take below M = R
d)

and by a fast variable σt varying in a finite set Γ. We will consider also the case that
σt evolves fast only when varying inside some subclasses – metastates – of Γ. We call xt

the mechanical state of the system, and σt the chemical one. The mechanical state xt

evolves according to an ODE whose form depends on the chemical state σt, while σt is a
continuous–time stochastic process with jump rates depending on the mechanical state xt.
In other words, the system we consider is a fully–coupled piecewise deterministic Markov
process (PDMP). Our motivation and terminology come from molecular motors, but the
same model is natural in other contests as for example operations research, control theory
and optimization (see [D2], [YZ]).

Molecular motors are proteins, hence biological macromolecules, working inside the cell
at the nanometer scale as microscopic engines, powered by the chemical energy provided
by ATP hydrolysis. Their tasks are various, as for example they can transport cargos along
filaments or determine muscle contraction. Molecular motors can be in different structural
states, that we simply call chemical states: attached to the filament, detached from the
filament, bound to an ATP molecule, bound to the products of ATP hydrolysis and so
on. Independently from the chemical state, there is a specific region of the molecular
motor working as a lever–arm, able to swing and produce work, while the fuel (ATP) is
collected from the environment and used to derive energy. The conformation of the lever–
arm can be described by a continuous variable x ∈ M , that we call mechanical state. The
above picture is known in the biophysical literature as power–stroke model, cross–bridge
model and also lever–arm model, in contrast with the so called ratchet model (see [H] and
references therein).

In order to investigate the functionality of molecular motors, it is enough to describe
their state by means of the pair (x, σ), whose dynamics can be modeled in a first ap-
proximation by a fully–coupled PDMP as discussed in Section 3. There is experimental
evidence that the family Γ of chemical states is partitioned in subclasses Γ1,Γ2, . . . ,Γℓ

inside which chemical jumps are much faster (see [D] and references therein). As implic-
itly assumed in biophysical papers as [VD], we also suppose that these jumps are faster
than the mechanical relaxation time scale. Considering first the case ℓ = 1, in the limit of
high frequency of chemical jumps, we prove averaging and large deviation principles both
for the slow motion of the mechanical state x and for the occupation measure associated
to the chemical states visited in a fixed time interval. The analysis for the occupation
measure is lacking in [K], moreover we provide a different and simpler derivation of the
averaging and large deviation principles with respect to [V1], [V2] and [K]. In the case
ℓ > 1, the subclasses Γj can be treated as chemical metastates. We then show that in
the limit of high jump–frequency the coarse–grained process describing the evolution of
the mechanical state and the chemical metastate of the system weakly converges to a new
PDMP with effective force fields (ODE’s) and transitions rates. In Section 3 we discuss
some biological consequences concerning molecular motors, while in a companion paper
[FGR] we further investigate the model from a more physical viewpoint.
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2. Model and main results

We consider systems whose states are described by a pair (x, σ) ∈ R
d × Γ, where

Γ = {σ1, σ2, . . . , σ|Γ|} is a finite set. The variable x will define the mechanical state of the
system and the variable σ its chemical state.

When the chemical state is σ, the system evolves mechanically according to the ODE

ẋ(t) = Fσ(x(t), t) (2.1)

where the force field Fσ : R
d × [0,∞) → R

d is a continuous function, locally Lipschitz
w.r.t. x. This means that, given T > 0 and a compact subset K ⊂ R

d, there exists a
positive constant K such that

∣∣Fσ(x, t) − Fσ(x′, t)
∣∣ 6 K|x − x′| , ∀x, x′ ∈ K, t ∈ [0, T ] . (2.2)

Below we will specify some additional assumption on Fσ assuring that the solution x(t) of
(2.1) starting in a given point x ∈ R

d is uniquely determined in each time interval [0, T ].

In order to specify how the system jumps from one chemical state to the other, for each
σ ∈ Γ let γσ(x, t) be a measurable positive function on R

d × [0,∞) and let p(σ, σ′|x, t) be
a function defined on Γ × Γ × R

d × [0,∞) with the following properties:
(i) ∀σ, σ′, p(σ, σ′|·, ·) is measurable,
(ii) ∀x, t, σ, p(σ, ·|x, t) is a probability measure on Γ such that p(σ, σ|x, t) = 0.

The mechanochemical evolution of the system is described as follows. Suppose the
system starts at time zero in the state (x0, σ0). Call x0(t) the solution of (2.1) with
σ = σ0, such that x0(0) = x0. Let τ1 be a random variable with value in (0,∞] s.t.

P (τ1 > t) = exp

(
−

∫ t

0
γσ0(x0(s), s)ds

)
.

Note that the r.h.s. decreases in t and equals 1 if t = 0, thus implying that τ1 is well
defined. Then, in the random time interval [0, τ1) the state of the system is given by
(x0(t), σ0). If τ1 = ∞, we have done. Otherwise, choose a chemical state σ1 ∈ Γ with
probability p(σ0, σ1|x0(τ1), τ1), and call x1(t) the solution on [τ1,∞) of the Cauchy problem

{
ẋ1(t) = Fσ1(x1(t), t) , t > τ1 ,

x1(τ1) = x0(τ1) .

Now let τ2 be a random variable with values in (τ1,∞], such that

P (τ2 > t) = exp

(
−

∫ t

τ1

γσ1(x1(s), s)ds

)
, t > τ1 .

Then in the time interval [τ1, τ2) the state of the system is given by (x1(t), σ1).
In general, denoting by τk the time of the k–th chemical jump and by (xk(t), σk) the

evolution of the system in the time interval [τk, τk+1), one has that τk+1 is a random
variable with value in (τk,∞] such that

P (τk+1 > t) = exp

(
−

∫ t

τk

γσk
(xk(s), s)ds

)
, t > τk . (2.3)

Moreover, ẋk(t) = Fσk
(xk(t), t) on [τk, τk+1) and at time τk+1 the system jumps to a new

chemical state σk+1 ∈ Γ with probability p(σk, σk+1|xk(τk+1), τk+1), while the mechani-
cal state remains the same, i.e. xk(τk+1) = xk+1(τk+1). Setting τ0 = 0, the evolution
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(
x(t), σ(t)

)
is then defined as

(
x(t), σ(t)

)
= (xk(t), σk) , if τk 6 t < τk+1 . (2.4)

Note that the path x(t) is continuous and piecewise C1. In order to have a well defined
dynamics over [0, T ], it is necessary that a.s. the system makes a finite number of jumps in
the time interval [0, T ]. We will discuss below under which conditions this automatically
happens.

As proven in [D1], [D2], the above stochastic process is a strong Markov process,
called piecewise deterministic Markov process (PDMP) with (x, t)–dependent character-
istics (F, p, γ), defined as

F = {Fσ}σ∈Γ ; p =
{
p(σ, σ′|·, ·)

}
σ,σ′∈Γ

; γ = {γσ}σ∈Γ .

The time dependent generator Lt reads

Ltg(x, σ) = Fσ(x, t) · ∇xg(x, σ) + γσ(x, t)
∑

σ′∈Γ

p(σ, σ′|x, t)
(
g(x, σ′) − g(x, σ)

)
(2.5)

for functions g : R
d × Γ → R regular in x ∈ R

d. A characterization of the domain of the
so called extended generator of the process is given in [D1], [D2]. Defining the transition
rate

r(σ, σ′|x, t) := γσ(x, t)p(σ, σ′|x, t) .

for a chemical jump from σ to σ′ at time t when being in the state (x, σ), the above
generator can be written as

Ltg(x, σ) = Fσ(x, t) · ∇xg(x, σ) +
∑

σ′∈Γ

r(σ, σ′|x, t)
(
g(x, σ′) − g(x, σ)

)
. (2.6)

Since knowing
(
F, r

)
is equivalent to knowing (F, p, γ), we call both these families of

functions characteristics of the PDMP.

Given x, t we define Lc(x, t) as the contribution to Lt coming only from the chemical
transitions at the mechanical state x, i.e. Lc(x, t) is the operator on ΓR s.t.

Lc(x, t)g(σ) =
∑

σ′∈Γ

r(σ, σ′|x, t)
(
g(σ′) − g(σ)

)
, g : Γ → R.

For fixed x, t, Lc(x, t) is the generator of the time–homogeneous Markov chain on the space
Γ which jumps from σ to σ′ with probability p(σ, σ′|x, t) after having waited an exponential
time with parameter γσ(x, t) in the state σ (note that here t has to be thought of as a
fixed parameter).

We collect here our technical assumptions recalling that [0, T ] is the time interval on
which the evolution of the system will be observed.

• Assumption (A1): a.s. the number of chemical jumps in the interval [0, T ] is finite.
• Assumption (A2): for any pair (x, t) ∈ R

d × [0, T ], the time–homogeneous Markov
chain on Γ with generator Lc(x, t) is ergodic, i.e. it visits with positive probabil-
ity any state in Γ, for any starting point. We call µ(·|x, t) its unique invariant
probability measure on Γ.

• Assumption (A3): the transition rates r(σ, σ′|·, ·) are nonnegative functions and
belong to C1(Rd × [0, T ]).
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• Assumption (A4): each force field Fσ(x, t) is a continuous function in (x, t) ∈
R

d × [0, T ] and is locally Lipschitz in x, i.e. for each compact subset K ⊂ R
d there

exists a constant K > 0 such that

|Fσ(x, t) − Fσ(y, t)| 6 K|x − y| , ∀x, y ∈ K, t ∈ [0, T ] . (2.7)

Moreover, we assume that there exist constants κ1, κ2 > 0 such that

|Fσ(x, t)| 6 κ1 + κ2|x| , ∀x ∈ R
d, t ∈ [0, T ] . (2.8)

Only in Section 2.3, when considering fast and slow chemical jumps, we will slightly change
assumption (A2).

Let us give some comments on the above assumptions. Assumption (A1) implies that
the chemical evolution is well defined a.s. A simple criterion assuring (A1) is the following:

sup
σ∈Γ,x∈Rd,t∈[0,T ]

γσ(x, t) < ∞ . (2.9)

Indeed, calling c the l.h.s., the random number of chemical jumps in the interval [0, T ]
is dominated by NT , N· being a Poisson point process with rate c. This follows at once
observing that, due to (2.3), given τk the random time τk+1 − τk is larger that a > 0 with
probability bounded from below by e−c a. Weaker sufficient conditions are also possible.

Due to the Perron–Frobenius Theorem, assumption (A2) implies that the time homo-
geneous Markov chain with generator Lc(x, t) admits a unique invariant measure µ(·|x, t)
to which the Markov chain converges as time goes to ∞. If (A2) is not satisfied then it
is simple to exhibit different invariant measures, hence (A2) is equivalent to the existence
of a unique invariant measure. Always due to Perron–Frobenius Theorem, µ(σ|x, t) > 0
for each σ ∈ Γ. We call µ(·|x, t) the quasistationary measure of the chemical evolution
(frozen in x, t).

We observe that our assumptions imply the following fact: for each compact K ⊂ R
d,

there exists κ > 0 such that

|r(σ, σ′|x, t) − r(σ, σ′|y, t)| 6 κ|x − y| , (2.10)

|γσ(x, t) − γσ(y, t)| 6 κ|x − y| , (2.11)

|µ(σ|x, t) − µ(σ|y, t)| 6 κ|x − y| , (2.12)

for all x, y ∈ K, t ∈ [0, T ], σ, σ′ ∈ Γ. Indeed, (2.10) and (2.11) trivially follow from assump-
tion (A3), while (2.12) can be derived from assumptions (A2) and (A3) (see Appendix C,
where it is proven that µ(σ|x, t) is C1 in x, t).

Finally, let us point out some consequences of assumption (A4), some of which will be
useful later. To this aim we introduce the averaged vector field F̄ : R

d × [0, T ] → R
d

defined as

F̄ (x, t) :=
∑

σ∈Γ

µ(σ|x, t)Fσ(x, t) . (2.13)

It is simple to check that the force field F̄ satisfies assumption (A4). As consequence, one
can easily prove the following result (see Appendix C):

Lemma 2.1. Let f : [0, T ] → R be a continuous function. Then, given s ∈ [0, T ] and
x0 ∈ R

d, the Cauchy problems
{

ẋ(t) = Fσ

(
x(t), t

)
f(t) ,

x(s) = x0 ,
(2.14)
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and {
ẋ(t) = F̄ (x(t), t) ,

x(s) = x0 ,
(2.15)

have unique solutions in the time interval [s, T ].

Another consequence of assumption (A4) is described in Lemma C.1 in the Appendix.
The reader can check that all our proofs work in general for continuous force fields Fσ :
R

d × [0, T ] → R
d that are locally Lipschitz w.r.t. x, such that (2.14) and (2.15) have

unique solutions, and such that the content of Lemma C.1 remains valid. Finally, we note
that (A4) is satisfied whenever each Fσ is continuous in (x, t) and Lipschitz in x uniformly
in t, namely (2.7) is satisfied with K = R

d.

When |Γ| = 2 the above PDMP can be used to model motor proteins with two main
chemical states, for example detached and attached state respectively. In order to shorten
the notation, we denote by 0 the detached state and by 1 the attached state, hence
Γ = {0, 1}. Note that it must be p(0, 1|x, t) = p(1, 0|x, t) = 1, hence the generator Lt at
time t becomes

Ltf(x, σ) := (1 − σ)F0(x, t) · ∇xf(x, 0) + σF1(x, t) · ∇xf(x, 1)+

(1 − σ)γ0(x, t) [f(x, 1) − f(x, 0)] + σγ1(x, t) [f(x, 0) − f(x, 1)] .

In this case, the measure

µ(0|x, t) :=
γ1(x, t)

γ0(x, t) + γ1(x, t)
µ(1|x, t) :=

γ0(x, t)

γ0(x, t) + γ1(x, t)
(2.16)

is the only invariant measure µ(·|x, t) of the Markov chain on Γ with time–independent
generator Lc(x, t). Moreover, it is also reversible.

We are first interested in analyzing the limiting behavior of PDMPs where the time scale
of the chemical transitions is much smaller than the time scale of mechanical relaxation, i.e.
σ is a fast variable and x is a slow variable. To this aim, we introduce the parameter λ > 0
and study the evolution on [0, T ] of the PDMP starting in (x0, σ0) with characteristics
(F, p, λγ) as λ ↑ ∞. We call P λ

x0,σ0
its law and write Eλ

x0,σ0
for the associated expectation.

For this model we can state a law of large numbers corresponding to the averaging principle
and a large deviation principle.

2.1. Averaging principle.

Theorem 2.2. Given (x0, σ0) ∈ R
d × Γ, call x∗(t) the unique solution of the Cauchy

problem {
ẋ∗(t) = F̄ (x∗(t), t) , t ∈ [0, T ] ,

x∗(0) = x0 ,
(2.17)

where the averaged force field F̄ is defined as in (2.13).
Then, for any δ > 0, σ ∈ Γ and for any continuous function f : [0, T ] → R it holds

lim
λ↑∞

P λ
x0,σ0

(∣∣∣∣
∫ T

0
f(t)χ(σ(t) = σ)dt −

∫ T

0
f(t)µ(σ|x∗(t), t)dt

∣∣∣∣ > δ

)
= 0 , (2.18)

lim
λ↑∞

P λ
x0,σ0

(
sup

0 6 t 6 T
|x(t) − x∗(t)| > δ

)
= 0 . (2.19)
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Note that the PDMP with law P λ
x0,σ0

has paths in the Shorohod space D([0, T ], Rd ×Γ)
but, as clear from the above statement, in order to describe the asymptotic behavior
as λ ↑ ∞ it is necessary to think the mechanical evolution x(t) up to time T as an
element of the space C[0, T ] endowed with the uniform norm, and to identify the chemical
evolution σ(t) to the measure–valued vector ρ(t)dt ∈ M[0, T ]Γ, where ρσ(t) = χ(σ(t) = σ)
and M[0, T ] denotes the space of finite nonnegative Borel measures on [0, T ] endowed
of the weak topology. This means that µn → µ if and only if µn(f) → µ(f) for each

f ∈ C[0, T ], where µ(f) :=
∫ T
0 f(y)µ(dy) for a generic measure µ. Having in mind the

above topologies, the law of large numbers states that the mechanochemical evolution(
x(t), ρ(t)dt

)
converges in probability to

(
x∗(t), µ(·|x∗(t), t)dt

)
as elements of the space

C[0, T ] ×M[0, T ]Γ.

2.2. Large deviation principle. In order to state the large deviation principle for the
above PDMP, it is convenient to isolate a special subset of C[0, T ]×M[0, T ]Γ. To this aim
we introduce the set L[0, T ] of Lebesgue measurable functions f : [0, T ] → [0, 1], identified
up to subsets of zero Lebesgue measure. Then we define Υ as

Υ :=
{

(x, ρ) ∈ C[0, T ] × L[0, T ]Γ :
∑

σ∈Γ

ρσ(·) = 1 a.e. ,

x(t) = x0 +
∑

σ∈Γ

∫ t

0
Fσ(x(s), s)ρσ(s)ds, ∀t ∈ [0, T ]

}
, (2.20)

where x0 is the starting mechanical state of the system (recall that the system starts in a
deterministic state (x0, σ0) at time 0).

The set Υ has to be thought of as topological subspace of C[0, T ] × M[0, T ]Γ via the
identification (

x(t), ρσ(t)
)
t∈[0,T ],σ∈Γ

→
(
x(t), ρσ(t)dt

)
t∈[0,T ],σ∈Γ

.

It can be proved (see Lemma A.2 in the Appendix) that Υ is a compact subspace of
C[0, T ] ×M[0, T ]Γ, and its topology can be derived from the metric d defined as

d ( (x, ρ) , (x̄, ρ̄) ) = ‖x − x̄‖∞ +
∑

σ∈Γ

(
sup

0 6 t 6 T

∣∣∣
∫ t

0

[
ρσ(s) − ρ̄σ(s)

]
ds
∣∣∣
)

. (2.21)

It is clear that for each stochastic evolution
(
x(t), σ(t)

)
t∈[0,T ]

of the system, the path

(
x(t), χ(σ(t) = σ)

)
t∈[0,T ],σ∈Γ

(2.22)

is an element of Υ. In what follows we call Qλ
x0,σ0

the law on Υ of the random path (2.22),

when
(
x(t), σ(t)

)
t∈[0,T ]

is chosen with law P λ
x0,σ0

.

Before stating our second main result we introduce some notation: we set

W := {(σ, σ′) ∈ Γ × Γ : σ 6= σ′} , (2.23)

and, given a nonnegative measure π on Γ and nonnegative numbers r(σ, σ′), with (σ, σ′) ∈
W , we define the function j(π, r) as

j(π, r) := sup
z∈(0,∞)Γ

∑

(σ.σ′)∈W

π(σ)r(σ, σ′)

[
1 −

zσ′

zσ

]
, (2.24)
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i.e.

j(π, r) := sup
z∈(0,∞)Γ

−
∑

σ∈Γ

π(σ)
(Lz)σ

zσ
(2.25)

where L is the generator of the continuous–time Markov chain on Γ jumping from σ to
σ′ 6= σ with rate r(σ, σ′). We can finally state our large deviation principle (LDP):

Theorem 2.3. Given (x0, σ0) ∈ R
d × Γ, the family of probability measures Qλ

x0,σ0
on Υ

satisfies a LDP with parameter λ and with rate function J : Υ → [0,∞) defined as

J(x, ρ) =

∫ T

0
j
(
ρ(t), r(·, ·|x(t), t)

)
dt (2.26)

where j has been defined in (2.24), (2.25).
Moreover, if the quasistationary measures µ(·|x, t) are reversible for the chemical gen-

erators Lc

(
x, t
)
, then

J(x, ρ) = −

∫ T

0

〈√
ρ·(t)

µ(·|x(t), t)
, Lc

(
x(t), t

)
√

ρ·(t)

µ(·|x(t), t)

〉

t

dt (2.27)

where < ·, · >t denotes the scalar product in L2 (Γ, µ(·|x(t), t)).

We recall that the above LDP means that

lim sup
λ↑∞

1

λ
log Qλ

x0,σ0
(C) 6 − J(C) , ∀C ⊂ Υ closed , (2.28)

lim inf
λ↑∞

1

λ
log Qλ

x0,σ0
(O) > − J(O) , ∀O ⊂ Υ open , (2.29)

where

J(S) = inf
(x,ρ)∈S

J(x, ρ) , S ⊂ Υ .

Moreover, the function J must be a lower semi–continuous function such that J 6≡ ∞.

We point out that j
(
ρ(t), r(·, ·|x(t), t)

)
corresponds to the large deviation functional

in ρ(t) of the empirical measure associated to the time–homogeneous and continuous–
time Markov chain on Γ jumping from σ to another chemical state σ′ with transition
rate r(σ, σ′|x(t), t), t being thought of as a fixed parameter here [dH]. As the reader will
observe, this LDP for time–homogeneous Markov chains will be one of the main ingredients
in our proof of Theorem 2.2. Other details on the variational problem (2.24) will be given
in Section 4.

In the case of two chemical states, since we know the form of the quasistationary measure
(see (2.16)) and that it is reversible w.r.t. the chemical generator Lc, the above theorem
implies:

Corollary 2.4. In the case of two chemical states, Γ = {0, 1}, the family of probability
measures Qλ

x0,σ0
on Υ satisfies a large deviation principle with parameter λ and with rate

function J : Υ → [0,∞] given by

J(x, ρ) =

∫ T

0

[√
ρ0(t)γ0 (x(t), t) −

√
ρ1(t)γ1 (x(t), t)

]2
dt . (2.30)
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2.3. Coarse–grained process. We finally consider the PDMP with fast and slow chem-
ical jumps and study the asymptotic behavior of the coarse–grained process obtained from
the original one by keeping knowledge of the mechanical state and only of the chemical
metastate of the system. More precisely, we consider a partition of Γ, Γ = Γ1∪Γ2∪· · ·∪Γℓ

where |Γi| > 1. We rename the elements of Γ by calling σi,1, σi,2, . . . , σi,ni
the elements of

Γi. The probability P λ
x0,σ0

is now the law of the PDMP starting in (x0, σ0) with generator

Ltg(x, σ) = Fσ(x, t) · ∇xg(x, σ) +
∑

σ′∈Γ:σ′ 6=σ

λ(σ, σ′)r(σ, σ′|x, t)
(
g(x, σ′) − g(x, σ)

)
, (2.31)

where

λ(σ, σ′) :=

{
λ if σ, σ′ ∈ Γi for some i ,

1 otherwise .

Note that the chemical jumps between states in the same chemical class Γi take place in
a short time of order O(1/λ), while chemical jumps between states in different chemical
classes take place in times of order O(1). Hence, it is natural to call the classes Γi chemical
metastastes. Below, we denote by

Γ(ℓ) := {1, 2, . . . , ℓ}

the family of metastates Γi, writing i for the metastate Γi. When the rates r(σ, σ′|x, t) do
not depend on the mechanical state x, the chemical evolution is determined by a time–
inhomogeneous Markov chain on Γ with strong and weak interactions and this situation has
been studied in detail [YZ]. We consider here the fully–coupled case where the transition
rates of the chemical jumps depend on the mechanical state. As discussed in [YZ][Chapter
7], it is simple to give examples where P λ

x0,σ0
does not converge weakly as λ ↑ ∞ since

the family {P λ
x0,σ0

: λ > 0} is not tight. Nevertheless, one can obtain from P λ
x0,σ0

a λ–
dependent coarse–grained process weakly converging to a new PDMP. In order to describe
precisely this result it is convenient to fix some notation. We can write the chemical
generator Lc(x, t) as

Lc(x, t) = L̂c(x, t) + λL̃c(x, t) , (2.32)

where L̂c(x, t) and L̃c(x, t) are both λ–independent Markov generators on Γ parametrized

by x and t. Trivially, L̃c(x, t) has a diagonal–block form:

L̃c(x, t) =




L̃1
c(x, t)

L̃2
c(x, t)

. . .

L̃ℓ
c(x, t)


 ,

where L̃i
c(x, t) is a Markov generator on Γi.

We can now state our assumptions. We keep our previous assumptions (A1), (A3) and
(A4), while we replace assumption (A2) with the following (A2’):

• Assumption (A2’): for each i ∈ Γ(ℓ) and (x, t) ∈ R
d × [0, T ], the generator L̃i

c(x, t)
is irreducible on Γi.

Motivated by assumption (A2’), we write µi(·|x, t) for the unique invariant probability

measure on Γi, i.e. µi(·|x, t) is the quasistationary measure for the generator L̃i
c(x, t).
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Given i ∈ Γ(ℓ) and (x, t) ∈ R
d × [0, T ] we define the vector field

Fi(x, t) :=
∑

σ∈Γi

Fσ(x, t)µi(σ|x, t) . (2.33)

Given a state σ ∈ Γ we define α(σ) as α(σ) = i if σ ∈ Γi, moreover we denote by Rλ
x0,σ0

the law on D
(
[0, T ], Rd × Γ(ℓ)

)
obtained as image of P λ

x0,σ0
under the map (x(t), σ(t)) →(

x(t), α(σ(t))
)

(we will often write α(t) in place of α(σ(t))). Rλ
x0,σ0

is the law of the above
mentioned coarse–grained process. Note that in general this process is not Markovian,
however it converges to a PDMP:

Theorem 2.5. Given T > 0, as λ goes to ∞ the law Rλ
x0,σ0

weakly converges to the law

of the PDMP on R
d × Γ(ℓ) with generator

Lsg(x, i) = Fi(x, s) · ∇xg(x, i) +
∑

j 6=i

r(i, j|x, s)
(
g(x, j) − g(x, i)

)
, (2.34)

where, given 1 6 i 6= j 6 ℓ,

r(i, j|x, s) :=
∑

σ∈Γi

∑

σ′∈Γj

µi(σ|x, s)r(σ, σ′|x, s) . (2.35)

Note that, due to assumptions (A1) and (A4), both the chemical and mechanical evo-
lutions for the original PDMP and the limiting one are well defined.

2.4. Outline of the paper. The remaining part of the paper is organized as follows: in
Section 3 we discuss some biological applications, in Section 4 we consider the variational
problem (2.24): we show that the r.h.s. of (2.26) equals the r.h.s. of (2.27) if µ(·|x(s), s) is
reversible w.r.t. Lc

(
x(s), s

)
and we show other results useful for the proof of the LDP, in

Section 5 we prove the LLN stated in Theorem 2.2, in Section 6 we prove the LDP stated
in Theorem 2.3 and in Section 7 we prove the asymptotic behavior of the coarse–grained
process described in Theorem 2.5. Finally, in the Appendix we prove some technical results
used in the paper.

3. Some biological applications

In this section we discuss an application of the above averaging principles for PDMPs
to molecular motors. Further results will be presented in a companion paper [FGR].

As already said, molecular motors (MMs) are proteins working as engines on the
nanometer scale, they generate forces of piconewton order and are usually powered by
the chemical energy derived from ATP hydrolysis. Most of them are linear motors, i.e.
they proceed in a given direction along some filament, which has a function similar to a
railways track. We refer the interested reader to [H].

In the power stroke picture, force is generated by the swinging motion of some part
of the protein (the lever–arm). In order to study the working of the MM, its state can
be described simply by the pair (x, σ), where x is a continuum variable specifying the
configuration of the lever–arm, while σ is a discrete variable describing the chemical state
of the MM (i.e. bound to or detached from the track filament, bound to ATP or to the
hydrolysis products). Given the chemical state σ, the evolution of the mechanical state is
determined by Newtonian laws as

mẍ = −γẋ + Fσ(x, t) + ξ(t) , (3.1)
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where γẋ denotes the friction force, Fσ(x, t) is the force field defined as Fσ(x, t) =
−∇xUσ(x, t), Uσ(x, t) being the free energy, and ξ(t) denotes the thermal force due to
the environment. Since the inertia effects are negligible and the dynamics is overdamped
[H], one can disregard the term mẍ. In what follows, we will neglect also the thermal
force ξ(t) as first approximation. Indeed, contrary to the modeling of MMs as Brownian
ratchets, in the power stroke picture the thermal force ξ(t) is not relevant for many qual-
itatively aspects. Taking γ = 1 without loss of generality, (3.1) reduced to equation (2.1).
Despite our approximation, the thermal fluctuations remain essential in the chemical ki-
netics, since the chemical jumps are stochastic and must satisfied the detailed balance
equation:

r(σ, σ′|x, t)

r(σ′, σ|x, t)
= exp

{
−β
[
Uσ′(x, t) − Uσ(x, t)

]}
, ∀σ, σ′ ∈ Γ , (3.2)

where β is the inverse temperature and, as before, r(σ, σ′|x, t) denotes the probability rate
for a jump from σ to another state σ′. Due to the above considerations, the mechanochem-
ical evolution of the MM can be described by a PDMP satisfying the detailed balance
equation (3.2). Since there is experimental evidence that some jump rates must depend
on x, the PDMP is fully–coupled (see [D] and references therein).

In this section we show how instabilities in the response to external solicitations of MMs
follow from the multiscale character of the system by means of the averaging principle
stated in Theorem 2.5. Let us first explain what one means by instabilities (see [J],[VD]
for some examples). In ordinary conditions a MM moves typically in a given direction
along the filament, at a given averaged speed v depending on environmental parameters
as temperature and ATP concentration. If some external force opposes to the motion, the
MM slows down and eventually stops at the stall force fs. The observed instability is of
the following kind: in some range of the values of the environmental parameters the MM
does not stall, rather for force values close to fs it can proceed in both directions along
the filament.

Inspired by [VD] we study this phenomenon by means of a PDMP with three chemical
states and one dimensional mechanical variable so that the full state is described by
(x, σ) ∈ R × Γ where Γ = {0, 1, 2}. For the interpretation of the different chemical states
we refer to [VD], we only mention that when σ = 1, 2 the MM is attached to the filament
(but in different ways), while in state σ = 0 the MM is detached. The force fields are
defined as 




F0(x) = −x

F1(x) = −x − f

F2(x) = −(x − 1) − f .

(3.3)

This is the most simple choice to give the mechanical variable an equilibrium position in
each state. Here f is a control parameter, representing the external force exerted on the
filament, and therefore on the MM when bound to the filament. These one dimensional
force fields admit three convex potential functions:





U0(x) = 1
2x2

U1(x) = 1
2x2 + fx

U2(x) = 1
2 (x − 1)2 + fx + ǫ

(3.4)

such that −∂xUσ(x) = Fσ(x). Here ǫ is a second control parameter, which can be related
to the ATP concentration. Finally, the transition rates r(σ, σ′|x) must satisfy the detailed
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balance equation (3.2) and assumptions (A1) and (A3). There is experimental evidence
that the jumps between states 1 and 2 are much faster than the other chemical jumps
and it is reasonable to suppose that the jumps between states 1 and 2 are faster than the
mechanical evolution (see [D], [VD] and references therein). Hence, Γ can be partitioned
in two chemical metastates {0} and {1, 2}, while the rates r(1, 2|x) and r(2, 1|x) can be
rescaled by a factor λ. We assume these rates to be positive, thus implying assumption
(A2’) of Section 2.3. Note that the rescaling does not alter the validity of the detailed
balance equation (3.2). By Theorem 2.5, as λ ↑ ∞, the coarse–grained PDMP converges
weakly to a new PDMP with state space R × {0, ∗} (0 refers to the metastate {0} and
∗ refers to the metastate {1, 2}). The force field in the metastate {0} coincides with F0,
while in the metastate ∗ is given by F∗ defined as

F∗(x) =
eβ∆U(x)

1 + eβ∆U(x)
F1(x) +

1

1 + eβ∆U(x)
F2(x) , (3.5)

where ∆U(x) = U2(x)−U1(x). Note that assumptions (A2’) and (A4’) are fulfilled. It must
be noted that while the force fields in (3.3) have a single equilibrium point, Fσ(x) = 0, the
force field F∗(x) may have more than one depending on the value of the control parameters
ǫ, β and f . To this aim, we proceed as follows: First we observe that

F∗(x) = F1(x) +
1

1 + eβ∆U(x)
(F2(x) − F1(x)) = −x − f +

1

1 + eβ∆U(x)
.

Let us take f = 0. Since ∆U(x) = U2(x) − U1(x) = −x + 1/2 + ε, we obtain

∂xF∗(x) = −1 +
βy

(1 + y)2
, y := eβ( 1

2
−x+ǫ) .

Let us analyze the region of positive slope

I+ = {x ∈ R : ∂xF∗(x) > 0} = {x : βy(x) > (1 + y(x))2} .

Since y > 0, I+ = ∅ if β 6 4. If β > 4, then I+ is the finite interval (a−, a+) such that

y(a±) =
β − 2 ∓

√
β2 − 4β

2
.

Note that the r.h.s. is always positive. Since y(0) = eβ( 1
2
+ε), 0 ∈ I+ if β > 4 and

−
1

2
+

1

β
log

(
β − 2 −

√
β2 − 4β

2

)
< ǫ < −

1

2
+

1

β
log

(
β − 2 +

√
β2 − 4β

2

)
. (3.6)

In conclusion, if f = 0, β > 4 and (3.6) is satisfied, then ∂xF∗(x) > 0 only in a given
interval I+ containing the origin, while limx→±∞ F∗(x) = ∓∞. Since adding f has the
only effect to translate the graph of F∗ along the ordinate axis, we conclude that for a
suitable value of f the equation F∗(x) = 0 has three solutions x− < 0 < x+ and that

F∗(x)





> 0 if x < x− ,

< 0 if x− < x < 0 ,

> 0 if 0 < x < x+ ,

< 0 if x > x+ .

See Figure 3 below. Now it is simple to check that if the new PDMP starts in the
mechanical state x0 < 0 [x0 > 0], then x(t) eventually enters the absorbing interval
(x−, 0) [(0, x+)]. Due to the description of the power stroke mechanism (see [FGR]), this
implies that typically the motor moves towards left in the first case and towards right in
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the latter. Hence, for suitable parameters ε and β associated to ATP concentration and
temperature and for suitable external forces f the MM can move in both directions of
the filament, depending on the initial configuration of the lever–arm. This behavior is a
form of instability in the response of the MM. We point out that for the original PDMP
with three states, there is only one absorbing interval given by (0, 1) which x(t) eventually
enters a.s. Hence, the instability is related to the ergodicity breaking of the system.

-0.4

-0.2

0

0.2

0.4

-1 -0.5 0 0.5 1

F
∗
(x

)

x

4. The variational problem (2.24)

In this section, we briefly analyze the variational problem (2.24). Part of the content of
Lemma 4.1 below is well known, nevertheless we recall its derivation since we need some
additional developments in order to prove the LDP.

We call S the subset of [0,∞)W given by the elements c ∈ [0,∞)W satisfying the follow-
ing irreducibility condition: given σ 6= σ′ in Γ there exists a finite sequence σ1, σ2, . . . , σn

such that σ1 = σ, σn = σ′ and c(σi, σi+1) > 0 for all i = 1, . . . , n − 1. We define
J : [0,∞)W → R as

J (c) = sup
z∈(0,∞)Γ

Ĵ (c, z) , Ĵ (c, z) :=
∑

(σ,σ′)∈W

c(σ, σ′)
(
1 −

zσ′

zσ

)
. (4.1)

Lemma 4.1. The function J is convex and continuous, and takes values in [0,∞). More-

over, for each c ∈ S, the supremum on (0,∞)Γ of the function Ĵ (c, ·) is a maximum and
the set of maximum points is given by the ray {tz̃ : t > 0}, where z̃ ∈ (0,∞)Γ is the
unique solution of the system

∑

σ′∈Γ

c(σ, σ′)
zσ′

zσ
=
∑

σ′∈Γ

c(σ′, σ)
zσ

zσ′

, σ ∈ Γ , (4.2)

such that
∑

σ∈Γ z̃2
σ = 1.

Proof. Since J is the supremum of a family of linear functions in c ∈ [0,∞)W parametrized
by z, J is convex and lower semicontinuous on the set [0,∞)W , which is a locally simplicial
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set (see [R][Chapter 10]). Hence we can apply Theorem 10.2 in [R] implying that J
is upper semicontinuous. This concludes the proof of the continuity of J . Since 0 =

Ĵ (c, 1) 6 J (c) 6
∑

(σ,σ′)∈W c(σ, σ′) < ∞, we get that J (c) ∈ [0,∞).

Let us now assume that c ∈ S and prove the conclusion of the Lemma. We can write
J (c) =

[∑
(σ,σ′)∈W c(σ, σ′)

]
− infz∈(0,∞)Γ Φ(z), where

Φ(z) :=
∑

(σ,σ′)∈W

c(σ, σ′)
zσ′

zσ
, z ∈ (0,∞)Γ . (4.3)

Hence it is enough to prove the analogous statements for the infimum of Φ. Since Φ(z) =
Φ(γz), for all γ > 0, in order to study its infimum we can restrict Φ to the set A := {z ∈
(0,∞)Γ :

∑
σ∈Γ z2

σ = 1}. Trivially Φ is a positive function. Let z(n) ∈ A be a minimizing
sequence for Φ, i.e. a sequence such that

lim
n→∞

Φ(z(n)) = inf
z∈(0,∞)Γ

Φ(z) .

Due to the fact that A is relatively compact in R
Γ, at cost to take a subsequence, we can

assume that z(n) is convergent. Let us first suppose that z̃ = limn→∞ z(n) is such that
there exists some σ ∈ Γ with z̃σ = 0. Then necessarily also z̃σ′ = 0 for any σ′ such that
c(σ, σ′) > 0. In fact, otherwise, we would have:

Φ(z(n)) > c(σ, σ′)
z
(n)
σ′

z
(n)
σ

n→∞
−→ +∞ .

Iterating this argument and using the fact that c ∈ S, we deduce that necessarily z̃ = 0
but this is incompatible with the fact that z̃ belongs to the closure of A. Therefore, it
must be z̃ ∈ A. Since the function Φ is continuous on A, we conclude that

inf
z∈(0,∞)Γ

Φ(z) = lim
n→∞

Φ(z(n)) = Φ(z̃) ,

and the infimum is a minimum. Since z̃ is a minimum point for the C∞ function Φ on
(0,∞)Γ, it must be ∇Φ(z̃) = 0 . As follows from the computations below, this identity
coincides with the system of equations (4.2). Finally, we prove that such a system has a
unique solution on A. Indeed, straightforward computations give that

∂Φ

∂z
eσ
(z) =

∑

σ:σ 6=eσ

(
c(σ, σ̃)

1

zσ
− c(σ̃, σ)

zσ

z2
eσ

)
,

∂2Φ

∂z2
eσ

(z) =
∑

σ:σ 6=eσ

2c(σ̃, σ)
zσ

z3
eσ

,

∂2Φ

∂z
bσ∂z

eσ
(z) = −c(σ̂, σ̃)

1

z2
bσ

− c(σ̃, σ̂)
1

z2
eσ

, σ̃ 6= σ̂ .

Setting

c(σ, σ̃|z) =

{
c(σ, σ̃)zeσ

zσ
, if σ 6= σ̃ ,

−
∑

σ′ :σ′ 6=σ c(σ, σ′)
zσ′

zσ
, if σ = σ̃ ,

the above computations imply for each z ∈ (0,∞)Γ that

∑

σ∈Γ

∑

eσ∈Γ

aσa
eσ

∂2Φ

∂zσ∂z
eσ
(z) = −2

∑

σ∈Γ

∑

eσ∈Γ

aσ

zσ
c(σ, σ̃|z)

a
eσ

z
eσ

, a ∈ R
Γ . (4.4)
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On the other hand, from the system of identities (4.2), it is simple to derive that, whenever
∇Φ(z) = 0, it holds

∑

σ

∑

eσ

c(σ, σ̃|z)
(
b

eσ − bσ

)2
= −2

∑

σ

∑

eσ

bσc(σ, σ̃|z)b
eσ , b ∈ R

Γ . (4.5)

Setting bσ = aσ/zσ in (4.5) and comparing the resulting identity with (4.4), we obtain
that

∑

σ

∑

eσ

aσa
eσ

∂2Φ

∂zσ∂z
eσ
(z) =

∑

σ

∑

eσ

c(σ, σ̃|z)
(a

eσ

z
eσ
−

aσ

zσ

)2
(4.6)

if ∇Φ(z) = 0. Hence, this last condition implies that the r.h.s. of (4.6) is zero if and only
is aσ/zσ = a

eσ/z
eσ whenever c(σ, σ̃) > 0. Due to the fact that c ∈ S, this implies that the

vector a is proportional to z. We observe that the tangent space in z to A, i.e. TzA, is
given by the R

Γ–vectors orthogonal to z. Hence, if z ∈ A satisfies ∇Φ(z) = 0 then the
map Φ|A (Φ restricted to A) has strictly positive defined Hessian in z, thus implying that
z is a strict local minimum. On the other side, if z ∈ A is an extremal point of Φ|A then
∇Φ(z) is orthogonal to the tangent space TzA, which is given by all vectors orthogonal to
z. But, since Φ(tz) = Φ(z) for all t > 0, by differentiating this equality in t = 1 we obtain
that ∇Φ(z) · z = 0. In conclusion: the set of extremal points of Φ|A coincides with the set
{z ∈ A : ∇Φ(z) = 0} and we know that all these points are strict local minima of Φ|A.
Hence, there can be at most one local minimum point. �

We note that, given c ∈ S, there exists a small ball B in R
W centered in c such that

B ∩ [0,∞)W ⊂ S. Hence, we think of S as a manifold of dimension |W | with boundary,

embedded in R
W . Given c ∈ S, we write z̃(c) for the unique point of maximum of Ĵ (c, ·)

in A described in the above lemma. Then, the map z̃(c) is regular:

Lemma 4.2. The function z̃ : S → A is C1, i.e. there exists a C1 function g : U → A
from an open subset U ⊂ R

W containing S, whose restriction to S coincides with z̃.

Proof. Let us first consider the smooth function G : R
W ×A → R

Γ defined as

G(c, z)σ =
∑

σ′ 6=σ

(
c(σ′, σ)/zσ′ − c(σ, σ′)zσ′/z2

σ

)
.

Let us fix c ∈ S and write z̃ for z̃(c). Due to the computations in the proof of Lemma
4.1, G(c, z) = ∇zΦ(z) for each z ∈ (0,∞)Γ, the function Φ(z) being defined in (4.3). In
particular, G(c, z̃) = 0. Moreover, we know that the tangent map TzG(c, ·) from TzA to
R

Γ is a linear monomorphism for z = z̃, since the Hessian of Φ|A in z̃ is strictly positive.
We call V

ez the image of T
ezA by the tangent map T

ezG(c, ·). Then V
ez has dimension

κ − 1 = |Γ| − 1 as T
ezA. In particular, there exists σ̃ ∈ Γ such that π

eσ(W
ez) has dimension

κ−1, where π
eσ is the canonical orthogonal projection π

eσ : R
Γ → R

Γ\{eσ}. This implies that
the smooth composed map H : R

W ×A → R
Γ\{eσ} defined as H = π

eσ ◦ G has isomorphic
tangent map T

ezH(c, ·) from T
ezA to R

Γ\{eσ}. Hence we can apply the Implicit Function
Theorem for differential manifolds and conclude the following: there exist a neighborhood
U of c in R

W , a neighborhood V of z̃ in A and a C1 map f : U → V such that i)
H(c′, f(c′)) = 0 for all c′ ∈ U and ii) if H(c′, z) = 0 for some c′ ∈ U and z ∈ V then
z = f(c′). At this point, we only need to prove that G(c′, f(c′)) = 0 for all c′ ∈ U in
order to conclude that z̃(c′) = f(c′). If H(c′, z) = 0 then G(c′, z)σ = 0 for all σ ∈ Γ \ {σ̃}.
On the other hand, for all (c′, z) ∈ R

W × (0,∞)Γ it holds
∑

σ zσG(c′, z)σ = 0. Hence, if
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H(c′, z) = 0, it must be

G(c′, z)
eσ = z−1

eσ

∑

σ:σ 6=eσ

zσG(c′, z)σ = 0 ,

thus concluding the proof. �

We give now another technical result which will be useful for the proof in Appendix B:

Lemma 4.3. Fix c ∈ [0,∞)W . Then, J (c) = 0 if and only if
∑

σ′∈Γ

c(σ, σ′) =
∑

σ′∈Γ

c(σ′, σ) . (4.7)

Proof. Let us first prove the claim for c ∈ S. If (4.7) is verified, then it is trivial to

check that z ∈ (0,∞)Γ such that zσ ≡ 1/
√

|Γ| satisfies (4.2), and therefore it is its unique

normalized solution. Then, by direct computation, J (c) = Ĵ (c, z) = 0. If (4.7) is not

verified, then the above z is not a solution of (4.2). This implies that J (c) > Ĵ (c, z). But

trivially Ĵ (c, z) = 0, thus implying that J (c) > 0.
We now extend the result to general c ∈ [0,∞)W . To this aim define c∗ ∈ [0,∞)W

setting c∗(σ, σ′) ≡ 1. Trivially, c∗ belongs to S and satisfies (4.7). Suppose first that
c satisfies (4.7). Then each vector λc + (1 − λ)c∗ with λ ∈ [0, 1) satisfies (4.7), and
moreover belongs to S having only positive entries. By the first part, we conclude that
J (λc + (1 − λ)c∗) = 0 for all λ ∈ [0, 1). Due to the continuity of J (see Lemma 4.1) we
conclude that J (c) = 0. Let us now suppose that c does not fulfill (4.7) and prove that
J (c) > 0. By convexity of J (see Lemma 4.1), for each λ ∈ [0, 1] it holds

J (λc + (1 − λ)c∗) 6 λJ (c) + (1 − λ)J (c∗) = λJ (c) . (4.8)

On the other hand, all vectors λc+(1−λ)c∗ with λ ∈ [0, 1) belong to S and do not satisfy
(4.7). Due to the first part, taking λ = 1/2 we conclude that J (1/2(c + c∗)) > 0. This
together with (4.8) implies that J (c) > 0. �

Let us now come back to the variational problem (2.24) and derive some results about
it from the previous observations.

Given a nonnegative measure π on Γ and nonnegative numbers r(σ, σ′), (σ, σ′) ∈ W ,
we define c[π, r] ∈ [0,∞)W as

c[π, r](σ, σ′) := π(σ)r(σ, σ′) , ∀(σ, σ′) ∈ W . (4.9)

Then (recall (2.24) and (4.1))
j(π, r) = J

(
c[π, r]

)

and the previous results on the variational problem associated to J give information on the
variational problem associated to j. In particular, we stress that due to (4.9) the system
of identities (4.2) coincides with the stationarity of the measure π w.r.t. the Markov
generator R(·, ·|z) on Γ defined as

R(σ, σ′|z) =

{
r(σ, σ′)

zσ′

zσ
, if σ 6= σ′ ,

−
∑

eσ : eσ 6=σ r(σ, σ̃)zeσ

zσ
, if σ = σ′ .

Recall the definition of the function z̃ : S → A. Given a nonnegative measure π on Γ and
(x, s) ∈ R

d × [0, T ], we define

z̃(π, x, s) := z̃
(
c
[
π, r(·, ·|x, s)

])
(4.10)
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if c
[
π, r(·, ·|x, s)

]
belongs to S.

Let us now take a strictly positive measure π on Γ, i.e. π(σ) > 0 for all σ ∈ Γ. Then,
by Assumption (A2) c

[
π, r(·, ·|x, s)

]
belongs to S. If the quasistationary measure µ(·|x, s)

is reversible for the chemical generator Lc(x, s) with jump rates r(σ, σ′|x, s), then the
solution z̃ ∈ A of the system (4.2) with c = c

[
π, r(·, ·|x, s)

]
can be computed explicitly.

Indeed, setting

z̃σ = Z

√
π(σ)

µ(σ|x, s)
, σ ∈ Γ (4.11)

(where Z is the normalizing constant assuring that z̃ ∈ A), one has the detailed balance
equation

π(σ)r(σ, σ′|x, s)
z̃σ′

z̃σ
= π(σ′)r(σ′, σ|x, s)

z̃σ

z̃σ′

, (4.12)

and consequently the validity of (4.2). Due to Lemma 4.1 we conclude that

j(π, r(·, ·|x, s)) = Ĵ
(
c
[
π, r(·, ·|x, s)

]
, z̃
)

=

∑

(σ,σ′)∈W

π(σ)r(σ, σ′|x, s)

(
1 −

√
π(σ′)µ(σ|x, s)

π(σ)µ(σ′|x, s)

)
. (4.13)

If π is not strictly positive, we can take a sequence πn of strictly positive measure on Γ
such that πn(σ) → π(σ) for each σ ∈ Γ. This implies that

c
[
πn, r(·, ·|x, s)

]
→ c

[
π, r(·, ·|x, s)

]
.

Since, as proved in Lemma 4.1, J is continuous on [0,∞)W , we obtain that

j(πn, r(·, ·|x, s)) = J
(
c
[
πn, r(·, ·|x, s)

])
→ J

(
c
[
π, r(·, ·|x, s)

])
= j(π, r(·, ·|x, s)) .

The above limit allows to extend (4.13) also to the case of general π ∈ [0,∞)Γ with the

convention to set π(σ)r(σ, σ′|x, s)
(
1 −

√
π(σ′)µ(σ|x,s)
π(σ)µ(σ′ |x,s)

)
equal to zero if π(σ) = 0.

This facts imply at once (2.27) assuming (2.26)

5. Proof of Theorem 2.2

Our proof of the law of large numbers in the time interval [0, T ] is based on a two scales
argument. We give some comments on our strategy for what concerns the mechanical
evolution, similar arguments hold for the chemical one. We first divide the interval [0, T ]
in M subintervals Ik = [kδ, (k + 1)δ], δ := T/M , k ∈ {0, 1, . . . ,M − 1}. We denote by
P λ

x,σ,t the law of the PDMP starting at (x, σ) at time t with λ–accelerated chemical jumps,
and by x∗(·|x, t) the solution of the Cauchy system

{
ż(s) = F̄ (z(s), s) , s > t ,

z(t) = x .
(5.1)

We recall that P λ
x0,σ0,0 = P λ

x0,σ0
. Then we prove that given β ∈ (0, 1) there exists M =

M(β) such that for each k ∈ {0, 1, . . . ,M − 1} the following holds: starting at time kδ in
an arbitrary state (x′, σ′) the random mechanical trajectory

(
x(t) : t ∈ Ik

)
deviates from(

x∗(t|x
′, kδ) : t ∈ Ik) typically less than βδ. This is the content of Lemma 5.1 below.

Having this result we can derive (2.19) of Theorem 2.2 as follows: in order to compare the
mechanical trajectory

(
x(t) : t ∈ [0, T ]

)
with

(
x∗(t|x0, 0) : t ∈ [0, T ]

)
(x(t) being now the
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random mechanical trajectory when starting at state (x0, σ0) at time zero) we fix β > 0,
take M = M(β) as above and by means of Lemma 5.1 for each k ∈ {0, 1, . . . ,M − 1} we
compare x(·) restricted to the time interval Ik with the path

(
x∗(t|x(kδ), kδ) : t ∈ Ik

)
. As

second step, we compare this last path with
(
x∗(t|x0, 0) : t ∈ Ik

)
. Due to the Lipschitz

property of the force fields, we will show below that

sup
t∈Ik

|x∗(t|x(kδ), kδ) − x∗(t|x0, 0)| 6

C|x∗(kδ|x(kδ), kδ) − x∗(kδ|x0, 0)| = C|x(kδ) − x∗(kδ|x0, 0)| . (5.2)

This bound allows to implement by a recursive procedure all the above estimates going
from one δ–subinterval to the next one.

In addition to δ, another scale plays a crucial role. Indeed, in order to prove Lemma
5.1 we first divide each time interval Ik = [kδ, (k + 1)δ] in N subintervals {Ik,n}0 6 n<N ,
where Ik,n = [kδ +nε, kδ +(n+1)ε] and ε := δ/N . Then we prove that the PDMP on Ik,n

obtained from the original one by freezing the chemical jump rates at time kδ + nε has a
not too large entropy w.r.t. to the original PDPM on Ik,n. This entropy estimate allows
to bound the probability for a deviation of order at least βε of the mechanical trajectory
on Ik,n from the expected asymptotic one.

Let us now enter into the technical details of the proof:

Lemma 5.1. Fix a constant β ∈ (0, 1), a continuous function f : [0, T ] → R and a
compact set K ⊂ R

d. Then there exists a positive integer M such that for all σ0, σ ∈ Γ,
for all k ∈ {0, 1, . . . ,M − 1}, setting δ = T/M it holds

lim
λ↑∞

sup
x0∈K

P λ
x0,σ0,kδ

(
sup

kδ 6 t 6 kδ+δ

∣∣x(t) − x∗(t|x0, kδ)
∣∣ > βδ

)
= 0 , (5.3)

lim
λ↑∞

sup
x0∈K

P λ
x0,σ0,kδ

(∣∣∣∣
∫ kδ+δ

kδ
f(t) [ χ(σ(t) = σ) − µ (σ |x∗(t|x0, kδ) , t) ] dt

∣∣∣∣ > βδ

)
= 0 .

(5.4)

Before proving the above lemma, let us explain how to derive from it Theorem 2.2:

Proof of Theorem 2.2.
Let us prove (2.19). We start with some general consideration. As proved in Lemma

C.1, there exists a compact K′ such that x(t) ∈ K′ for all t ∈ [0, T ], P λ
x0,σ0

–a.s. and

for all λ > 0. By the same lemma, there exists a compact K containing K′ such that
x∗(t|x

′, s) ∈ K for all x′ ∈ K′ and s < t in [0, T ]. We take the positive constant K as
in (2.7) for K as described above, and by taking K large enough we assume that (2.7) is
satisfied also by the averaged field F̄ . Then, we take M as in Lemma 5.1 (since we are now
only interested in proving (2.19), we can fix the function f in Lemma 5.1 arbitrarily). We
divide the interval [0, T ] in M subintervals Ik = [kδ, (k + 1)δ], where k = 0, 1, . . . ,M − 1
and δ = T/M . For each k, we define

∆k := sup
t∈Ik

∣∣x(t) − x∗(t|x0, 0)
∣∣ ,

Ak := {|x(t) − x∗(t|x(kδ), kδ)| < βδ ∀t ∈ Ik} .



AVERAGING AND LARGE DEVIATION PRINCIPLES FOR PDMPS 19

Due to Lemma 5.1 and the Markov property of PDMPs, we have that

P λ
x0,σ0

(Ac
k) = Eλ

x0,σ0

[
P λ

x0,σ0

(
Ac

k|x(kδ), σ(kδ)
)]

6 sup
x∈K,σ∈Γ

P λ
x,σ,kδ(A

c
k) → 0 . (5.5)

This implies that

lim
λ↑∞

P λ
x0,σ0

(Ac) = 0 , A := ∩M−1
k=0 Ak . (5.6)

Assuming the event ∩k
j=0Aj to be verified, since x∗(t|x0, 0) = x∗(t|x∗(kδ|x0, 0), kδ) and

applying Gronwall inequality as in Lemma C.1, we obtain that

∆k 6 sup
t∈Ik

∣∣x(t) − x∗(t|x(kδ), kδ)
∣∣ + sup

t∈Ik

∣∣x∗(t|x(kδ), kδ) − x∗(t|x0, 0)
∣∣

< βδ + eKδ|x(kδ) − x∗(kδ|x0, 0)| 6 βδ + eKδ∆k−1 . (5.7)

Due to the event ∩k
j=0Aj, we can iterate the above procedure and conclude that ∆k−1 <

βδ + eKδ∆k−2 and so on. At the end we obtain that the event ∩k
j=0Aj implies the event

Bk :=
{
∆0 < βδ and ∆j < βδ + eKδ∆j−1 ∀j = 1, 2, . . . , k

}
.

Setting z = eKδ, it is simple to check by induction that the event Bk implies that for each
j = 0, 1, . . . , k it holds

∆j 6 βδ
(
1 + z + z2 + · · · + zj

)
6 βδ

zM − 1

z − 1
= βδ

eKT − 1

eKδ − 1
6 β(eKT − 1)/K (5.8)

(in the last inequality we have used that ex −1 > x for any x > 0). Hence, A implies (5.8)
for all j = 0, 1, . . . ,M − 1 and therefore it implies that

sup
0 6 t 6 T

∣∣x(t) − x∗(t|x0, 0)
∣∣ 6 β

(
eKT − 1

)
/K . (5.9)

Due to arbitrariness of β, this implies (2.19).

Let us now prove (2.18). We take M as in Lemma 5.1, where f is the same function
appearing in Theorem 2.2 and K is defined as above. Using the same arguments as above,
it is simple to derive from Lemma 5.1 that P λ

x0,σ0
(C) = 1−o(1), where C denotes the event

C =
{∣∣∣
∫ kδ+δ

kδ
f(t)

[
χ(σ(t) = σ) − µ

(
σ|x∗(t|x(kδ), kδ), t

) ]
dt
∣∣∣ 6 βδ ,

∀k ∈ {0, 1, . . . ,M − 1}
}

.

By assumption (A3) we know that there exists a constant κ > 0 such that (2.12) holds for
all x, y ∈ K and for all t ∈ [0, T ]. Hence, we can estimate

∣∣∣∣
∫ kδ+δ

kδ
f(t)

[
µ
(
σ |x∗(t|x(kδ), kδ) , t

)
− µ

(
σ |x∗(t|x0, 0) , t

) ]
dt

∣∣∣∣ 6

κ‖f‖∞δ sup
t∈Ik

∣∣x∗(t|x(kδ), kδ) − x∗(t|x0, 0)
∣∣ . (5.10)

Trivially,
∣∣x∗(t|x(kδ), kδ) − x∗(t|x0, 0)

∣∣ 6
∣∣x∗(t|x(kδ), kδ) − x(t)

∣∣+
∣∣x(t) − x∗(t|x0, 0)

∣∣ .
If A is verified, the first addendum in the r.h.s. is bounded by βδ (recall that A implies
Ak), while the second addendum is bounded by ∆k 6 β(eKT − 1)/K. Therefore, we can
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conclude that whenever the event A is verified the r.h.s. of (5.10) is bounded from above
by

κ‖f‖∞δ (βδ + β(eKT − 1)/K) .

Using the triangular inequality, we conclude that the event A ∩ C implies that

∣∣∣
∫ T

0
f(t)

[
χ(σ(t) = σ) − µ

(
σ |x∗(t|x0, 0) , t

) ]
dt
∣∣∣ 6

Mβδ + Mκ‖f‖∞δ (βδ + β(eKT − 1)/K) =

Tβ
[
1 + κ‖f‖∞(δ + (eKT − 1)/K)

]
= C(T,K, κ, f)β . (5.11)

Due to the arbitrariness of β and since P λ
x0,σ0

(A∩C) = 1−o(1), the above estimate implies
(2.18). This concludes the proof of the averaging principle stated in Theorem 2.2. �

We can now concentrate on the core of the law of large numbers, given by Lemma 5.1:

Proof of Lemma 5.1. We stress that β has to be considered as a fixed constant. We
will play with two length scales: δ and ε, defined below. C, c′, c̃, ci, . . . will denote non
random positive constants independent from δ and ε, that can change from line to line and
that can depend on β. For simplicity of notation we take k = 0 (the arguments remain
valid in the general case). As the reader can check, in order to prove Lemma 5.1 we will
consider the process only when the mechanical trajectory x(t) lies inside a given compact
set (uniformly in the starting point x0 ∈ K). Hence, at cost to take a larger Lipschitz
constant K in (2.7), we can assume (2.7), (2.10),(2.12) and (2.11) to hold for all x, y ∈ R

d

with κ = K. This allows to much simplify the notation.

We first prove (5.3) and explain how to choose M . To this aim we observe that due

to Lemma C.1 there exists a compact subset K̂ ⊂ R
d such that x∗(t|x0, 0) ∈ K̂ for each

t ∈ [0, T ] and x0 ∈ K. We define the compact set K′ as

K′ := ∪
x∈bK

B(x, T ) , (5.12)

where B(x, T ) denotes the closed ball centered at x with radius T . Given a pair (x, t) ∈
K′×[0, T ] we consider the continuous–time homogeneous Markov chain on Γ with transition
rates r(σ, σ′) := r(σ, σ′|x, t), σ 6= σ′. Note that this Markov chain is ergodic and has
µ(·|x, t) as stationary probability. We call Q

eσ,x,t its law when starting in the state σ̃. We
will use the following uniform large deviation estimate

lim sup
u→∞

sup
(x,t)∈K′×[0,T ], σ,σ′∈Γ

1

u
ln Qσ′,x,t

[∣∣∣∣
1

u

∫ u

0

[
χ(σ(s) = σ) − µ(σ|x, t)

]
ds

∣∣∣∣ >
β

20(a∗ + 1)|Γ|

]
=: −W1 < 0 , (5.13)

where

a∗ := max
σ′∈Γ

max
s∈[0,T ]

max
x′∈K′

|Fσ′(x′, s)| , (5.14)

and W1 is a strictly positive constant. The result (5.13) follows from lemma B.1 in Ap-
pendix B.

We now introduce a second positive constant W2 defined as

W2 = K + 2 + a∗ . (5.15)
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Finally we define the constant δ := T/M , where M is the smallest positive integer such
that

δ 6 min{W1/(4c3), 2β/(5W2)} , (5.16)

where the positive constant c3 depends only on the compact K and will be defined in
(5.32).

Let us now prove (5.3) for k = 0. In order to shorten the notation we write x∗(t)
instead x∗(t|x0, 0). We stress that x∗(t) depends on x0, although x0 has been omitted in
the notation. We define the random time τ in terms of the exit time from the βδ–tube
Aβδ around x∗(t):

τ := inf{t > 0 : (x(t), t) 6∈ Aβδ} ,

where
Aβδ := {(x, t) ∈ R

d × [0, δ] : |x − x∗(t)| 6 βδ} . (5.17)

Note that, since βδ 6 T , for each x0 ∈ K the above tube Aβδ is included in K̂. We want
to prove that τ > δ with probability 1 − o(1) as λ ↑ ∞, which is equivalent to (5.3). Up
to the Markov time τ the PDMP is determined only by its characteristics restricted to
Aβδ. Since we will follow the process only up to time τ , due to (2.7) and (2.10), at cost
of changing the characteristics outside Aβδ without loss of generality we can assume that

|Fσ(x, t) − Fσ(x∗(t), t)| 6 Kδ , (5.18)
∣∣r(σ, σ′|x, t) − r(σ, σ′|x∗(t), t)

∣∣ 6 Kδ , (5.19)

|γσ(x, t) − γσ(x∗(t), t)| 6 Kδ , (5.20)

for all x ∈ R
d and t ∈ [0, δ]. Using (5.18) and the fact that τ 6 δ, one easily obtains that,

given m = 1, 2, . . . d, P λ
x0,σ0

–a.s. it holds

x(t)m = x(0)m +

∫ t

0
Fσ(s)

(
x(s), s

)
m

ds

= x(0)m +

∫ t

0
Fσ(s)

(
x∗(s), s

)
m

ds + E1 , ∀t 6 τ , (5.21)

where the error term E1 can be bounded as |E1| 6 Kδ2.
Given an integer N , we divide the interval [0, δ] in N subintervals of length ε := δ/N .

We now explain how to fix the constant ε. The first requirement is that ε 6 δ2. Moreover,
consider the functions Fσ(·, ·) on K′ × [0, T ]. Since they are uniformly continuous, there
exists ε1 > 0 such that |Fσ(x1, s1)−Fσ(x2, s2)| 6 δ for any x1, x2 ∈ K′, s1, s2 ∈ [0, T ] such
that |x1 − x2| 6 ε1 and |s1 − s2| 6 ε1. We require that

ε 6 min{ε1, ε1/C0} ,

where
C0 = sup

(x,s)∈K′×[0,T ]
|F̄ (x, s)| , F̄ (x, s) =

∑

σ∈Γ

Fσ(x, s)µ(σ|x, s) .

We note that this condition implies that
∣∣Fσ(x∗(s), s)m − Fσ(x∗(t), t)m

∣∣ 6 δ (5.22)

for all m = 1, . . . d, all σ ∈ Γ and all s, t,∈ [0, T ] such that |s− t| 6 ε. Indeed, for such s, t
it holds

|x∗(s) − x∗(t)| =
∣∣
∫ t

s
F̄ (x∗(u), u)du

∣∣ 6 C0|s − t| 6 ε1 .
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This allows to derive (5.22) from our choice of ε1. By similar arguments we derive that
for a suitable positive constant ε2 it holds

|r(σ, σ′|x∗(s), s) − r(σ, σ′|x∗(t), t)| 6 δ (5.23)

for any s, t,∈ [0, T ] such that |s − t| 6 ε2 and for any σ 6= σ′ in Γ. We fix ε s.t. ε 6 ε2.
Similarly, there exists a positive constant ε3 such that

|µ(σ|x∗(s), s) − µ(σ|x∗(t), t)| 6
β

20(a∗ + 1)|Γ|
(5.24)

for any s, t,∈ [0, T ] such that |s − t| 6 ε3 and for any σ in Γ. We fix ε s.t. ε 6 ε3.
Writing

∫ t

0
Fσ(s)

(
x∗(s), s

)
m

ds =
∑

σ∈Γ

∫ t

0
Fσ

(
x∗(s), s

)
m

χ(σ(s) = σ)ds ,

due to (5.21), (5.22) and the condition ε 6 δ2, it holds

x(t)m = x(0)m+
∑

σ∈Γ

⌊t/ε⌋−1∑

j=0

Fσ(x∗(jε), jε)m

∫ jε+ε

jε
χ(σ(s) = σ)ds+E2 , ∀t 6 τ , (5.25)

where the error term E2 can be bounded as |E2| 6 |E1| + δ2 + δ2a∗. Above, ⌊t/ε⌋ denotes
the integer part of t/ε and the sum over j is set equal to zero if ⌊t/ε⌋ = 0. The condition

ε 6 δ2 is necessary in order to bound the error term
∫ t
⌊t/ε⌋ε Fσ(s)(x∗(s), s)mds.

We claim that there exist positive constants c, c′ independent of ε and δ such that the
λ–accelerated PDMP with unrescaled characteristics satisfying (5.18), (5.19) and (5.20)
fulfills the bound

P λ
x′,σ′,jε

(∣∣∣∣
∫ jε+ε

jε

[
χ(σ(s) = σ) − µ(σ|x∗(s|x0, 0), s)

]
ds

∣∣∣∣ >
βε

10(a∗ + 1)|Γ|

)
6 e−cλε ,

(5.26)
for any j = 1, 2, . . . , N − 1, any x0 ∈ K, any x′ ∈ R

d s.t. |x′ − x∗(jε|x0, 0)| 6 βδ, for any
σ, σ′ ∈ Γ and for any λ > c′/ε. We recall that a∗ has been defined in (5.14). Above we
used again the notation x∗(·|x0, 0) in order to stress the dependence on x0.

Before proving (5.26) let us explain how it allows to conclude the proof of Lemma 5.1.
First we show that, due to (5.25), (5.26) and the Markov property, with probability at
least 1 − (δ/ε)e−cλε|Γ| it holds

x(t)m = x(0)m +
∑

σ∈Γ

⌊t/ε⌋−1∑

j=0

Fσ(x∗(jε), jε)m

∫ jε+ε

jε
µ(σ|x∗(s), s)ds + E3 , ∀t 6 τ ,

(5.27)
where the modulus of the error E3 can be bounded as |E3| 6 |E2|+ βδ/10. To this aim, we
define the event Bj(σ) for j = 0, 1, . . . , N − 1 as Bj(σ) := Cj(σ) ∩ {jε + ε 6 τ} where

Cj(σ) :=

{∣∣∣∣
∫ jε+ε

jε

[
χ(σ(s) = σ) − µ(σ|x∗(s), s)

]
ds

∣∣∣∣ >
βε

10(a∗ + 1)|Γ|

}
. (5.28)

Conditioning on time jε and using the Markov property we can estimate

P λ
x0,σ0

(Bj(σ)) = P λ
x0,σ0

(Cj(σ) ; jε + ε 6 τ) = Eλ
x0,σ0

[
Px(jε),σ(jε),jε(Cj(σ))χ(jε + ε 6 τ)

]
.
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At this point, we observe that the condition jε 6 τ implies that |x(jε) − x∗(jε)| 6 βδ,
thus allowing to estimate the probability Px(jε),σ(jε),jε(Cj(σ)) from above by e−cλε due to
(5.26). In particular, we obtain that

P λ
x0,σ0

(B) 6 N |Γ|e−cλε , B := ∪σ∈Γ ∪N−1
j=0 Bj(σ) .

Finally, we note that the event Bc implies for any σ that Cj(σ) is not fulfilled whenever
the interval [jε, jε+ ε] is included in [0, τ ]. Hence, in this case in (5.25) one can substitute
χ(σ(s) = σ) by µ(σ|x∗(s), s) with an error bounded by βεN/10 = βδ/10. This leads to
(5.27).

By applying again (5.22), (5.27) implies that

x(t)m = x(0)m +
∑

σ∈Γ

∫ t

0
Fσ(x∗(s), s)mµ(σ|x∗(s), s)ds + E4 = x∗(t)m + E4 , ∀t 6 τ ,

(5.29)
where the error E4 can be bounded as |E4| 6 |E3|+δ2. Collecting all the previous estimates,
we conclude that for all x0 ∈ K it holds |E4| 6 βδ/10 + W2δ

2, the constant W2 being
defined in (5.15). Hence, due to our choice (5.16), we can conclude that |E4| 6 βδ/2.
Hence, taking t = τ in (5.29), we conclude that with probability 1 − (δ/ε)e−cλε|Γ| it
must be |x(τ) − x∗(τ)| 6 βδ/2. Due to the continuity of the mechanical trajectories and
the definition of τ , this implies that τ = δ. Coming back to (5.29) with this additional
information we get (5.3) with k = 0. As already remarked, the same arguments allow to
prove (5.3) for a generic k.

We point out that by the above method we have approximated the random integral
∫ kδ+δ

kδ
Fσ(x(s), s)mχ(σ(s) = σ)ds

by the new integral
∫ kδ+δ

kδ
Fσ(x∗(s), s)mµ(σ|x∗(s), s)ds .

Hence, the proof of (5.4) is completely analogous, since it is enough to replace the force
field with the test function f(s).

It remains now to prove (5.26). In order to simplify the notation, we write P λ for
the law P λ

x′,σ′,jε of the λ–accelerated PDMP having unrescaled characteristics that satisfy

(5.18), (5.19) and (5.20), starting in the state (x′, σ′) at time jε and evolving up to time
jε + ε. In addition, we write Qλ for the law of the λ–accelerated PDMP restricted to the
time interval [jε, jε + ε], starting in the state (x′, σ′) at time jε and with characteristics(
F, λr̃

)
, where the new unrescaled transition rates r̃ are constant and are defined as

r̃(σ1, σ2) := p̃(σ1, σ2)γ̃σ1 ,

p̃(σ1, σ2) := p(σ1, σ2 |x∗(jε), jε) ,

γ̃σ := γσ(x∗(jε), jε) .

Namely, the above rates correspond to the original rates read along the asymptotic trajec-
tory x∗ and frozen at time jε. Note that this new PDMP is not coupled: the chemical evo-
lution is a continuous–time homegeneous Markov chain, while the mechanical evolution is a
function of the chemical one. One can compute and bound the Radon–Nikodym derivative
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dP λ/dQλ. Indeed, if
(
x(t), σ(t)

)
is an element in the Skohorod space D

(
[jε, jε+ε], Rd×Γ

)

with n jumps at times τ1 < τ2 < · · · < τn, setting τ0 = jε, σ0 := σ′, x0 := x′ and

σi := σ(τi) , xi := x(τi) , i = 1, 2, . . . , n ,

one has

dP λ

dQλ
(x(·), σ(·)) =

[
n∏

i=1

r(σi−1, σi|x(τi), τi)

r̃(σi−1, σi)

]
exp

{
−λ

∫ jε+ε

jε

(
γσ(s)(x(s), s) − γ̃σ(s)

)
ds

}
. (5.30)

The term in the square bracket can be rewritten as

n∏

i=1

r(σi−1, σi|x(τi), τi)

r̃(σi−1, σi)
= exp

{
n∑

i=1

[ln r(σi−1, σi|x(τi), τi) − ln r̃(σi−1, σi)]

}
. (5.31)

Due to (2.10), (5.23) and the assumption ε 6 ε2 we conclude that

| r(σi−1, σi|x(τi), τi) − r̃(σi−1, σi) | = | r(σi−1, σi|x(τi), τi) − r(σi−1, σi|x∗(jε), jε) |

6 | r(σi−1, σi|x(τi), τi) − r(σi−1, σi|x∗(τi), τi) |

+ | r(σi−1, σi|x∗(τi), τi) − r(σi−1, σi|x∗(jε), jε) | 6 (K + 1)δ .

By applying Taylor expansion to the log function and using (5.31), we get that the
term in the square bracket in (5.30) is bounded from above by ec0nδ where n denotes the
number of chemical jumps in the interval [jε, jε + ε]. The constant c0 does not depend
on β, ε, δ, j and is the same for all x0 ∈ K and all pairs (x′, σ′) as in (5.26). Similarly one
gets that the exponential in (5.30) is bounded from above by ec1λεδ, where the constant
c1 does not depend on β, ε, δ, j and is the same for all x0 ∈ K and all pairs (x′, σ′) as in
(5.26). Moreover, setting

C := max
σ∈Γ

max
(x,s)∈K′×[0,T ]

γσ(x, s) ,

the random variable n is stochastically dominated by a Poisson random variable Z with
mean Cλε. Recalling that E(eaZ) = eCλε(ea−1) and taking a = 2c0δ, we conclude that

EQλ

(∣∣∣∣
dP λ

dQλ

∣∣∣∣
2
)

6 e2c1λεδ+Cλε(e2c0δ−1)
6 ec3λεδ , c3 := 2c1 + 2c0C

eT − 1

T
. (5.32)

Above we have used the inequality ex − 1 6 eT −1
T x valid for all x ∈ [0, T ], which follows

from the convexity of x → ex.
Due to (5.24) and our assumption ε 6 ε3 we can bound

∫ jε+ε

jε
|µ(σ|x∗(s), s) − µ(σ|x∗(jε), jε)| ds 6

βε

20(a∗ + 1)|Γ|
.

Hence, calling D the event

D :=

{∣∣∣∣
∫ jε+ε

jε

[
χ(σ(s) = σ) − µ(σ|x∗(jε), jε)

]
ds

∣∣∣∣ >
βε

20(a∗ + 1)|Γ|

}

in order to conclude the proof of (5.26) we need to bound P λ(D). To this aim, we write
Qσ′ for the law of the continuous–time Markov chain on Γ starting at σ′, jumping from
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σ1 to σ2 with transition rate r̃(σ1, σ2). Note that µ(·|x∗(jε), jε) is the invariant measure
for this Markov chain. Then

Qλ [D] = Qσ′

[∣∣∣∣
1

λε

∫ λε

0

[
χ(σ(s) = σ) − µ(σ|x∗(jε), jε)

]
ds

∣∣∣∣ >
β

20(a∗ + 1)|Γ|

]
(5.33)

We note that x′ as in (5.26) must belong to the compact set K′. Hence, due to (5.13), if
λε > c4 (c4 being independent on ε, δ and being the same for all (x′, σ′) ∈ K′ × Γ), then

Qλ [D] 6 e−ελW1/2 , (5.34)

where W1 has been defined in (5.13).
Finally, we can apply Schwarz inequality together with (5.32) and (5.34) in order to

conclude that

P λ[D ] = EQλ

[ dP λ

dQλ
·χD

]
6 EQλ

[ (dP λ

dQλ

)2]1/2
Qλ(D)1/2 6 exp

{
−λε

[
W1/4−c3δ/2

]}
.

(5.35)

Since by definition (5.16) c3δ/2 6 W1/8, we obtain that P λ[D] 6 e−λεW1/8. This implies
(5.26) with c = W1/8 and c′ = c4.

�

6. Proof of Theorem 2.3

We have now all the tools in order to prove the LDP. We recall that in Section 4 we
proved (2.27) assuming (2.26). Here we start by analyzing the Radon–Nikodym derivative
of the PDMP w.r.t. a perturbed version. To this aim let V =

{
Vσ

}
σ∈Γ

be a family

of C1 functions Vσ : [0, T ] → R parameterized by σ ∈ Γ and call V ′
σ(s) := dVσ(s)

ds the
corresponding derivatives. We introduce some perturbed rates according to the following
definitions

r̃(σ, σ′|x, s) := r(σ, σ′|x, s)eVσ′ (s)−Vσ(s) , (6.1)

γ̃σ(x, s) :=
∑

σ′∈Γ

r̃(σ, σ′|x, s) .

Writing P λ,V
x0,σ0 for the law of the PDMP with characteristics

(
F, λr̃

)
and denoting by

τ1 < τ2 < · · · < τn the jump times of the path σ(·) in the time interval [0, T ], it holds

dP λ
x0,σ0

dP λ,V
x0,σ0

(
x, σ

)
= exp

{
n∑

i=1

[Vσ(τi−)(τi) − Vσ(τi)(τi)]

}
·

exp

{
−λ

∑

σ′∈Γ

∫ T

0
r(σ(s), σ′|x(s), s)

(
1 − eVσ′(s)−Vσ(s)(s)

)
ds

}
. (6.2)

In order to estimate the first exponential in (6.2) we observe that
n∑

i=0

∫ τi+1

τi

V ′
σ(s)(s)ds =

n∑

i=0

[
Vσ(τi+1−)(τi+1) − Vσ(τi)(τi)

]
,

where we set τ0 := 0 and τn+1 := T . This implies that

exp

{
n∑

i=1

[Vσ(τi−)(τi) − Vσ(τi)(τi)]

}
= exp

{
−

[
Vσ(T−)(T ) − Vσ(0)(0) −

∫ T

0
V ′

σ(s)(s)ds

]}
.
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Writing Qλ,V
x0,σ0 for the law of the perturbed process on Υ the above computations give

dQλ
x0,σ0

dQλ,V
x0,σ0

(
x, ρ
)

= exp {−λ [JV (x, ρ) + O(1/λ)]} , (6.3)

where

JV (x, ρ) =
∑

σ∈Γ

∑

σ′∈Γ

∫ T

0
ρ(s)σr(σ, σ′|x(s), s)

(
1 − eVσ′(s)−Vσ(s)

)
ds (6.4)

and O(1/λ) denotes a quantity bounded in modulus by c/λ, c being a positive constant
depending only on {Vσ}σ∈Γ and T .

We point out that the function JV : Υ → R is continuous. Indeed, if (x(n), ρ(n))
converges to (x, ρ) then
∣∣∣JV

(
x(n), ρ(n)

)
− JV (x, ρ)

∣∣∣ 6

∑

σ

∑

σ′

∣∣∣∣
∫ T

0

(
ρ(n)

σ (s) − ρσ(s)
)
r(σ, σ′|x(s), s)

(
1 − eVσ′ (s)−Vσ(s)

)
ds

∣∣∣∣+

c(V )
∑

σ

∑

σ′

∫ T

0
ρ(n)

σ (s)
∣∣∣r(σ, σ′|x(s), s) − r(σ, σ′|x(n)(s), s)

∣∣∣ ds . (6.5)

Since ρ
(n)
σ → ρσ in L[0, T ] and since the transition rates are continuous, the first expression

in the r.h.s. goes to zero as n → ∞. Since ‖x(n) − x‖∞ → 0, by the continuity of the
transition rates and the Dominated Convergence Theorem the second expression in the
r.h.s. goes to zero, thus concluding the proof of the continuity of JV .

Consider the function J(x, ρ) defined in (2.26). This can be rewritten as

J(x, ρ) = sup
z

∑

σ

∑

σ′

∫ T

0
ρσ(s)r(σ, σ′|x(s), s)

[
1 −

zσ′(s)

zσ(s)

]
ds , (6.6)

where the supremum is taken over the family of measurable functions {zσ}σ∈Γ, zσ : [0, T ] →
(0,∞). Approximating measurable functions by bounded C1 functions, we obtain that the
functional J(x, ρ) defined in (2.26) can be expressed as

J(x, ρ) = sup
V

JV (x, ρ) , (x, ρ) ∈ Υ . (6.7)

• Regularity of J . Trivially J(x, ρ) < ∞ for each (x, ρ) ∈ Υ. Moreover, J is lower semi–
continuous since due to the previous observations it is the supremum of the family of
continuous functions JV .

• Proof of the upper bound (2.28). Let us start with a generic subset U ⊂ Υ. Given a
family V of C1 functions {Vσ(s)}σ∈Γ, we can bound

Qλ
x0,σ0

(U) = Qλ,V
x0,σ0

(
dQλ

x0,σ0

dQλ,V
x0,σ0

χU

)
6 e−λ inf(x,ρ)∈U [JV (x,ρ)+O(λ−1)]Qλ,V

x0,σ0
(U) 6

e−λ inf(x,ρ)∈U [JV (x,ρ)+O(λ−1)] .

This implies that

lim sup
λ→∞

1

λ
log Qλ

x0,σ0
(U) 6 − inf

(x,ρ)∈U
JV (x, ρ) .
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This holds for any choice of the functions Vσ. Optimizing over the Vσ we get

lim sup
λ→∞

1

λ
log Qλ

x0,σ0
(U) 6 − sup

V
inf

(x,ρ)∈U
JV (x, ρ) . (6.8)

At this point, we would like to invert the supremum and the infimum in the r.h.s. if U is
given by some closed subset C ⊂ Υ. To this aim we observe that (i) C is compact since it
is a closed subset of the compact space Υ (see Lemma A.2), (ii) estimate (6.8) holds for
each U ⊂ Υ and in particular for each open subset U ⊂ Υ, (iii) JV (x, ρ) is continuous on
Υ for each V ∈ C1[0, T ]Γ. Hence, we can apply Lemma 3.3 in [KL] (note that Jβ(µ) there
coincides with our −JV (x, ρ)), which together with (6.7) implies the upper bound

lim sup
λ→∞

1

λ
log Qλ

x0,σ0
(C) 6 − inf

(x,ρ)∈C
sup
V

JV (x, ρ) = − inf
(x,ρ)∈C

J(x, ρ) = −J(C) .

• Proof of the lower bound (2.29).
We first introduce a special subset B of Υ as

B =
{
(x, ρ) ∈ Υ : ρσ ∈ C1[0, T ] and ρσ(t) > 0 ∀σ ∈ Γ, t ∈ [0, T ]

}
.

As shown in Lemma A.3 in the Appendix, B is a dense subset of Υ.
Let O be an open subset of Υ and fix (x∗, ρ∗) ∈ O ∩B (note that (x∗, ρ∗) exists since B

is dense in Υ). Define

Ṽσ(s) = ln z̃σ

(
ρ∗σ(s), x∗(s), s) , (6.9)

where z̃σ has been defined in (4.10). Since rates are assumed to be C1 (see assumption
(A3)), since {ρ∗σ(s)r(σ, σ′|x∗(s), s)}σ,σ′ belongs to the set S defined at the beginning of

Section 4 (see assumption (A2)) and due to Lemma (4.2) , we get that Ṽσ ∈ C1[0, T ]. We

take as perturbation Ṽ = {Ṽσ}σ∈Γ.
Due to the fact that O is open we have for any δ small enough

Qλ
x0,σ0

(O) > Qλ
x0,σ0

(Bδ(x
∗, ρ∗)) , ∀λ > 0 ,

where Bδ(x
∗, ρ∗) is the ball in Υ of radius δ and center (x∗, ρ∗). We now use the following

estimate

Qλ
x0,σ0

(Bδ(x
∗, ρ∗)) = Qλ,eV

x0,σ0

(
dQλ

x0,σ0

dQλ,eV
x0,σ0

χBδ(x∗,ρ∗)

)
>

Qλ,eV
x0,σ0

(Bδ(x
∗, ρ∗)) inf

(x,ρ)∈Bδ(x∗,ρ∗)

dQλ
x0,σ0

dQλ,eV
x0,σ0

(x, ρ) . (6.10)

Due to the particular choice of Ṽ (see Section 4), the law of large numbers stated in
Proposition 2.2 implies that

lim
λ→∞

Qλ,eV
x0,σ0

(Bδ(x
∗, ρ∗)) = 1 .

Hence, we can derive from (6.10) and (6.3) that

lim inf
λ→∞

1

λ
log Qλ

x0,σ0
(O) > − sup

(x,ρ)∈Bδ(x∗,ρ∗)
J

eV
(x, ρ) .
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Due to the fact that this bound holds for any δ small enough we also have that

lim inf
λ→∞

1

λ
log Qλ

x0,σ0
(O) > − lim

δ→0
sup

(x,ρ)∈Bδ(x∗,ρ∗)
J

eV (x, ρ) .

From the continuity in (x, ρ) of J
eV
(x, ρ) we deduce that

lim
δ→0

sup
(x,ρ)∈Bδ(x∗,ρ∗)

J
eV (x, ρ) = J

eV (x∗, ρ∗) = J(x∗, ρ∗)

(the last identity follows from the definition of Ṽ and the results of Section 4).
Optimizing over all possible (x∗, ρ∗) ∈ O ∩ B we finally get

lim inf
λ→∞

1

λ
log Qλ

x0,σ0
(O) > − inf

(x,ρ)∈O∩B
J(x, ρ) .

In order to conclude the proof of the lower bound we only need to show that

inf
(x,ρ)∈O∩B

J(x, ρ) = inf
(x,ρ)∈O

J(x, ρ) . (6.11)

Trivially, the l.h.s. is not smaller than the r.h.s. In order to prove the opposite inequality,
fix (x, ρ) ∈ Υ and fix a sequence (x(n), ρ(n)) ∈ B converging to (x, ρ) in Υ. By the
construction of this approximating sequence given in the proof of Lemma A.3, we can
assume that there exists a set U ⊂ [0, T ] whose complement has zero Lebesgue measure

such that ρ
(n)
σ (s) → ρσ(s) and x(n)(s) → x(s) for all s ∈ U and σ ∈ Γ. Due to the

continuity of the transition rates, this implies that

c(n)(s)[σ, σ′] := ρ(n)
σ (s)r(σ, σ′|x(n)(s), s) → ρσ(s)r(σ, σ′|x(s), s) =: c(s)[σ, σ′] , (6.12)

for all s ∈ U and all σ, σ′ ∈ Γ. Recall the function J defined in (4.1), Section 4. Then,
due to (6.12) and the continuity of J (see Lemma 4.1), we obtain that

j
(
ρ(n)(s), r(·, ·|x(n)(s), s)

)
= J

(
c(n)(s)

)
→ J

(
c(s)

)
= j
(
ρ(s), r(·, ·|x(s), s)

)
(6.13)

for each s ∈ U . Since ‖x(n) − x‖∞ goes to zero as n ↑ ∞ and due to the continuity of the
transition rates, given ε > 0 we can find n0 such that

sup
n > n0

sup
s∈[0,T ]

sup
σ,σ′

r(σ, σ′|x(n)(s), s) 6 sup
s∈[0,T ]

sup
σ,σ′

r(σ, σ′|x(s), s) + ε =: C .

Due to the definition (2.24) of j, this implies that

{
j
(
ρ(n)(s), r(·, ·|x(n)(s), s)

)
6 C|Γ|2 ,

j
(
ρ(s), r(·, ·|x(s), s)

)
6 C|Γ|2 ,

(6.14)

for all s in [0, T ] and n > n0. Now, due to (6.13), (6.14) and the dominated convergence
theorem we can conclude that

J
(
x(n), ρ(n)

)
=

∫ T

0
j
(
ρ(n)(s), r(·, ·|x(n)(s), s)

)
ds →

∫ T

0
j
(
ρ(s), r(·, ·|x(s), s)

)
ds = J(x, ρ) ,

thus implying (6.11).
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7. Proof of Theorem 2.5

We first prove that the family Rλ
x0,σ0

is relatively compact and then characterize its
limit points.

• Relative compactness. We use Prohorov theorem and Aldous compactness criterion (see

for example [KL][Section 4.1]). Since Γ(ℓ) is compact (endowed with the discrete topology),
we only have to check that

(1) For each t ∈ [0, T ] and ε > 0, there exists a compact K ⊂ R
d such that

Rλ
x0,σ0

(x(t) ∈ K) = P λ
x0,σ0

(x(t) ∈ K) 6 ε , ∀λ > 0 , (7.1)

(2) and that

lim
θ↓0

lim sup
λ↑∞

sup
τ

Rλ
x0,σ0

(
|x(τ) − x

(
(τ + θ)∧T

)
| > ǫ

or α(τ) 6= α
(
(τ + θ) ∧ T

))
= 0 ,

(7.2)

where τ varies among all stopping times bounded by T .

As observed in Lemma C.1, there exists a compact K ⊂ R
d such that x(t) ∈ K for all

t ∈ [0, T ] P λ
x0,σ0

–a.s. and for all λ > 0. Since |x(t) − x(s)| =
∣∣∫ t

s Fσ(u)(x(u), u)du
∣∣, we

conclude that there exists a positive constant c > 0 such that |x(t) − x(s)| 6 c(t − s) for
all s < t in [0, T ], P λ

x0,σ0
–a.s and for all λ > 0. Hence, we only need to prove that

lim
θ↓0

lim sup
λ↑∞

sup
τ

Rλ
x0,σ0

(
α(τ) 6= α

(
(τ + θ) ∧ T

))
= 0 . (7.3)

Below we restrict to θ ∈ [0, 1], moreover we use the shorter notation τθ := (τ + θ)∧T . We
can write

Rλ
x0,σ0

(
α(τ) 6= α

(
(τ + θ) ∧ T

))
= Eλ

x0,σ0

[
P λ

x0,σ0

(
α(τ) 6= α(τθ) |x(τ), σ(τ), τ

)]
. (7.4)

Due to the strong Markov property of PDMPs, we can bound

P λ
x0,σ0

(α(τ) 6= α(τθ) |x(τ) = x, σ(τ) = σ, τ = t) 6

P λ
x0,σ0

(∃s ∈ (τ, τθ] s.t. α(s) 6= α(τ) |x(τ) = x, σ(τ) = σ, τ = t) 6

P λ
x,σ,t

(
∃s ∈ (t, (t + θ) ∧ T ] s.t. σ(s) 6∈ Γα(σ)

)
, (7.5)

where P λ
x,σ,t denotes the law of the λ–rescaled PDMP starting in (x, σ) at time t.

Due to the discussion at the beginning, we know that x(τ) belongs to K, thus imply-
ing that in the above expression we can restrict to points x belonging to K. Similarly,
starting in x ∈ K the λ–rescaled process with law P λ

x,σ,t cannot leave a fixed compact K′

(independent of λ, x, σ, t) in time θ 6 1. Hence, defining

c := sup
x′∈K′

sup
u∈[0,T ]

max
σ1∈Γ

∑

σ2∈Γ:σ2 6=σ1

r(σ1, σ2|x
′, u) ,

the number N of chemical jumps for the process P λ
x,σ,t in the interval (t, (t + θ) ∧ T ] is

stochastically dominated by a Poisson variable N̂ of mean cλ θ, uniformly in (x, σ, t) ∈
K × Γ × [0, T ] and λ > 1. By similar arguments, whenever the process with law P λ

x,σ,t

makes a chemical jump in the time interval (t, (t + θ) ∧ T ], the probability that the jump
is between different chemical metastates is bounded from above by C/λ, C not depending
on (x, σ, t) ∈ K × Γ × [0, T ], λ > 1. Therefore, conditioned to make n chemical jumps in
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the time interval (t, (t+ θ)∧T ], the probability that at least one jump is between different
chemical metastates is bounded from above by Cn/λ. Hence, we can estimate

P λ
x,σ,t

(
∃s ∈ [t, (t + θ) ∧ T ] s.t. σ(s) 6∈ Γα(σ)

)
6

∞∑

n=1

P λ
x,σ,t(N = n)Cn/λ 6

∞∑

n=1

P (N̂ = n)Cn/λ = (C/λ)E(N̂ ) = cC θ . (7.6)

This allows to bound the r.h.s. of (7.5) by cCθ uniformly in λ > 1, thus implying the same
bound for the first expression in (7.4). This concludes the proof of (7.3) and therefore the
proof of the relative compactness of {Rλ

x0,σ0
}λ>0.

• Characterization of the limit points. Given a path σ(t), define the times T1, T2, . . . as
the consecutive times in [0, T ] at which the system jumps between different metastates,
i.e.

T1 = inf {t ∈ [0, T ] : α(σ(t)) 6= α(σ(0))} ,

Tk = inf {t ∈ (Tk−1, T ] : α(σ(t)) 6= α(σ(Tk−1))} , k > 2 ,

with the convention that Tk = ∞ if k is larger than the number of jumps in the time interval
[0, T ] between different metastates. Fix (x0, σ0) ∈ R

d × Γ, a sequence 0 < t1 < t2 < · · · <
tn < T and fix σ1, σ2, . . . , σn such that α(σi) 6= α(σi+1) for each i = 0, 1, . . . , n − 1. In
addition, fix δ > 0 and ε > 0 small enough that ε < T − tn and ε < ti+1 − ti for each
i = 0, 1, . . . , n − 1, where t0 := 0. Then define the event

A = {Tk ∈ (tk − ε, tk + ε) and σ(Tk) = σk ,∀k = 1, 2, . . . , n} ∩ { sup
t 6 Tn

|x(t) − x∗(t)| < δ} ,

(7.7)
where the path

(
x∗(t) : t ∈ [0, Tn]

)
is the only continuous path in R

d such that

ẋ∗(t) = Fα(σk)(x∗(t), t) ∀t ∈ [Tk, Tk+1], k = 0, 1, . . . , n − 1 . (7.8)

In the above formula T0 := 0 and the vector field Fi for i ∈ Γ(ℓ) is the one defined in
(2.33). We claim that

lim
λ↑∞

P λ
x0,σ0

(A) =

∫

U
du1du2 . . . dun

n−1∏

k=0

(
e−

R uk+1
uk

γα(σk)(x∗(s),s)ds ×

∑

bσk∈Γα(σk)

µα(σk)(σ̂k|x∗(uk+1), uk+1)r(σ̂k, σk+1|x∗(uk+1), uk+1)
)

, (7.9)

where u0 := 0, U :=
∏n

i=1(ti − ε, ti + ε) and

γi(x, s) :=
∑

j∈Γ(ℓ):j 6=i

r(i, j|x, s), i ∈ Γ(ℓ) . (7.10)

We first prove the above claim for n = 1. For simplicity of notation we write t in place
of t1 and σ′ in places of σ1, while we call σ0, σ1, σ2, . . . , σr the finite sequence of states in
Γα(σ0) visited by the process before jumping to σ′. Then, defining now

A =

{
T1 ∈ (t − ε, t + ε) , σ(T1) = σ′ , sup

s 6 T1

|x(s) − x∗(s)| < δ

}
, (7.11)
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we can write

P λ
x0,σ0

(A) =
∞∑

r=0

∑

σ1,σ2,...,σr

∫ t+ε

t−ε
du

∫ u

0
dτ1

∫ u

τ1

dτ2 · · ·

∫ u

τr−1

dτr

exp
{
−

r∑

k=0

∫ τk+1

τk

[
λγ̂σk

(x̃(s), s) + bσk
(x̃(s), s)

]
ds
}

[
r−1∏

k=0

λr(σk, σk+1|x̃(τk+1), τk+1)

]
r(σr, σ

′|x̃(u), u)χ

(
sup
s 6 u

|x̃(s) − x∗(s)| < δ

)
, (7.12)

where in the above expression τ0 := 0, τr+1 := u, {x̃(s) : s ∈ [0, u]} is the only continuous
path on [0, u] starting in x0 such that

˙̃x(s) = Fσk
(x̃(s), s) , ∀s ∈ (τk, τk+1) , ∀k = 0, 1, . . . , r

and, for σ ∈ Γα(σ0),

γ̂σ(x, s) =
∑

bσ∈Γα(σ0)

r(σ, σ̂|x, s) ,

bσ(x, s) =
∑

bσ∈Γ\Γα(σ0)

r(σ, σ̂|x, s) .

Let us call P̂ λ
x0,σ0

the λ–rescaled PDMP with chemical states in Γα(σ0), transition rates

λr(σ, σ′|x, s) and vector fields Fσ(x, s), σ, σ′ ∈ Γα(σ0). We write Êλ
x0,σ0

for the associated
expectation. Then it is simple to check that the r.h.s. of (7.12) equals

Êλ
x0,σ0

[∫ t+ε

t−ε
du exp

{
−

∫ u

0
bσ(s)(x(s), s)ds

}
r(σ(u), σ′|x(u), u)χ

(
sup
s 6 u

|x(s) − x∗(s)| < δ
)]

.

(7.13)

(Above we have used that σ(u) = σ(u−) P̂ λ
x0,σ0

–a.s.) One can compute the limit of (7.13)

as λ ↑ ∞ by means of the LLN given in Theorem 2.2, applied to P̂ λ
x0,σ0

. Indeed, we know

that for each β > 0 P̂ λ
x0,σ0

(
sups 6 t+ε |x(s) − x∗(s)| < β

)
→ 1. This allows to write

P λ
x0,σ0

(A) = Êλ
x0,σ0

[∫ t+ε

t−ε
du exp

{
−

∫ u

0
bσ(s)(x∗(s), s)ds

}
r(σ(u), σ′|x∗(u), u)

]
+ o(1) ,

where here and below we denote o(1) any quantity such that

lim
β↓0

lim sup
λ↑∞

o(1) = 0 .

It is simple to derive from Theorem 2.2 that

lim
λ↑∞

P̂ λ
x0,σ0

(
sup

t−ε 6 u 6 t+ε

∣∣∣∣
∫ u

0
bσ(s)(x∗(s), s)ds −

∫ u

0
γα(σ0)(x∗(s), s)ds

∣∣∣∣ > β

)
= 0 ,

since (recall (7.10))

γα(σ0)(x∗(s), s) =
∑

bσ∈Γα(σ0)

∑

eσ∈Γ\Γα(σ0)

µα(σ0)(σ̂|x∗(s), s)r(σ̂, σ̃|x∗(s), s)

=
∑

bσ∈Γα(σ0)

µα(σ0)(σ̂|x∗(s), s)b
bσ(x∗(s), s) .
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Hence we can write

P λ
x0,σ0

(A) = Êλ
x0,σ0

[∫ t+ε

t−ε
du exp

{
−

∫ u

0
γα(σ0)(x∗(s), s)ds

}
r(σ(u), σ′|x∗(u), u)

]
+ o(1) ,

At this point, one can apply again Theorem 2.2 and conclude that

P λ
x0,σ0

(A) =

∑

bσ∈Γα(σ0)

∫ t+ε

t−ε
du exp

{
−

∫ u

0
γα(σ0)(x∗(s), s)ds

}
µα(σ0)(σ̂|x∗(u), u)r(σ̂, σ′|x∗(u), u)+o(1) .

By taking the limit λ ↑ ∞ and afterwards using the arbitrariness of β, we then obtain

lim
λ↑∞

P λ
x0,σ0

(A) =

∑

bσ∈Γα(σ0)

∫ t+ε

t−ε
du exp

{
−

∫ u

0
γα(σ0)(x∗(s), s)

}
µα(σ0)(σ̂|x∗(u), u)r(σ̂, σ′|x∗(u), u) .

(7.14)

This concludes the proof of (7.9) when n = 1. Let us now show how to prove (7.9) when
the event A is defined as in (7.7) with n = 2. The general case is completely similar. By
the strong Markov property, we can write

P λ
x0,σ0

(A) = Eλ
x0,σ0

[
χ
{

T1 ∈ (t1 − ε, t1 + ε) , σ(T1) = σ1,

sup
t 6 T1

|x(t) − x∗(t)| 6 δ
}

fλ
(
x(T1), σ1, T1

)]
,

(7.15)

where, for s 6 t2 − ε,

fλ(x′, σ′, s) := P λ
x′,σ′,s

(
T1 ∈ (t2 − ε, t2 + ε) , σ(T1) = σ2 , sup

s 6 t 6 T1

|x(t) − z∗(t)| 6 δ
)

,

z∗(t) being the path starting in x′ at time s, such that ż∗(t) = Fα(σ′)

(
z∗(t), t

)
. Due to

(7.14) with modified starting state and starting time, we know that fλ(x′, σ′, s) converges
to g(x′, σ′, s) defined as

g(x′, σ′, s) :=

∑

bσ∈Γα(σ′)

∫ t2+ε

t2−ε
du exp

{
−

∫ u

s
γα(σ′)(x∗(s), s)

}
µα(σ′)(σ̂|x∗(u), u)r(σ̂, σ2|x∗(u), u) . (7.16)

By simple arguments (as the ones used in the proof of Lemma 5.1) one can improve (7.14)
and conclude that, given a compact K,

lim
λ↑∞

sup
x′∈K,σ′∈Γ,s∈[0,t2−ε]

∣∣∣fλ(x′, σ′, s) − g(x′, σ′, s)
∣∣∣ = 0 .

This allows to replace in (7.15), fλ
(
x(T1), σ1, T1

)
with g

(
x(T1), σ1, T1

)
plus a negligible

error as λ ↑ ∞. The conclusion of the proof of (7.9) for n = 2 follows now from the LLN
of Theorem 2.2 by the same arguments used in the proof of (7.14).

Having proved (7.9), we derive from it the following fact. Fix (x0, σ0) ∈ R
d × Γ, a

sequence 0 < t1 < t2 < · · · < tn < T and fix i1, i2, . . . , in ∈ Γ(ℓ) such that ik 6= ik+1 for
each k = 0, 1, . . . , n − 1 (i0 := α(σ0)). In addition, fix δ > 0 and ε > 0 small enough that
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ε < T − tn and ε < ti+1 − ti for each i = 0, 1, . . . , n − 1 where t0 := 0. Then define the
event C = C(ε, δ) as

C = {Tk ∈ (tk − ε, tk + ε) and α(σ(Tk)) = ik ,∀k = 1, 2, . . . , n}∩{ sup
t 6 Tn

|x(t)−x∗(t)| < δ} ,

(7.17)
where the path

(
x∗(t) : t ∈ [0, Tn]

)
is the only continuous path in R

d such that

ẋ∗(t) = Fik(x∗(t), t) ∀t ∈ [Tk, Tk+1], k = 0, 1, . . . , n − 1 . (7.18)

Then, summing in (7.9) over σ1, σ2, . . . , σn, we obtain

lim
λ↑∞

P λ
x0,σ0

(C) =

∫

U
du1du2 . . . dun

n−1∏

k=0

(
e−

R uk+1
uk

γik
(x∗(s),s)dsr(ik, ik+1|x∗(uk+1), uk+1)

)
.

(7.19)

Since C is an open subset of the Skohorod space D
(
[0, T ], Rd × Γ(ℓ)

)
, we derive that for

any limit point R of the family {Rλ
x0,α(σ0) : λ > 0} the probability R(C) is not larger than

the r.h.s. of (7.19). By similar arguments, one obtains that the limit P λ
x0,σ0

(C′) coincides

with the r.h.s. of (7.19), where the event C′ = C′(ε, δ) is defined as

C′ = {Tk ∈ [tk − ε, tk + ε] and α(σ(Tk)) = ik ,∀k = 1, 2, . . . , n}∩{ sup
t 6 Tn

|x(t)−x∗(t)| 6 δ} .

(7.20)
Since C′ is closed, we derive that R(C′) is not smaller than the r.h.s. of (7.19). On the
other hand, C′(ε′, δ′) ⊂ C(ε, δ) for ε′ < ε and δ′ < δ, hence R(C′(ε′, δ′)) 6 R(C(ε, δ)). By
taking the limits ε′ → ε and δ′ → δ, the above observations implies that

R(C) =

∫

U
du1du2 . . . dun

n−1∏

k=0

(
e−

R uk+1
uk

γik
(x∗(s),s)dsr(ik, ik+1|x∗(uk+1), uk+1)

)
. (7.21)

The above family of identities parameterized by t1, . . . , tn, ε and δ allows to conclude
that there exists a unique limit point and it must coincide with the law of the PDMP
described in Theorem 2.5.

Appendix A. Some topological properties of the space Υ

For the reader’s convenience, in this Appendix we collect some properties of the metric
space Υ that are used in the text. We stress that the definition of Υ given in (2.20)
depends on the fixed initial mechanical state x0. We call M∗[0, T ] ⊂ M[0, T ] the image of
the map L[0, T ] ∋ f → f(t)dt ∈ M[0, T ] and we define M∗[0, T ]Γ,1 as the set of positive
measures (ρσ(t)dt)σ∈Γ such that

∑
σ∈Γ ρσ(t) = 1 a.e.

Lemma A.1. Given ρ ∈ M∗[0, T ]Γ,1, there exists a unique x(t) ∈ C[0, T ] such that

x(t) = x0 +
∑

σ∈Γ

∫ t

0
Fσ(x(s), s)ρσ(s)ds ∀t ∈ [0, T ] . (A.1)

Moreover, the map that associates to each ρ ∈ M∗[0, T ]Γ,1 the unique element x(t) ∈
C([0, T ]) satisfying (A.1) is continuous.

Proof. Due to (2.8), if x(t) solves (A.1) it must be |x(t)| 6 |x0|+c1t+c2

∫ t
0 |x(s)|ds. Then,

applying Gronwall inequality, the path x(t) must lie inside a compact K, depending only
on x0. We fix the constant K as in (2.7).
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Let us define Q as the subset

Q := {ρ ∈ M∗[0, T ]Γ,1 : ρσ ∈ C[0, T ] ∀σ ∈ Γ} .

It is simple to check that Q is dense in M∗[0, T ]Γ,1. Indeed, by using mollifiers, one

can show that for each σ ∈ Γ there exists a sequence ρ
(n)
σ (s) ∈ C[0, T ] such that ρ

(n)
σ (s)

converges to ρσ(s) in L1[0, T ] as n ↑ ∞. At cost to normalize, we can assume that∑
σ ρ

(n)
σ (s) = 1 for each s ∈ [0, T ].

If ρ ∈ Q, existence and uniqueness of (A.1) can be proven by the same arguments used
in the proof of Lemma 2.1, given in Appendix C. In order to prove existence for (A.1)

when ρ ∈ M∗[0, T ]Γ,1, we take a sequence ρ(n) ∈ Q such that ρ
(n)
σ converges to ρσ in

L1[0, T ] as n ↑ ∞. Consider the solutions x(n)(t) ∈ C[0, T ] associated to ρ(n). We can
bound

∑

σ∈Γ

∣∣∣∣
∫ t

0

[
ρ(n)

σ (s) − ρ(m)
σ (s)

]
Fσ(x(n)(s), s)ds

∣∣∣∣ 6 K1

∑

σ∈Γ

∫ T

0

∣∣ρ(n)
σ (s) − ρ(m)

σ (s)
∣∣ds =: Cn,m ,

where K1 := maxσ maxx∈K,t∈[0,T ] |Fσ(x, t)|. Due to (2.7) we can estimate

∣∣x(n)(t) − x(m)(t)
∣∣ 6 Cn,m + K

∫ t

0
|x(n)(s) − x(m)(s)|ds . (A.2)

Due to Gronwall lemma, we conclude that ‖x(n)(t) − x(m)(t)‖∞ 6 Cn,meKT . Since Cn,m

is arbitrarily small for n,m large, we conclude that the sequence x(n) is a Cauchy se-
quence in C[0, T ], and therefore it converges to some path x ∈ C[0, T ]. Taking the
limit n → ∞ for equation (A.1) with x, ρ replaced respectively by x(n), ρ(n), due to
the Dominated Converge Theorem one concludes that x(t) solves (A.1). Uniqueness fol-
lows from Gronwall inequality, since given two solutions x1(t) and x2(t) of (A.1) it must

be |x1(t) − x2(t)| 6 K
∫ t
0 |x1(s) − x2(s)|ds.

Finally let us prove the continuity of the map M∗[0, T ]Γ,1 ∋ ρ(t) → x(t) ∈ C[0, T ]. We
introduce a metric D on M∗[0, T ] defined as

D(f1(t)dt, f2(t)dt) = sup
t∈[0,T ]

∣∣∣∣
∫ t

0

[
f1(s) − f2(s)

]
ds

∣∣∣∣ , f1, f2 ∈ L[0, T ] . (A.3)

It is simple to check that D is a distance on M∗[0, T ]. We claim that the topology induced
by D coincides with the weak topology of M∗[0, T ]. To this aim, we only need to show that

D(fn(t)dt, f(t)dt) → 0 if and only if
∫ T
0 fn(t)g(t)dt →

∫ T
0 f(t)g(t)dt for each g ∈ C[0, T ].

Given h ∈ L[0, T ] let ĥ(t) =
∫ t
0 h(s)ds for 0 6 t 6 T . Since ĥ is a function of bounded

variation, it is simple to check that D(fn(t)dt, f(t)dt) → 0 if and only if f̂n(t) → f̂(t) for
each t ∈ [0, T ]. The proof that the weak convergence fn(t)dt → f(t)dt coincides with the

pointwise convergence of f̂n to f̂ follows the same arguments leading to the equivalence
between the weak convergence of probability measures and the pointwise convergence of
the associated distribution functions.

Take a sequence ρ(n) ∈ M∗[0, T ]Γ,1 converging to some ρ ∈ M∗[0, T ]Γ,1. Consider also

the corresponding x(n)(t), x(t) ∈ C[0, T ] obtained from (A.1). Setting

Cn(t) :=
∑

σ∈Γ

∣∣∣∣
∫ t

0

[
ρ(n)

σ (s) − ρσ(s)
]
Fσ(x(s), s)ds

∣∣∣∣ ,
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due to (2.7) in assumption (A4) we have

∣∣x(n)(t) − x(t)
∣∣ 6 Cn(t) +

∑

σ∈Γ

∫ t

0
ρ(n)

σ (s)
∣∣Fσ(x(s), s) − Fσ(x(n)(s), s)

∣∣ds 6

Cn(t) + K

∫ t

0
|x(n)(s) − x(s)|ds . (A.4)

Since ρ
(n)
σ (s)ds weakly converges to ρσ(s)ds on [0, T ] and therefore on [0, t] and since

Fσ(x(s), s) is continuous in s, from the previous results on the metric D we conclude that
Cn(t) → 0 as n → ∞ uniformly in t ∈ [0, T ]. Due to the above observations we conclude
that for each δ > 0 there exists n0 such that for each t ∈ [0, T ] and n > n0 it holds

∣∣x(n)(t) − x(t)
∣∣ 6 δ + K

∫ t

0
|x(n)(s) − x(s)|ds .

By Gronwall lemma it follows that ‖x(n) − x‖∞ 6 δeKT for all n > n0. This implies that

x(n)(t) converges to x(t) in the uniform norm of C[0, T ].
�

Lemma A.2. The space Υ is a compact Polish metric space.

Proof. First we prove that M∗[0, T ]Γ,1 is compact. It is a subset of the compact space
{ρ ∈ M[0, T ]Γ : ρσ[0, T ] 6 T ∀σ ∈ Γ}, so that we just need to prove that it is closed.
We first prove that M∗[0, T ] is closed. To this aim, let µn be a sequence in M∗[0, T ]

converging to µ ∈ M[0, T ]. Since given g ∈ C[0, T ] it holds |µn(g)| 6
∫ T
0 |g(t)|dt, by

taking the limit we conclude that |µ(g)| 6 ‖g‖L1 [0,T ]. By density we obtain that the map

L1[0, T ] ∋ g → µ(g) ∈ R is a continuous linear functional with norm bounded by 1. Since
the dual space of L1[0, T ] is given by L∞[0, T ] endowed of the essential uniform norm, we

can conclude that there exists h ∈ L∞[0, T ] with ‖h‖∞ 6 1 such that µ(g) =
∫ T
0 g(t)h(t)dt

for all g ∈ C[0, T ]. Since µ(g) = limn↑∞ µn(g) > 0 for all g ∈ C[0, T ] with g > 0, the
function h must be nonnegative a.e. This proves that µ ∈ M∗[0, T ] and dµ/dt = h. Hence

M∗[0, T ] is a closed subspace of M[0, T ]. Consider now a sequence ρ(n) ∈ M∗[0, T ]Γ,1

converging to ρ. Then necessarily for every σ ∈ Γ it holds ρσ ∈ M∗[0, T ]. Moreover for
each g ∈ C[0, T ] it holds
∫ T

0
g(s)ds =

∑

σ∈G

∫ T

0
ρ(n)

σ (s)g(s)ds →
∑

σ∈Γ

∫ T

0
ρσ(s)g(s)ds =

∫ T

0

(
∑

σ∈Γ

ρσ(s)

)
g(s)ds .

This implies that
∫ T

0
g(s)ds =

∫ T

0

(
∑

σ∈Γ

ρσ(s)

)
g(s)ds , ∀g ∈ C[0, T ] .

Hence,
∑

σ∈Γ ρσ(s) = 1 a.s. and this means that ρ ∈ M∗[0, T ]Γ,1.

Compactness of Υ ⊆ M[0, T ] × C[0, T ] follows from the fact that it is the graph of a
continuous function defined on a compact domain M∗[0, T ]Γ,1 ⊆ M[0, T ]. Completeness
and separability of Υ follow from the fact that Υ can be thought as a closed subset of the
space C[0, T ] ×M[0, T ]Γ, which is complete and separable. �

Lemma A.3. The set B defined as

B =
{
(x, ρ) ∈ Υ : ρσ ∈ C1[0, T ] and ρσ(t) > 0 ∀σ ∈ Γ, t ∈ [0, T ]

}
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is a dense subset of Υ.

Proof. Fix (x, ρ) ∈ Υ. Then, by using mollifiers, one can show that for each σ ∈ Γ there

exists a sequence ρ
(n)
σ (s) ∈ C1[0, T ] such that ρ

(n)
σ (s) converges to ρσ(s) in L1[0, T ] as

n ↑ ∞. At cost to take max{1/n, ρ
(n)
σ (s)} we can assume that ρ

(n)
σ is positive; at cost to

normalize, we can assume that
∑

σ ρ
(n)
σ (s) = 1 for each s ∈ [0, T ]. Since L1–convergence

is stronger than L[0, T ]–convergence (where L[0, T ] is endowed with the metric defined by

the r.h.s. of (A.3)), we obtain that ρ
(n)
σ converges to ρσ in L[0, T ] as n ↑ ∞. Let us call

x(n) the solution of the Cauchy problem
{

ẋ(n)(t) =
∑

σ∈Γ ρ
(n)
σ (t)Fσ(x(n)(t), t) t ∈ [0, T ] ,

x(n)(0) = x0 .

Note that x(n) is well defined due to Lemma A.1. Then (x(n), ρ(n)) belongs to B and from

Lemma A.1 we have that ‖x(n) − x‖∞ → 0. �

Appendix B. A uniform large deviation estimate

In this appendix we prove formula (5.13), keeping the same notation introduced in the
proof of Lemma 5.1. Formula (5.13) follows immediately from the next lemma, valid under
the assumptions stated in Section 2.

Lemma B.1. For any δ > 0 it holds

lim sup
u→∞

sup
(x,t)∈K′×[0,T ], σ,σ′∈Γ

1

u
ln Qσ′,x,t

[∣∣∣∣
1

u

∫ u

0

[
χ(σ(s) = σ) − µ(σ|x, t)

]
ds

∣∣∣∣ > δ

]
< 0 . (B.1)

Proof. We fix some notation. We call ρ(u) the empirical measure in the time interval [0, u]
defined as

ρ(u)
σ :=

1

u

∫ u

0
χ(σ(s) = σ)ds ∀σ ∈ Γ .

This is an element of M1(Γ), the set of probability measures on Γ. Moreover, we write
E := K ′ × [0, T ] × M1(Γ). Note that E is a Polish space. For any fixed σ′ ∈ Γ and

for any time u we call Q̂u
σ′ the map that associates to any measurable subset S ⊆ E the

nonnegative number

Q̂u
σ′(S) := sup

(x,t)∈K′×[0,T ]
Qσ′,x,t

({
(x, t, ρ(u)) ∈ S

})
= sup

(x,t)∈K′×[0,T ]
Qσ′,x,t

(
ρ(u) ∈ S(x,t)

)
,

where S(x,t) :=
{
ρ ∈ M1(Γ) : (x, t, ρ) ∈ S

}
.

In order to obtain upper bounds on Q̂u
σ′(S), we proceed as follows. Given an arbitrary

function V : Γ → R we introduce, likewise in (6.1), the perturbed rate for a jump from σ
to another chemical state σ′ as

rV (σ, σ′|x, t) := r(σ, σ′|x, t)eVσ′−Vσ . (B.2)

The law of the Markov chain on Γ with the above perturbed rates and with initial condition
σ′ is called QV

σ′,x,t. Using a result analogous to (6.3) in this simpler framework and using
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the notation introduced in Section 4, we obtain that

lim sup
u→∞

1

u
ln
[
Q̂u

σ′ (S)
]

= lim sup
u→∞

1

u
sup

(x,t)∈K′×[0,T ]
ln
[
Qσ′,x,t

(
ρ(u) ∈ S(x,t)

)]

= lim sup
u→∞

1

u
sup

(x,t)∈K′×[0,T ]
ln
[
EQV

σ′,x,t

(dQσ′,x,t

dQV
σ′,x,t

χ
(
ρ(u) ∈ S(x,t)

))]

6 lim sup
u→∞

1

u
sup

(x,t)∈K′×[0,T ]
ln
[

sup
ρ(u)∈S(x,t)

dQσ′,x,t

dQV
σ′,x,t

]

= − inf
(x,t)∈K′×[0,T ]

inf
ρ∈S(x,t)

Ĵ
(
c[ρ, r(·, ·|x, t)], eV

)

= − inf
(x,t,ρ)∈S

Ĵ
(
c[ρ, r(·, ·|x, t)], eV

)

We can now optimize over the arbitrary functions V obtaining

lim sup
u→∞

1

u
ln Q̂u

σ′(S) 6 − sup
V

inf
(x,t,ρ)∈S

Ĵ
(
c[ρ, r(·, ·|x, t)], eV

)
(B.3)

We note that given a compact subset C ⊆ E a finite open cover O1, . . . , On of C, it trivially

holds that Q̂u
σ′ (C) 6

∑n
i=1 Q̂u

σ′ (Oi). Hence we can estimate

lim sup
u→∞

1

u
ln Q̂u

σ′(C) 6 inf
O1,...,On

max
1 6 j 6 n

inf
V

sup
(x,t,ρ)∈Oj

−Ĵ
(
c[ρ, r(·, ·|x, t)], eV

)
, (B.4)

where the first infimum is carried over all finite open covers {O1, O2, . . . , On} of C. In
order to bound the above r.h.s. we can apply Lemma 3.2 in [KL][Appendix 2]. Indeed,
the assumption of this lemma are fulfilled since, as composition of continuous functions
(see Lemma 4.1), the map

E ∋ (x, t, ρ) ∈ E → Ĵ
(
c[ρ, r(·, ·|x, t)], eV

)
∈ R

is continuous for any V . As result we obtain that

lim sup
u→∞

1

u
ln Q̂u

σ′(C) 6 − inf
(x,t,ρ)∈C

sup
V

Ĵ
(
c[ρ, r(·, ·|x, t)], eV

)
=

− inf
(x,t,ρ)∈C

j (ρ, r(·, ·|x, t)) = j (ρ∗, r(·, ·|x∗, t∗)) , (B.5)

where (x∗, t∗, ρ∗) is a minimum point of the continuous function (x, t, ρ) → j (ρ, r(·, ·|x, t))
on the compact set C.

The statement of the lemma now follows from two simple facts. First: since the map
(x, t) ∈ K′ × [0, T ] → µ(·|x, t) ∈ M1(Γ) is continuous we have that for any fixed σ ∈ Γ the
set

C :=
{
(x, t, ρ) ∈ K′ × [0, T ] ×M1(Γ) : |ρσ − µ(σ|x, t)| > δ

}

is compact. Second: from Remark 4.3 we have that the continuous function j (ρ, r(·, ·|x, t))
is strictly positive on C and therefore also its minimum.

�
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Appendix C. Miscellanea

In this last appendix, we prove Lemma 2.1 and we collect some technical results fre-
quently used in the paper.

Proof of Lemma 2.1. We consider here only (2.15), since the Cauchy problem (2.14)
can be treated similarly. First, we observe that due to (2.12) the field F̄ (x, t) is continuous
on R

d × [0, T ], is locally Lipschitz w.r.t. x and satisfies (2.8) with F̄ instead of Fσ . Then,
due to Picard Theorem, the Cauchy problem (2.15) has locally a unique solution. We
only need to show that there exists a global solution on [s, T ]. Given b > 0 we define
M(b) = max{|F̄ (x, t)| : |x − x0| 6 b , t ∈ [0, T ]}. Then by Peano Theorem, there exists a
C1 solution x(t) of (2.15) defined for t ∈ [s, s + α], where α := min{T − s, b/M(b)}. Due
to (2.8), we know that

b/M(b) > b/(κ1 + κ2|x0| + κ2b) .

We take b = b(x0) large enough that b/M(b) > 1/(2κ2). This implies that the solution of
(2.15) exists always on the interval [s, (s + 1/(2κ2)) ∧ T ], which does not depend on x0.
By patching a finite number of paths, one obtains the global solution of (2.15).

�

Let us now show another consequence of Assumption (A4):

Lemma C.1. Given σ an element of D([0, T ],Γ) and given s ∈ [0, T ], let x(t|x0, s) be
the unique continuous and piecewise C1 solution on [s, T ] of the ODE ẋ(t) = Fσ(t)(x(t), t)

starting at x0 at time s. Then, for each compact subset K ⊂ R
d there exists another

compact subsect K′ ⊂ R
d, independent from the path σ(t), such that

{x(t|x0, s) : s 6 t 6 T, x0 ∈ K} ⊂ K′ .

The same thesis holds if one replace x(t|x0, s) with the C1 solution x∗(t|x0, s) of the ODE
ẋ∗(t) = F̄ (x∗(t), t), starting at x0 at time s.

Proof. We give the proof only for x(t|x0, s) since the other case can be treated similarly.
Due to (2.8), we can bound

|x(t|x0, s)| 6 |x0| +

∫ t

s
|Fσ(u)(x(u), u)|du 6 |x0| + κ1(t − s) + κ2

∫ t

s
|x(u|x0, s)|du .

Due to the Gronwall inequality, the l.h.s. is therefore bounded by (|x0| + κ1T )eκ2T , thus
implying the thesis. �

Lemma C.2. Assumptions (A2) and (A3) imply that µ(σ|x, t) is a C1 function in x and
t, for each σ ∈ Γ.

Proof. We fix (x0, t0) ∈ R
d × [0, T ]. By assumption (A2) and Perron–Frobenius Theorem,

the right kernel of the matrix Lc(x0, t0) has dimension one and is generated by the row
µ(·|x0, t0) (below, we will play with row and column vectors, the interpretation will be
clear from the context and will be understood). Hence Lc(x0, t0) has rank n − 1, where
n := |Γ|. In particular, there exists σ0 ∈ Γ such that all the σ–columns v1, v2, . . . , vn−1,
with σ 6= σ0, of the matrix Lc(x0, t0) are independent. We define π as the canonical

projection π : R
Γ → R

Γ\{σ0}. Then we consider the map

F : R
d × [0,∞) × R

Γ ∋ (x, t, z) → (π(z · Lc(x, t)),
∑

σ

zσµ(σ|x0, t0) − a) ∈ R
Γ ,

where a =
∑

σ µ(σ|x0, t0)
2. Note that F is C1 and that F

(
x0, t0, z0) = 0 where z0 :=

µ(·|x0, t0)
)
. We claim that the map F (x0, t0, ·) has invertible tangent map TzF (x0, t0, z0)
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in z0. Indeed, Tz(x0, t0, z0) maps z ∈ R
Γ in z · A ∈ R

Γ, where A is a Γ × Γ–matrix whose
columns are given - a part the order - by v1, v2,... , vn−1 and z0. We already know
that v1, . . . , vn−1 are independent. Moreover, since z0 · Lc(x0, t0) = 0, v1, . . . , vn−1 are all
orthogonal to z0. This implies that all the columns of the matrix A are independent, and
therefore A is invertible, thus proving our claim.

We can now apply the Implicit Function Theorem and derive that there exists an open
neighborhood U of (x0, t0) and a C1 map h : U → R

Γ such that F (x, t, h(x, t)) = 0 for all
(x, t) ∈ U . This implies that (h(x, t) · Lc(x, t))σ = 0 for all σ 6= σ0. Since Lc(x, t) · 1 = 0,
we know that ∑

σ∈Γ

(h(x, t) · Lc(x, t))σ = h · Lc(x, t) · 1 = 0

thus implying that (h(x, t) · Lc(x, t))σ0 = 0. Moreover, since h(x, t) · z0 = a 6= 0, we
conclude that h(x, t) is a nonzero right eigenvector of Lc(x, t) with eigenvalue 0. By
Perron–Frobenius Theorem we have that

µ(σ|x, t) =
hσ(x, t)∑
σ′ hσ′(x, t)

, ∀(x, t) ∈ U .

The above identity and the fact that h is C1 imply that µ(σ|·, ·) is C1.
�
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