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via Vetoio, 67100 L’Aquila, Italy.

Abstract. We discuss diffusion of particles in a spatially inhomogeneous medium. From

the microscopic viewpoint we consider independent particles randomly evolving on a lattice.

We show that the reversibility condition has a discrete geometric interpretation in terms

of weights associated to un–oriented edges and vertices. We consider the hydrodynamic

diffusive scaling that gives, as a macroscopic evolution equation, the Fokker–Planck equa-

tion corresponding to the evolution of the probability distribution of a reversible spatially

inhomogeneous diffusion process. The geometric macroscopic counterpart of reversibility is

encoded into a tensor metrics and a positive function. The Fick’s law with inhomogeneous

diffusion matrix is obtained in the case when the spatial inhomogeneity is associated exclu-

sively with the edge weights. We discuss also some related properties of the systems like a

non–homogeneous Einstein relation and the possibility of uphill diffusion.
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1. Introduction

The modelling of the diffusion of a physical quantity encoded by a density field ρ(x, t) is

usually constructed by assuming a continuity equation

∂ρ

∂t
= −∇ · J (1.1)

expressed in terms of the flux vectorial field J(x, t) and a relation between the flux and the

density field. The most popular choice is the Fick’s law (see [16] for a very introductory

discussion)

J = −D∇ρ , (1.2)

where the positive function D is called diffusion coefficient. In general D = D(ρ, x). When

there is a dependence on ρ we obtain a nonlinear equation. For spatially homogeneous

systems D does not depend on x.

Let us for simplicity consider the cases of a diffusion coefficient that does not depend on

ρ. In many experimental situations [1, 3, 5–8, 13, 19, 21, 22, 24, 25] one should consider a not

constant diffusion coefficient D(x). In this cases it is not clear if Fick’s law is the correct

equation expressing the connection between the density and the flux fields. A different

choice is the Fokker–Planck diffusion law (see the books [15, 17] for an introduction to the

Fokker–Planck equation)

J = −∇(Dρ) (1.3)

which adds to the standard Fick’s law a drift with velocity −∇D, see Section 5.1.

In correspondence of these two different assumptions one finds two possible equations for

the diffusion problem
∂ρ

∂t
= ∇ · (D∇ρ) (1.4)

and
∂ρ

∂t
= ∆(Dρ) (1.5)

which will be respectively called the Fick and the Fokker–Planck diffusion equation; note

that they reduce to the same equation if D is constant.

These two equations can be studied in Λ × [0, T ] with Λ ⊂ Rd and T > 0 with D ∈
C2(Λ) and with initial condition ρ(x, 0) = ρ0(x) ∈ C2(Λ). Possible boundary conditions

are Dirichlet or Neumann conditions on ∂Λ. In case Λ is a parallelepiped, it is possible to

consider periodic boundary conditions.

In the applied science literature there are many situations in which the two different

points of view are assumed. We just mention the paper [27] where the Fick’s law is used

to study the transport of nutrients in cartilaginous tissues and the paper [22] where it
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is discussed an experiment in which a not uniform stationary density profile is produced

starting from a uniform distribution of particles flowing inside a medium with not constant

diffusion coefficient obtained by adding gelatine to water. This experimental observation is

obviously in contrast with the Fick’s law prediction.

The fact is that, as clearly explained in [25, 26], the question “what is the right general-

ization of the Fick’s law to inhomogeneous systems” is too naive. A more detailed knowledge

of the microscopic system is necessary to model correctly the macroscopic behavior. In [25]

the authors, in particular, discuss a convincing and simple example based on two systems

in which a closed box contains a very dilute gas moving through a dense mesh of iron wool.

Model one: the iron wool density is uniform and the box experiences a fixed temperature

gradient so that the typical particle speed varies continuously throughout the box. Model

two: the temperature is uniform, but the iron wool density varies continuously in the box.

The systems are designed so that the effective diffusion coefficient, which can be defined as

the ratio between the square of the mean free path and the mean free time, is the same

function of the space coordinates in the two systems. The authors remark that, since the

temperature is uniform in box two and not uniform in box one they expect a stationary

uniform particle density distribution in box two and not uniform in box one; indeed, they

also deduce Fokker–Planck behavior for the first model and Fick for the second.

Our work is very much in the spirit of [25,26], indeed, we assume the microscopic point of

view and prove that two different models behave in the hydrodynamic limit [14, 18] respec-

tively according to the Fick and the Fokker–Planck diffusion law. In our modelling particles

move in a discrete space and jump from one site to another following an edge. We find the

Fick’s behavior if the inhomogeneity is associated with edges and the Fokker–Planck one if

inhomogeneity is associated with sites.

Our modelling provides a deep physical interpretation of the phenomenon, indeed, it

suggests that the Fokker–Planck’s law is associated with locally isotropic inhomogeneities,

whereas inhomogeneity accompanied to anisotropy results into Fick’s behavior. More pre-

cisely, suppose that in a small interval of time the number of particles leaving a site of the

system is equally distributed among the edges intersecting that site, then the macroscopic

behavior is Fokker–Planck. On the contrary, suppose that the number of particles leaving

a site are not equally distributed among the edges intersecting that site, but assume also

that if two sites connected by an edge are occupied by the same number of particles then

the number of particles moving along the bond in the two directions is equal. In such a case

the macroscopic behavior is Fick. The second assumption assures that there is no preferred

direction along an edge, in particular it rules out the possibility to have external fields acting

on the system.
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We note, finally, that our results are coherent with the simple example discussed in [25].

Consider a small portion of volume in the box one, the number of particles exiting the volume

depends on its location due to velocity gradient. But, since the wool mesh is uniformly

distributed, particles move with the same speed in all directions, so that the system is

locally isotropic and this, accordingly to our results, implies the Fokker–Planck behavior.

On the other hand, in box two the non–uniformity of the iron wool distribution breaks the

local isotropy and this is why the Fick’s behavior is found.

As we mentioned above the main goal of the paper is the derivation of the Fick and

Fokker–Planck diffusion laws starting from a microscopic model in which the spatial inho-

mogeneity is differently implemented. The paper contains also a final section in which we

discuss some relevant phenomena connected with inhomogeneous diffusion. In particular, we

note that coupling a Fick channel with a Fokker–Planck one with suitable boundary condi-

tions gives rise to the phenomenon of uphill currents, in the sense that the current will flow

in the standard downhill direction in the Fick channel, namely, from the higher density end

to the lower density one, whereas it will flow uphill in the Fokker–Planck channel. Moreover,

in the same section we discuss the validity of an inhomogeneous Einstein relation.

The paper is organized as follows. In Section 2 we introduce the microscopic model and

discuss some elementary properties connected to invariant measures. In Section 3 we first

introduce the basic notions which are needed to state our main result on the scaling limit

which is, indeed, stated in Section 3.3 and proven in Sections 3.4–3.8. Some heuristics and

numerical simulations are given in Section 4. Finally, in Section 5 we report some additional

remarks as the above mentioned uphill current and Einstein relation.

2. Models

We discuss here the microscopic structure of our inhomogeneous media.

2.1. Preliminaries

At microscopic level we have a graph with vertices V , and directed edges E. The corre-

sponding set of unordered edges is denoted by F . A generic directed edge is denoted by

(x, y) ∈ E while an undirected one by {x, y} ∈ F . We consider always finite graphs such

that if {x, y} ∈ F then both (x, y) and (y, x) belong to E.

Two vertices x, y ∈ V are said to be neighbors if and only if {x, y} ∈ F . We assume

that the graph is connected, namely, for any pair of vertices x, y ∈ V there exists a sequence

of unordered edges e1, . . . , en ∈ F such that x ∈ e1, y ∈ en, and em ∩ em+1 6= ∅ for m =

1, . . . , n − 1. For any x ∈ V we let C(x) ⊂ V be the set of vertices that are neighbors of

x. The directed graph (V,E) is called strongly connected if for any pair of vertices x, y ∈ V
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there exists a directed path going from x to y. We assume that our graphs are always

strongly connected.

2.2. Random walks and particle systems

We consider one particle performing a Random Walk on the graph (V,E) with rates r(x, y) >

0 when (x, y) ∈ E. We say that the random walk is reversible if and only if there exists a

probability measure µ(x) on V such that the detailed balance condition

µ(x)r(x, y) = µ(y)r(y, x) , {x, y} ∈ F (2.6)

is satisfied. This condition can be satisfied only if {x, y} ∈ F implies that both (x, y) and

(y, x) belong to E. We stress again that this will be always true. If the condition (2.6) is

satisfied then µ is invariant for the dynamics. This means that if the walker is distributed

initially like µ its distribution does not change with time.

The inhomogeneous random walk (IRW) is the Markov jump process on the graph with

transition rate from x to y given by

r(x, y) := α(x)Q({x, y}) . (2.7)

where α : V → R+ and Q : F → R+ are arbitrary functions. We stress that Q is a function

on un-ordered edges so that Q({x, y}) = Q({y, x}). To avoid irreducibility problems we

assume that such functions are strictly positive. Sometimes we shall consider two particular

cases in which the inhomogeneity is associated exclusively either with sites or bonds. The

site inhomogeneous random walk (SIRW) is the IRW with Q(e) = 1 for any e ∈ F and the

edge inhomogeneous random walk (EIRW) is the IRW with α(x) = 1 for any x ∈ V .

We can pass from the case of one single particle to that of M independent and indis-

tinguishable particles letting η(x) be the number of particles at site x ∈ V and consid-

ering η(x)r(x, y) as the rate at which one particle jumps from site x to site y ∈ C(x).

More formally, a configuration of particles is an element of the set Ω = ∪+∞
M=1ΩM with

ΩM := {η ∈ NV ,
∑

x∈V η(x) = M}. The value η(x) is the number of particles at x ∈ V and

it is usually called the occupation variable at x. If x, y ∈ V and η ∈ Ω such that η(x) ≥ 1,

we denote by ηx,y the configuration obtained by η letting one particle jump from x to y. This

means that, ηx,y(x) = η(x) − 1 and ηx,y(y) = η(y) + 1 while all the remaining occupation

variables remain the same. The stochastic evolution is encoded by the generator

Lf(η) =
∑

(x,y)∈E

cx,y(η) [f(ηx,y)− f(η)] , (2.8)

with

cx,y(η) = η(x)α(x)Q({x, y}) (2.9)
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and f : Ω → R. The trajectories (ηs)s∈[0,t] of this Markov process belong to the space

D([0, t],Ω). This is the space of the maps η· : [0, t]→ Ω that are right continuous and have

limit from the left. We endow this space by the Skorokhod topology [4].

In the following we will denote by Pν the probability measure on D([0, t],Ω) determined

by the Markovian stochastic evolution given by (2.8) when the particles are distributed at

time 0 according to the measure ν. The corresponding expected value will be denoted by

Eν . The probability and the expected value with respect to a probability measure ν on Ω

will be instead denoted respectively by Eν and Pν (or simply ν).

2.3. Invariant measures

Let us first discuss the case of one single particle. We claim that the class of all the reversible

random walks on the graph G indeed coincides with the class of IRW.

Lemma 2.1. A random walk on (V,E) is reversible if and only if the rates of transition

are of the form (2.7). Moreover the invariant measure is µ(x) = 1/(α(x)Z) where Z =∑
y∈V α

−1(y) is a normalization constant.

Proof. Consider first a random walk with rates (2.7) and consider the probability measure

µ(x) = 1/(α(x)Z). Then the detailed balance condition (2.6) holds and the random walk is

then reversible and the invariant measure is µ. Conversely consider a random walk for which

(2.6) holds. Define then Q({x, y}) := µ(x)r(x, y) = µ(y)r(y, x) and α(x) = µ−1(x). Then

with this choice of the weights formula (2.7) holds and we have therefore an IRW.

For the many particle system, the dynamic conserves the total number of particles and

consequently if there are not sources there will be a family of invariant measures depending

on the number of particles. On each subset ΩM the dynamics is irreducible and there will

be a corresponding unique invariant measure. This is the canonical invariant measure with

M particles νM defined by νM(η) = 0 if η 6∈ ΩM and otherwise

νM(η) =
1

ZM

∏
x∈V

(α(x)−1)η(x)

η(x)!
, η ∈ ΩM . (2.10)

By the multinomial theorem, the normalization constant is

ZM =
∑
η∈ΩM

∏
x∈V

α(x)−η(x)

η(x)!
=

1

M !

[∑
x∈V

α(x)−1
]M

. (2.11)

It is easy to prove that the canonical measure is (2.10) by showing that it satisfies the detailed

balance condition for a system of independent IRW

νM(η)cx,y(η) = νM(ηx,y)cy,x(η
x,y) , (2.12)
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where we recall definition (2.9) for the rates cx,y. We note that the average number of

particles at site x ∈ V under the stationary measure νM is

EνM [η(x)] = M
α(x)−1∑
y∈V α(y)−1

. (2.13)

Indeed we have

EνM [η(x)] =
1

ZM

∑
η∈ΩM

η(x)
∏
y∈V

α(y)−η(y)

η(y)!
=

1

ZM

M∑
k=1

α(x)−k

(k − 1)!

∑
η∈ΩxM−k

∏
y∈V \{x}

α(y)−η(y)

η(y)!

where Ωx
M−k denotes the set {η ∈ NV \{x},

∑
y∈V \{x} η(y) = M − k}. Hence, using the

expression of the partition function for M − k particles on V \ {x}, one has

EνM [η(x)] =
1

ZM

M∑
k=1

α(x)−k

(k − 1)!

1

(M − k)!

[ ∑
y∈V \{x}

α(y)−1
]M−k

and, making the change of variables h = k − 1, one gets

EνM [η(x)] =
1

ZM

α(x)−1

(M − 1)!

M−1∑
k=0

(
M − 1

h

)
(α(x)−1)h

[ ∑
y∈V \{x}

α(y)−1
]M−k

yielding (2.13) after some straightforward algebra.

An alternative way of looking at this is by labeling the particles. Since the particles are

independent, if we distribute initially the particles independently they will be independent at

any later time. In particular considering very long times the particles will be independent in

the stationary state. Calling Xi ∈ V the position of the particle with label i in the stationary

state we have that the variables Xi are independent and each of them has distribution

coinciding with the invariant measure of one single walker described in Lemma 2.1. We have

therefore

EνM [η(x)] = E

[
M∑
i=1

δXi,x

]
= MP (X1 = x) = M

α−1(x)

Z

that is exactly the right hand side of (2.13).

It will be more convenient to work with the grand canonical invariant measures that are

obtained as special convex combinations of the canonical ones. The family of grand canonical

invariant measures is parameterized by a parameter related to the averaged density. Given

a function λ(·) : V → R we define an associated inhomogeneous product Poisson measure

µλ(·)(η) =
∏
x∈V

e−λ(x)λ(x)η(x)

η(x)!
. (2.14)
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When λ(·) = λ is a constant function we call simply µλ the corresponding homogeneous

product measure. The measure (2.14) satisfies a detailed balance condition similar to (2.12)

provided λ(x) = cα−1(x) for an arbitrary constant c. We obtain in this way a family of

grand canonical invariant measures depending on the free parameter c. We note that the

average number of particles at site x ∈ V under the measure µλ(·) is Eµλ(·) [η(x)] = λ(x). We

have therefore for the grand canonical stationary measures Eµcα−1(·)(η(x)) = cα−1(x).

The canonical measures are obtained by the grand canonical ones conditioning on the

total number of particles. More precisely we have

νM(η) = µcα
−1(·)

(
η
∣∣∣∑
x∈V

η(x) = M

)
,

and the conditioning is independent from the parameter c of the grand canonical measure.

3. Scaling limits

3.1. Microscopic and macroscopic observables

In order to perform the scaling limits we need to introduce a general framework and some

observables. We will give a microscopic and a macroscopic description of the system. The

macroscopic domain Λ is in general a bounded domain of Rd, but to avoid dealing with

boundary conditions we consider the d dimensional torus [0, 1]d with periodic boundary

conditions. The discretization of the macroscopic domain is ΛN := (Z/N)d ∩ Λ that will be

the set of vertices denoted before as V , with edges between nearest neighbors sites. We call

respectively EN and FN the oriented and the un–oriented edges of the graph. We denote by

LN the generator of the process (2.8) when the underlying graph is (ΛN , EN). In general, a

lower index N is used to denote the fact that the graph that we are considering is the lattice

ΛN with the corresponding edges.

A discrete vector field φ is a map φ : EN → R such that φ(x, y) = −φ(y, x). The

divergence of φ is defined by

∇ · φ(x) :=
∑
y∈C(x)

φ(x, y) . (3.15)

A vector field φ is of gradient type if there exists a function f : V → R such that φ(x, y) =

f(y)− f(x). In this case we write φ = ∇f .

We use the same notation for the discrete and continuous gradient and divergence since

they are one a discretized version of the other. To understand if the symbol means the

discrete or the continuous operator we have to observe on which object it is acting.
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Given a smooth function f : Λ→ R, its discretized version fN on the lattice ΛN is defined

by fN(x) = f(x), x ∈ ΛN (with abuse of notation we drop sometimes the index N). Given a

smooth vector field ψ : Λ→ Rd a natural discretization is obtained for example considering

the line integral

ψN(x, y) :=

∫
(x,y)

ψ(z) · dl , (x, y) ∈ EN . (3.16)

We have that ψN is a discrete vector field.

We will use repeatedly the following integration by parts formula that can be easily

checked. Consider a function f : ΛN → R and a discrete vector field φN we have∑
x∈ΛN

f(x)∇ · φN(x) =
1

2

∑
(x,y)∈EN

(f(x)− f(y))φN(x, y) . (3.17)

We have also the following relationship between sums over ordered edges and unordered

ones. Given two discrete vector fields φN , ψN we have

1

2

∑
(x,y)∈EN

φN(x, y)ψN(x, y) =
∑

{x,y}∈FN

φN(x, y)ψN(x, y) . (3.18)

Note that the right hand side in (3.18) is not ambiguously written since the term to be

summed is symmetric in the exchange of x with y.

Consider a collection of smooth weight functions Q = (Q1, . . . , Qd) : Λ → (R+)d. We

consider a corresponding discretized version as a weight function QN taking values on R+

and defined on the un-oriented edges by

QN({x, y}) := Qi

(
x+ y

2

)
, {x, y} ∈ FN , (3.19)

where i in (3.19) has to be fixed in such a way that y = x ± ei where ei is the vector of

modulus N−1 and directed as the i coordinate axis. Note that this discretization is very

different with respect to (3.16) since in that case ψN(x, y) is of order 1/N while in this case

QN({x, y}) is of order one.

The general situation that we imagine is that the weights on the edges are the dis-

cretization QN of positive smooth weight functions while the weights on the vertices are the

discretization αN of a positive smooth function.

There is a natural mathematical object to be introduced in order to describe the scaling

limit of the models. This is the empirical measure πN(η) that is a positive measure on Λ,

with finite total mass, i.e. an element ofM+(Λ), associated to a configuration of particles η

and defined by

πN(η) :=
1

Nd

∑
x∈ΛN

η(x)δx (3.20)
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where δx is the delta measure. According to this definition, given a continuous function

f : Λ→ R we have ∫
Λ

f dπN(η) =
1

Nd

∑
x∈ΛN

η(x)f(x).

We endow M+(Λ) with the weak topology. We say that a sequence of configurations η (for

each N we have a configuration of particles on ΛN , for simplicity of notation the dependence

on N is understood) is associated to a density profile ρ ∈ L1(Λ) if πN(η) → ρ(x)dx where

→ denotes the weak convergence on M+(Λ). This means that for any continuous function

f (recall that Λ is compact) we have

lim
N→+∞

∫
Λ

f dπN(η) =

∫
Λ

f(x)ρ(x)dx .

Likewise a sequence of probability measures µN on the configurations of particles NΛN is

said to be associated with a density profile ρ if for any continuous function f and for any

ε > 0 we have

lim
N→+∞

PµN

(∣∣∣∣∫
Λ

f dπN(η)−
∫

Λ

f(x)ρ(x)dx

∣∣∣∣ > ε

)
= 0 . (3.21)

3.2. Large deviations and free energy

We discuss firstly the scaling limit for the empirical measure when the particles are dis-

tributed according to a grand canonical invariant measure.

We perform the computation for a generic continuous function λ(·) recalling that the

grand canonical invariant measure is obtained setting λ(·) = cα−1(·) for a suitable c. Since

the measure is of product type we can discuss this problem following classic strategies and

obtaining not only the scaling limit but also the corresponding large deviations asymptotic

[18,23]. In this case it is indeed possible to compute exactly the scaled cumulant generating

function. Let f be a continuous function; we can compute

V ∗(f) := lim
N→+∞

1

Nd
logE

ν
λ(·)
N

[
eN

d
∫
Λ fdπN (η)

]
. (3.22)

Since the invariant measure is product, (3.22) can be developed as

V ∗(f) = lim
N→+∞

1

Nd

∑
x∈ΛN

log

[
e−λ(x)

∞∑
k=0

λ(x)kef(x)k

k!

]

= lim
N→∞

1

Nd

∑
x∈ΛN

λ(x)(ef(x) − 1)

=

∫
Λ

λ(x)(ef(x)) − 1) dx . (3.23)

– 10 –



The last equality follows by the fact that we have in the previous step the corresponding

Riemann sums.

According to general results on large deviations [23] the corresponding large deviations

rate functional, on M+(Λ) endowed with the weak convergence, is given by

V (ρ) = sup
f∈C(Λ)

[∫
Λ

f dρ− V ∗(f)

]
. (3.24)

This gives a rate functional V that is +∞ if the positive measure ρ is not absolutely contin-

uous and when ρ = ρ(x) dx we have

V (ρ) =

∫
Λ

[f(ρ(x))− f(λ(x))− f ′(λ(x)) (ρ(x)− λ(x))] dx (3.25)

where f(ρ) = ρ log ρ is the density of free energy for a system of independent particles.

Here and hereafter with call with the same name an absolutely continuous measure and the

corresponding density.

The form of the rate functional (3.25) has a structure similar to the one corresponding to a

spatially homogeneous system. The only difference is that in (3.25) λ(x) has to be substituted

by a constant corresponding to the typical density. Recall instead that λ(x) = cα−1(x) for

the inhomogeneous grand canonical measure.

The functional (3.25) plays the role of a thermodynamic potential and its probabilistic

interpretation is that roughly we have

P
µ
λ(·)
N

(πN(η) ∼ ρ(x)dx) ' e−N
dV (ρ) , (3.26)

where ∼ means closeness in the weak topology and ' means asymptotic logarithmic equiv-

alence (see [23] for a precise statement). In particular, since V (ρ) = 0 if and only if

ρ(x) = λ(x), from (3.26) we can deduce the scaling limit of the empirical measure when

the particles are distributed according to the invariant measure. We have indeed that

πN(η)→ ρ̄(x)dx = cα−1(x)dx, weakly µ
cα−1(·)
N a.e..

3.3. Dynamic scaling limit

We deduce in this section the diffusive scaling limit of many independent IRW’s on the

lattice ΛN . This means that we consider a system of particles defined by the rates (2.9).

This system has a diffusive behavior and this means that we have to multiply by N2 the

rates of jump that corresponds to accelerate by the same scale factor the time.

Recall that we consider the situation where the weights on the lattice are inherited by

discretization of C2 inhomogeneities. In particular we fix some C2 and strictly positive
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weights Q = (Q1, . . . , Qd) and a C2 and strictly positive function α. The parameters of the

models are fixed discretizing these functions as discussed before.

The proof of our result follows the general strategy outlined in [18] for gradient reversible

models with the simplifying feature that we have independent particles. We give an outline

of the proof underlying the modifications that we have to do in order to keep into account

the spatial inhomogeneity of the models.

Given νN and µN two sequences of probability measures on the configuration of particles

Ω and such that νN is absolutely continuous with respect to µN we introduce their relative

entropy defined by

H (νN |µN) := EνN

[
log

νN(η)

µN(η)

]
. (3.27)

A key mathematical object to understand the hydrodynamic behavior of the system is

the instantaneous current. This is a discrete vector field depending on configurations of

particles and representing the rate at which particles cross the bonds. If cx,y(η) is the rate at

which one particle jumps from x to y in the configuration η we have that the corresponding

instantaneous current is given by

jη(x, y) := cx,y(η)− cy,x(η) . (3.28)

For each fixed configuration η this is a discrete vector field. The intuitive interpretation of

the instantaneous current is the rate at which particles cross the bond (x, y). Let Nx,y(t)
be the number of particles that jumped from site x to site y up to time t in the stochastic

evolution. The current flown across the bond (x, y) up to time t is defined as

Jt(x, y) := Nx,y(t)−Ny,x(t) . (3.29)

This is again a discrete vector field. It is important to point out however that (3.29) depends

on the whole trajectory on the time window [0, t] of the system of particles while instead the

instantaneous current (3.28) depends just on a configuration of particles η. The importance

of the instantaneous current is based on the key observation (see for example [28] Section II

2.3) that

Jt(x, y)−
∫ t

0

jη(s)(x, y)ds (3.30)

is a martingale. Recalling (2.9) we have that the instantaneous current is given by

jη(x, y) = Q({x, y}) [α(x)η(x)− α(y)η(y)] . (3.31)

Recall also that to get a non–trivial scaling limit we will accelerate the process by a factor

of N2 so that the instantaneous current (3.31) will be multiplied by N2.

Our result is the following.
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Theorem 3.1. Consider a collection of IRW’s associated to the discretization of C2 smooth

and strictly positive weights α and Q. Consider ρ0 an element of L1(Λ, dx). Let νN be a

sequence of probability measures on the configuration of particles Ω associated to the profile

ρ0 in the sense of (3.21) and such that there exists a positive constant K and a constant λ

such that

H
(
νN |µλN

)
≤ KNd . (3.32)

When the rates in (2.8) are multiplied by N2 we have that for any t, for any continuous

function f and for any ε > 0

lim
N→+∞

PνN
(∣∣∣∣∫

Λ

f dπN(ηt)−
∫

Λ

f(x)ρ(x, t)dx

∣∣∣∣ > ε

)
= 0 , (3.33)

where ρ(x, t) is the unique weak solution of the equation{
∂tρ = ∇ ·

(
Q∇

(
αρ
))

ρ(x, 0) = ρ0(x)
(3.34)

and Q is the diagonal matrix having elements Qi,j(x) := Qi(x)δi,j.

Proof. The proof is organized into different steps.

3.4. Preliminaries

First of all we recall some basic facts about martingales and Markov processes (see for

example [18] Appendix 1 Section 5). Consider a function g(s, η) that for each configuration

η is C2 in the time variable s. We have that

Mt := g(t, ηt)− g(0, η0)−
∫ t

0

(
∂s +N2LN

)
g(s, ηs) ds (3.35)

is a martingale. Moreover we have that

Bt := M2
t −N2

∫ t

0

[
LNg2(s, ηs)− 2g(s, ηs)LNg(s, ηs)

]
ds (3.36)

is a martingale too. The N2 factor is due to the rescaling of the time of the process. Since

B0 = M0 = 0 we have mean zero martingales.

As an example consider the discrete continuity equation for the process that is

ηt(x)− η0(x) +∇ · Jt(x) = 0 .

This is true for any trajectory of the process. Using (3.30) we obtain that

ηt(x)− η0(x) +N2

∫ t

0

∇ · jη(s)(x)ds (3.37)
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is a martingale. A direct computation shows that

LNη(x) = −∇ · jη(x) , (3.38)

so that (3.37) is a martingale of the form (3.35) with g(η) = η(x). We recall that in (3.38)

the lower index N on the generator simply stress the fact that the underlying graph is the

lattice ΛN .

Consider a smooth test function f(s, x) : R+ × Λ→ R and the associated martingale

M f (t) :=

∫
Λ

f(t) dπN(ηt)−
∫

Λ

f(0) dπN(η0)

−N−d
∑
x∈ΛN

∫ t

0

ds
(
∂sf(s, x)ηs(x) + f(s, x)N2LNηs(x)

)
. (3.39)

The martingale (3.39) is a martingale of the form (3.35) corresponding to the function

g(s, η) =

∫
Λ

f(s) dπN(η) .

The corresponding martingale of the form (3.36) is given by

Bf (t) :=
(
M f (t)

)2 −
∫ t

0

Γf (s)ds (3.40)

where

Γf (t) := N2LN
(∫

Λ

f(t) dπN(ηt)

)2

− 2N2

(∫
Λ

f(t) dπN(ηt)

)
LN
(∫

Λ

f(t) dπN(ηt)

)
.

The second term (without he minus sign) on the right hand side of (3.40) is called the

quadratic variation of the martingale M f . A direct computation gives

Γf (t) =
N2

2N2d

∑
{x,y}∈FN

Q({x, y})
(
f(t, x)− f(t, y)

)2
(α(x)ηt(x) + α(y)ηt(y)) . (3.41)

This is obtained by the following elementary facts and simple algebraic manipulations. If

{x, y} 6∈ FN then

LN [η(x)η(y)] = −η(x)∇ · jη(y)− η(y)∇ · jη(x) .

We have also

LN
[
η2(x)

]
= −2η(x)∇ · jη(x) +

∑
y∈C(x)

(cx,y(η) + cy,x(η)) .

Finally when {x, y} ∈ FN we have

LN [η(x)η(y)] = −η(x)∇ · jη(y)− η(y)∇ · jη(x)− (cx,y(η) + cy,x(η)) .
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Since f, α,Q are C2, using (3.41), we have that

Γf (t) ≤ C

N2d

∑
x∈ΛN

ηt(x) (3.42)

for a suitable constant C. This is a key estimate in our computations that is similar to the

estimate that holds in the homogeneous case. This fact allows to extend the results in the

homogeneous case to the non–homogeneous one.

With a discrete integration by parts (3.17) the third term on the right hand side of (3.39)

(without the minus sign) becomes∫ t

0

ds

∫
Λ

∂sf(s) dπN(ηs) +
N2

2Nd

∑
(x,y)∈EN

∫ t

0

(f(s, y)− f(s, x)) jηs(x, y) ds . (3.43)

Using the expression (3.31) of the rates and performing another discrete integration by parts,

the second term in (3.43) becomes

1

Nd

∑
x∈ΛN

∫ t

0

α(x)ηs(x)

N2
∑
y∈C(x)

Q({x, y}) (f(s, y)− f(s, x))

 . (3.44)

Inside squared parenthesis in the above formula we have a discrete operator acting on the

test function f and not depending on configurations of particles. We need to understand

which is the corresponding continuous differential operator. Since our rates are obtained by

discretizing smooth functions we obtain with a Taylor expansion of Q that the term inside

the squared parenthesis in (3.44) can be written, up to a term O(1/N), as

d∑
i=1

[
Qi(x)N2

(
−2f(s, x) + f

(
s, x+ ei

)
+ f(s, x− ei)

)
+
N

2
∂xiQi(x)(f(s, x+ ei)− f(s, x− ei))

]
.

(3.45)

Recall that ei is the vector associated to the i Cartesian axis and having modulus 1/N . The

expression inside the squared parenthesis in (3.45) is then equal to

∇ · (Q(x)∇f(s, x))

up to a infinitesimal term uniform over x, where the divergence ad gradient operators are

the continuous ones. We obtain, therefore, that

N2−d
∑
x∈ΛN

∫ t

0

ds f(s, x)LNηs(x) =

∫ t

0

ds

∫
Λ

α∇ · (Q∇f(s)) dπN(ηs) +RN(t) , (3.46)
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where the residual term RN(t) can be bounded by

|RN(t)| ≤
Ct
∫

Λ
dπN(η0)

N

for a suitable constant C. We used the fact that the dynamics is conservative and we have∫
Λ
dπN(ηs) =

∫
Λ
dπN(η0) for any s.

Since the initial configuration is associated to an integrable profile ρ0, selecting as a test

function in the definition (3.21) (with ρ replaced by ρ0 and µN by νN) a function constantly

equal to 1, we deduce

PνN
(

sup
0≤s≤t

|RN(s)| > ε

)
≤ PνN

(∫
Λ

dπN(η) >
εN

Ct

)
N→+∞→ 0 , ∀ε > 0 . (3.47)

The general strategy of our proof is the following. Let us call PN ∈M1
(
D([0, t];M+(Λ))

)
the probability measure corresponding to the distribution of (πN(ηs))s∈[0,t] ∈ D([0, t];M+(Λ)).

We write shortly PN = PνN ·π−1
N that means that for any measurable set A ⊆ D([0, t];M+(Λ))

we have

PN(A) := PνN
(

(πN(ηs))s∈[0,t] ∈ A
)
.

We will first prove that the sequence of probability measures PN is relatively compact. By

Prohorov Theorem this is equivalent to prove that PN is tight. Then we will prove that

any possible limiting measure P∗ of any possible converging subsequence extracted from

PN is concentrated on elements of D([0, t];M+(Λ)) that are absolutely continuous for each

s ∈ [0, t] and that satisfy a suitable weak formulation of the equation (3.34). As a final step

we prove uniqueness of the weak solution to (3.34). This implies that the whole sequence

PN converges weakly to P∗ = δρid , where we call ρid the unique weak solution to (3.34). The

convergence (3.21) follows by the weak convergence of PN and the fact that ρid is an element

of D([0, t];M+(Λ)) that is weakly continuous in the time variable.

3.5. Tightness

The first step consists in proving that the sequence of probability measures PN is relatively

compact. As it is discussed in [18] chapters 4 and 5, we need to prove relative compactness

of the marginals for any fixed time and in addition we need to have a control concerning

oscillations in time.

Since the total mass is preserved by the dynamics to prove the relative compactness of

any marginal it is enough to prove it for the initial condition. Since Λ is compact we need

just to control the total mass. In particular we need to prove

lim
A→+∞

lim sup
N→+∞

PνN

(∫
Λ

dπN(η) > A

)
= 0 . (3.48)
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This is obtained by the same argument used for (3.47).

To control oscillations we use the Aldous criterion (see [18] chapter 4 Proposition 1.6).

By the arguments again in [18] chapter 4 Section 2, we need to prove that

lim
γ→0

lim sup
N→+∞

sup
τ

sup
θ≤γ

PνN
(∣∣∣∣∫

Λ

fdπN(ητ+θ)−
∫

Λ

fdπN(ητ )

∣∣∣∣ > δ

)
= 0 , (3.49)

for any δ > 0 and for any C2 test function f . In the above formula τ is varying among all

the stopping times bounded by t while θ is a real number varying in [0, γ]. We use (3.39) for

a function f that does not depend on time and we obtain that (3.49) is true if we have
lim
γ→0

lim sup
N→+∞

sup
τ

sup
θ≤γ

PνN

(∣∣∣∣∣N2−d
∑
x∈ΛN

∫ τ+θ

τ

f(x)LNηs(x) ds

∣∣∣∣∣ > δ

)
= 0 ,

lim
γ→0

lim sup
N→+∞

sup
τ

sup
θ≤γ

PνN
(∣∣M f (τ + θ)−M f (τ)

∣∣ > δ
)

= 0 .

(3.50)

The integrand in the upper condition above can be manipulated up to the form (3.44) that

according to the subsequent computations can be written up to negligible terms as

1

Nd

∑
x∈ΛN

α(x)ηs(x)∇ · (Q(x)∇f(x)) .

By the regularity of the functions involved, the integral in the upper condition in (3.50) is

bounded by

C

∫ τ+θ

τ

ds

∫
Λ

dπN(ηs) ≤ Cθ

∫
Λ

dπN(η0)

where the inequality follows by the fact that the dynamics is conservative and C is a suitable

constant. Here and hereafter we denote by the same letter C a generic constant that may

depend just on the weight and the test functions. The values of the constants in different

equations may be different. Since we have (3.48) and θ is going to zero we deduce easily the

upper condition in (3.50), with an argument like the one for (3.47).

For the lower condition in (3.50) we use Chebysev inequality and get

PνN
(∣∣M f (τ + θ)−M f (τ)

∣∣ > δ
)
≤

EνN
(
M f (τ + θ)−M f (τ)

)2

δ2
. (3.51)

Since τ is a bounded stopping time then M t(τ +θ)−M f (τ) is again a martingale (with time

parameter θ) and having quadratic variation
∫ τ+θ

τ
Γf (s)ds (see [18]). We have therefore that

the right hand side of (3.51) is equal to

EνN
(∫ τ+θ

τ
Γf (s)ds

)
δ2

. (3.52)
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Using (3.42) and the conservative property of the dynamics the last term above is bounded

by
Cθ

Ndδ2
EνN

(∫
Λ

dπN(η)

)
. (3.53)

If we prove that the expected value in the above formula is bounded then, recalling that

θ ≤ γ, γ → 0 and N → +∞, we proved also the lower condition in (3.50). This fact does not

follow by the fact that νN is associated to an integrable profile. At this point it is relevant

the entropy condition. Recall the basic entropy inequality (see for example [18] appendix 1

Section 8). Given two probability measures µ and ν and a function f we have

Eν(f) ≤ β−1
[
logEµ

(
eβf
)

+H(ν|µ)
]
, (3.54)

where β is an arbitrary parameter. We apply this inequality considering ν = νN , µ = µλN ,

β = Nd and finally f(η) =
∫

Λ
dπN(η). We obtain

EνN

(∫
Λ

dπN(η)

)
≤ 1

Nd

(
logEµλN e

∑
x∈ΛN

η(x) +H(νN |µλN)
)

≤ eλ(e−1) +K0, (3.55)

where we used the hypothesis on the relative entropy of the initial condition and the explicit

form of the generating function of a Poisson distribution. We proved therefore the validity

also of the lower condition in (3.50) and we proved therefore (3.49). The proof of tightness

is concluded.

3.6. Absolute continuity

First of all we observe that the bound on the relative entropy for the initial distribution is

still valid with respect to a slowly varying product of exponentials µ
λ(·)
N . This is obtained

using again the entropy inequality (3.54) with ν = νN , µ = µλN , β = 1 and f = log
µλN

µ
λ(·)
N

.

Since we have product measures we can perform explicitly the computations obtaining

1

Nd
H(νN |µλ(·)

N ) ≤ 1

Nd

∑
x∈ΛN

(
λ2

λ(x)
+ λ(x)− 2λ

)
+

2

Nd
H(νN |µλN) .

Since λ(·) is continuous and strictly positive the first term on the right hand side is a Riemann

sum and converges while the second one is bounded by assumption.

Considering λ(·) = cα−1(·) we have that µ
λ(·)
N is invariant for the dynamics and we have

therefore (see [18] appendix 1 Section 9) that H
(
νN(t)|µλ(·)

N

)
is decreasing in time where

νN(t) is the distribution of particles at time t. This means that for any t ≥ 0 we have

H
(
νN(t)|µλ(·)

N

)
≤ NdC for a suitable constant C. This is the basic fact on which it is
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based the argument in [18] Section 1. In particular Lemma 1.6 there, should be rewritten

considering in this case I0 coinciding with the large deviations rate functional V in (3.25).

We deduce that any possible limit point P∗ of any subsequence in PN is concentrated on

elements of D([0, t],M+) that are of the form ρ(x, s)dx for any s ∈ [0, t] and ρ(x, s) ∈ L1(Λ).

3.7. Characterization of limit points

Since the sequence of probability measures PN is relatively compact we can extract a con-

verging subsequence. For simplicity of notation we call again PN this converging subsequence

and P∗ its limit point.

Let us consider the martingale (3.39). By the Chebysev and the Doob inequality we have

PνN
(

sup
0≤s≤t

|M f (s)| > ε

)
≤

4EνN
[(
M f (t)

)2
]

ε2
(3.56)

Since Bf in (3.40) is a martingale and Bf (0) = 0 we have that EνN
[
Bf (t)

]
= 0 for any t

and consequently

EνN
[(
M f (t)

)2
]

=

∫ t

0

EνN
[
Γf (s)

]
ds .

Recalling the bounds (3.42) and (3.55) we have that the right hand side of (3.56) is bounded

by 4Ct
ε2Nd for a suitable constant C and this is converging to zero when N → +∞.

Let us call

M̃ f (t) :=

∫
Λ

f(t)dπN(ηt)−
∫

Λ

f(0)dπN(η0)−
∫ t

0

ds

∫
Λ

[∂sf(s) + α∇ · (Q∇f(s))] dπN(ηs) .

(3.57)

First we recall that by (3.46) we have

M f (t)− M̃ f (t) = RN(t)

that is uniformly negligible in probability according to (3.47).

Second we observe that the map that associate to any π(s) ∈ D([0, t],M+(Λ)) the number

sup
0≤w≤t

∣∣∣∣∫
Λ

f(w)dπ(w)−
∫

Λ

f(0)dπ(0)−
∫ w

0

ds

∫
Λ

[∂sf(s) + α∇ · (Q∇f(s))] dπ(s)

∣∣∣∣
is a continuous function in the Skorokhod topology of D([0, t],M+(Λ)).

Since by assumption we have that the subsequence PN is weakly converging to P∗, by

Portmanteau Theorem we have for any ε > 0

P∗
(

sup
0≤w≤t

∣∣∣ ∫
Λ

f(w)dπ(w)−
∫

Λ

f(0)dπ(0)−
∫ w

0

[
∂sf(s)

+

∫
Λ

α∇ ·
(
Q∇f(s)

)]
dπ(s)

∣∣∣ > ε
)
≤ lim inf

N→+∞
PνN
(

sup
0≤w≤t

∣∣∣M f (w)−RN(w)
∣∣∣ > ε

)
.

(3.58)
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By estimates (3.47) and (3.56) the right hand side in (3.58) is zero and this happens for any

ε > 0. We obtain therefore that for any limiting measure P∗ we have

P∗
(
π :

∫
Λ

f(w)dπ(w)−
∫

Λ

f(0)dπ(0)

−
∫ w

0

[
∂sf(s) +

∫
Λ

α∇ ·
(
Q∇f(s)

)]
dπ(s) = 0 , 0 ≤ w ≤ t

)
= 1 .

3.8. Uniqueness

In the above steps we proved that any possible limit point P∗ of a converging subsequence in

PN gives full measure to elements π ∈ D([0, t],M+) such that: π(0) = ρ0(x)dx (this follows

by the assumption on the initial condition), for any s ∈ [0, t] π(s) ∈ M+ is absolutely

continuous π(s) = π(s, x)dx and with total finite mass given by
∫

Λ
ρ0(x)dx (this follows by

the conservative nature of the dynamics and the initial condition), and finally for any test

function f that is C1 in time and C2 in space we have∫
Λ

f(t)dπ(t)−
∫

Λ

f(0)dρ0 −
∫ t

0

ds

∫
Λ

[∂sf(s) + α∇ · (Q∇f(s))] dπ(s) = 0 . (3.59)

Let us now show that there is a unique π(s, x)dx with π(s) ∈ L1(Λ) satisfying (3.59). If π1,

π2 are two solutions, from (3.59) we readily obtain for π = π1 − π2∫ t

0

ds

∫
Λ

{∂sf(s) + α∇ · (Q∇f(s))}dπ(s) = 0 ,

where f is the solution to the Cauchy problem

∂sf + α∇ · (Q∇f) = g, x ∈ Rd , 0 < s < t,

f(t, x) = 0, x ∈ Rd.

Here g ∈ C1([0, t]×Rd) is Λ–periodic, as well as all other functions, and vanishes near s = t.

The existence of f in the class above follows from classical results ( [20] chapter 4 Section 5).

Then we get in fact ∫ t

0

ds

∫
Λ

g(s)dπ(s) = 0 ,

for all g as above, yielding therefore π = 0.

We conclude therefore that any possible limiting measure P∗ needs necessarily to be δρid ,

Since any possible converging subsequence is converging to the same limiting measure we

have that the whole sequence PN is converging to δρid .

Any weak solution of the hydrodynamic equation is an element of D([0, t],M+(Λ)) that

it is indeed weakly continuous in t i.e. it is an element of C([0, t],M+(Λ)). Indeed by (3.59)
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we have for any C2 function f∣∣∣∣∫
Λ

fdπ(s1)−
∫

Λ

fdπ(s1)

∣∣∣∣ ≤ C|s1 − s2| ,

where the constant C depends on the weights, on the function f and on the total mass. The

same estimate for any continuous function can be deduced by approximations. The map

that associates to any π ∈ D([0, t],M+(Λ)) the real number
∫

Λ
fdπ(s), for a given time

s ∈ [0, t] and a continuous function f , is in general not continuous. We have however that

P∗ is concentrated on weakly continuous paths so that the discontinuity points of this map

have P∗ probability zero and by Portmanteau Theorem we deduce that
∫

Λ
fdπN(s) weakly

converges to the constant random variable
∫

Λ
f(x)ρ(x, s)dx where ρ(x, s) is the solution

of (3.34). Since weak convergence to a constant random variable implies convergence in

probability we deduce (3.33).

4. Heuristics and numerics

In this section we discuss an heuristic argument which explains the hydrodynamic limits

stated in Section 2. Moreover, we shall illustrate numerically the behavior of the SIRW and

EIRW stochastic models for many particles in connection with the Fokker–Planck and Fick

diffusion equations. In this section, for notation convenience, we shall not use the set ΛN as

above, but we will directly work on the graph V = {0, 1, . . . , N}.

4.1. Heuristics for the hydrodynamic limit

Consider the SIRW process on V with periodic boundary conditions for M indistinguishable

and independent particles. We show that in the limit N →∞ the evolution of the Markov

process density profile converges to that of the Fokker–Planck diffusion problem provided

the diffusive scaling is considered. Let a < b be two reals and set zx = a + (b − a)x/N

so that zx ∈ [a, b]. Consider a positive function D ∈ C2([a, b]) and set α(x) = D(zx) for

x ∈ V . Denote by ηx(t) the particle profile at time t, informally speaking, ηx(t) is the average

number of particles occupying the site x at time t. The change of the number of particles at

site x in a small interval ∆t can be computed as

ηx(t+ ∆t)− ηx(t) = −2α(x)nx(t)∆t+ α(x− 1)ηx−1(t)∆t+ α(x+ 1)ηx+1(t)∆t .

This equality can be rewritten as

ηx(t+ ∆t)− ηx(t)
∆t/N2

=
[α(x+ 1)ηx+1(t)− α(x)ηx(t)]− [α(x)ηx(t)− α(x− 1)ηx−1(t)]

1/N2
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Figure 4.1: Diffusion coefficients (4.60) (black) and (4.61) (gray).

Thus, if time is rescaled as t/N2 → t (diffusive scaling), then in the limit N →∞ the particle

density profile ηx(t)/(1/N) will tend to a function ρ(z, t) solving the equation

∂ρ

∂t
=
∂2Dρ

∂z2

which is the Fokker–Planck diffusion equation in [a, b].

We consider the EIRW process on V = {0, 1, . . . , N} with periodic conditions for M

indistinguishable and independent particles. and we use the same notation introduced above

in the SIRW process case. We let Q({x, x + 1}) = D((zx + zx+1)/2) be the rate associated

with the edge {x, x+ 1} for x ∈ V , where {N,N + 1} is identified with {N, 0}. The change

of the number of particles at site x in a small interval ∆t can be computed as

ηx(t+ ∆t)− ηx(t)

= −(Q({x− 1, x}) +Q({x, x+ 1}))ηx(t)∆t

+ (Q({x− 2, x− 1}) +Q({x− 1, x})) Q({x− 1, x})
Q({x− 2, x− 1}) +Q({x− 1, x})

ηx−1(t)∆t

+ (Q({x, x+ 1}) +Q({x+ 1, x+ 2})) Q({x+ 1, x})
Q({x, x+ 1}) +Q({x+ 1, x+ 2})

ηx+1(t)∆t

and, hence,

ηx(t+ ∆t)− ηx(t)
= −(Q({x− 1, x}) +Q({x, x+ 1}))ηx(t)∆t+Q({x− 1, x})ηx−1(t)∆t

+Q({x+ 1, x})ηx+1(t)∆t .
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This equality can be rewritten as

ηx(t+ ∆t)− ηx(t)
∆t/N2

=
Q({x, x+ 1})[ηx+1(t)− ηx(t)]−Q({x− 1, x})[ηx(t)− ηx−1(t)]

1/N2
.

Thus, if time is rescaled as t/N2 → t (diffusive scaling), then in the limit N →∞ the particle

density profile ηx(t)/(1/N) will tend to a function ρ(z, t) solving the equation

∂ρ

∂t
=

∂

∂z

(
D
∂ρ

∂z

)
which is the Fick diffusion equation.

4.2. Numerical solution of the diffusion equations

We discuss some numerical results for the periodic boundary condition Fick and Fokker–

Planck diffusion problem on [0, 1]×[0, 1] with the following choices of the diffusion coefficient:

D(z) = −1

2
cos(2πz) +

3

2
(4.60)

and

D(z) =

{
2 + tanh(50(z − 0.2)) z ≤ 0.5

2− tanh(50(z − 0.8)) z > 0.5 .
(4.61)

Note that (4.60) define a C2([0, 1]) diffusion coefficient, whereas (4.61) satisfies this condition

only approximatively.

The numerical solution of Fick and Fokker–Planck problems with diffusion coefficients

(4.60) and (4.61) are reported in Figures 4.3 and 4.2. The density field profile is reported at

times t = 0, 0.001, 0.01, 0.1. The profile corresponding to time t = 0.1 essentially coincides

with the stationary solution. The numerical solution was found using the NDSolve routine

in Mathematica. The initial condition is u0(z) = 6z(1 − z) in all simulations. We did not

use a constant profile as initial condition, since that would have been the stationary solution

of the Fick diffusion process so that no dynamics would have been observed.

Note that in the case (4.61), which mimics a discontinuous diffusion coefficient, the

Fick diffusion problem has a constant profile as stationary solution, whereas the Fokker–

Planck problem tends to profile rapidly varying in correspondence of the diffusion coefficient

“discontinuities”.

The stationary solutions of the Fick and Fokker–Planck equations can be derived explic-

itly. In the Fokker–Planck case we have that at stationarity (Du)′ must be constant. But,

for mass conservation, it must indeed be equal to zero, so that at stationarity u(z) = c/D(z)

where the constant c is such that∫ 1

0

c

D(z)
dz =

∫ 1

0

u0(z) dz (4.62)
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Figure 4.2: Solution of the periodic Fokker–Planck (left) and Fick (right) problem with diffusion

coefficient (4.60). The five curves report the solution at times t = 0, 0.001, 0.01, 0.1, 1, larger the

time higher the value at the boundaries. The two curves corresponding to times 0.1 and 1 are

coincident. The initial condition is u0(z) = 6z(1− z).
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Figure 4.3: Solution of the periodic Fokker–Planck (left) and Fick (right) problem with diffusion

coefficient (4.61). The five curves report the solution at times t = 0, 0.001, 0.01, 0.1, 1, larger the

time higher the value at the boundaries. The two curves corresponding to times 0.1 and 1 are

coincident. The initial condition is u0(z) = 6z(1− z).
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Figure 4.4: Comparison between the stationary particle profile of the Random Walk problem

multiplied times N/M and the stationary solution of the Fokker–Planck problem with diffusion

coefficient (4.60) on the left and (4.61) on the right. The black curve is the stationary solution of

the Fokker–Planck problem with initial condition u0(z) = 6z(1− z), yielding a unitary total mass.

Black and gray dots report the stationary state of the corresponding Random Walk problem with

two different initial states: a parabolic distribution proportional to the one used for the continuous

model (black) and a uniform initial distribution (gray). The Random Walk has been run on the

lattice with N = 101 with M = 10041 (black) and M = 10100 (gray).

where, we recall, u0 denotes the initial condition. In the Fick case we have that at stationarity

Du′ must be constant. But, for mass conservation, it must indeed be equal to zero, so that

the stationarity solution is the constant
∫ 1

0
u0(z) dz.

4.3. SIRW process and Fokker–Planck equation

We now compare the evolution of the SIRW process introduced in Section 2 to that of the

Fokker–Planck diffusion equation on [0, 1] × [0, 1]. The stationary profile can be discussed

explicitly, indeed, in Section 2.3 we have stated that at stationarity the average number of

particles at site x ∈ V is b/α(x) = b/D(zx) with b such that

N∑
x=0

b

D(zx)
= M (4.63)

where, we recall, M is the total number of particles. Comparing (4.62) and (4.63) we have

that, for N large, b ≈ c/N . Hence, for N large the stationary particle density profiles

(b/α(x))/(1/N) of the SIRW process is a very good approximation of the Fokker–Planck

stationary solution c/D(z).
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Figure 4.5: Comparison between the particle profile of the Random Walk problem multiplied times

N/M and the solution of the Fokker–Planck problem with diffusion coefficient (4.60) on the left

and (4.61) on the right. Black, gray, and light gray curves and dots refer respectively to times

0.003005, 0.009221, 0.022273 (left) and 0.001967, 0.006207, 0.015688 (right). Solid curves are the

solution of the Fokker–Planck problem with initial condition u0(z) = 6z(1− z), yielding a unitary

total mass. Black and gray dots report the states of the corresponding Random Walk problem

with the same initial condition. The Random Walk has been run on the lattice with N = 101 and

M = 10041.

For the time dependent results we simulate the stochastic model as follows: we let zx =

x/N and recall α(x) = D(zx) for x ∈ V . Recalling ηx(t) is the number of particles at site

x and time t, we extract an exponential random time τ with parameter
∑N

x=0 2α(x)nx(t)

and set the time equal to t + τ . We associate the probability 2α(y)ny(t)/
∑N

x=0 2α(x)nx(t)

to each site y ∈ V and select at random a site according to such a distribution. We move a

particle from the selected site to one of the two adjacent sites with probability 1/2.

To compute the stationary particle profile we let the system evolve for 103 full sweeps (in

one sweep M particles are moved). Then, we average the value of the number of particles

occupying each site of the lattice by considering one configuration each 10 sweeps. The

numerical experiment is stopped after about 105 more sweeps.

In Figure 4.4 we compare the stationary solution of the Fokker–Planck diffusion processes

with the stationary particle profile of the Random Walk. The stationary particle profile is

divided times the spacing 1/N to get the stationary particle density profile and is divided

times M since the Fokker–Planck diffusion equation has been solved with an initial state

having total mass equal to one. The match is perfect.

In Figure 4.5 we compare the evolution of the Fokker–Planck diffusion processes with the

Random Walk particle profile. As for the stationary state, the Random Walk particle profile
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has been divided times the spacing 1/N to get the particle density profile and divided times

M since the Fokker–Planck diffusion equation has been solved with an initial state having

total mass equal to one. Moreover, the time measured in the stochastic evolution has been

divided times N2. Averages have been computed by considering 50 independent realizations

of the process and averaging the particle distribution at equal times. The match is striking.

4.4. EIRW process and Fick diffusion equation

We now compare the evolution of the EIRW process introduced in Section 2 to that of the

Fick diffusion equation on [0, 1] × [0, 1]. In this case the stationary state is trivial, indeed,

we compute the stationary particle distribution profile as outlined for the SIRW case and we

find that it is constant with very high precision.

For the time dependent results we simulate the stochastic model as follows: we let zx =

x/N and recall Q({x, x+ 1}) = D((zx + zx+1)/2) for x ∈ V , where {N,N + 1} is identified

with {N, 0}. Recalling ηx(t) is the number of particles at site x and time t, we extract

an exponential random time τ with parameter
∑N

x=0(Q({x − 1, x}) + Q({x, x + 1}))ηx(t)
and set the time equal to t + τ . We associate the probability (Q({y − 1, y}) + Q({y, y +

1}))ηy(t)/
∑N

x=0(Q({x− 1, x}) +Q({x, x+ 1}))ηx(t) to each site y ∈ V and select at random

a site according to such a distribution. We move a particle from the selected site, say y, to

the left with probability Q({y− 1, y})/(Q({y− 1, y}) +Q({y, y+ 1})) and to the right with

probability Q({y, y + 1})/(Q({y − 1, y}) +Q({y, y + 1})).
In Figure 4.6 we compare the evolution of the Fick diffusion processes with the Random

Walk particle profile. As for the stationary state, the Random Walk particle profile has been

divided times the spacing 1/N to get the particle density profile and divided times M since

the Fick diffusion equation has been solved with an initial state having total mass equal to

one. Moreover, the time measured in the stochastic evolution has been divided times N2.

Averages have been computed by considering 50 independent realizations of the process and

averaging the particle distribution at equal times. The match is striking.

5. Miscellany

In this section we collect some interesting remarks on the behavior of the system that we

have studied above.

5.1. Einstein relation

A very general modelization of the presence of an external field is obtained perturbing the

rates as follows. Let φ : Λ→ Rd be a smooth vector field that acts on particles. The action

of the field is encoded in the perturbed transition rates that are defined as

cφx,y(η) := cx,y(η)eφN (x,y) , (5.64)
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Figure 4.6: Comparison between the particle profile of the Random Walk problem multiplied

times N/M and the solution of the Fick problem with diffusion coefficient (4.60) on the left

and (4.61) on the right. Black, gray, and light gray curves and dots refer respectively to times

0.002991, 0.009102, 0.021696 (left) and 0.001916, 0.005856, 0.014081 (right). Solid curves are the

solution of the Fick problem with initial condition u0(z) = 6z(1− z), yielding a unitary total mass.

Black and gray dots report the states of the corresponding Random Walk problem with the same

initial condition. The Random Walk has been run on the lattice with N = 101 and M = 10041.

where φN is the discretization (3.16) of the vector field. Rates that correspond to movements

of the particles with an associate positive work of the field are enhanced while instead rates

that correspond to movements of the particles with an associate negative work of the field

are decreased.

Let us first discuss the influence of an external field in the case of spatially homogeneous

models [2]. The hydrodynamic scaling limit of diffusive particle systems under the action of

a weakly asymmetric external field is associated to equations of the form

∂tρ = ∇ · (D(ρ)∇ρ)− 2∇ · (M(ρ)φ) . (5.65)

The symmetric and positive definite matrix D is the diffusion matrix while the symmetric

and positive definite matrix M is the mobility matrix. For independent particles we have

that the diffusion matrix coincides with the identity matrix D = I while instead M = ρI.
In the homogeneous case a relevant thermodynamic relationship is the so called Einstein

relation between the diffusion matrix and the mobility given by

D(ρ) = M(ρ)f ′′(ρ) , (5.66)

that says that the two matrices D and M are proportional and the proportionality factor is
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the second derivative of the density of free energy f (that is f(ρ) = ρ log ρ in the independent

particles case as discussed after (3.25)).

Let us now move to the spatial inhomogeneous case. An interesting way of writing the

hydrodynamic equation (3.34) is obtained computing the gradient appearing there, getting

∂tρ = ∇ · (αQ∇ρ) +∇ · (αρQ∇ logα) .

It is very natural to interpret this equation introducing the space dependent diffusion matrix

D(x, ρ) = α(x)Q(x) and the space dependent mobility matrix M(x, ρ) = α(x)ρ(x)Q(x). Note

that they satisfy the Einstein relation for each x ∈ Λ. Indeed recalling that the density of

free energy is f(ρ) = ρ log ρ for independent particles we have

D(x, ρ) = M(x, ρ)f ′′(ρ) , ∀x ∈ Λ ,∀ρ .

With this identification we have that the inhomogeneity determines space dependent diffusion

and mobility matrices. The form of these matrices depend both on the weights on the edges

and on the weights on the vertices. The spatial inhomogeneity of the material generates

however also an external field that depends just on the site inhomogeneity. This external

field is exactly −(1/2)∇ logα.

We show that this interpretation is correct. This is done switching on a weak external

field and showing that the hydrodynamic equation is modified with the appearance of a

term proportional to the mobility matrix M(x, ρ) like in the homogeneous case (5.65). In

presence of an external field the rates are modified according to (5.64) and correspondingly

the instantaneous current becomes

jφη (x, y) = cx,y(η)eφN (x,y) − cy,x(η)eφN (y,x) . (5.67)

Recall that the values of φN are infinitesimal (3.16) so that we have

eφN (x,y) = 1 + φN(x, y) + o(1/N) .

The instantaneous current is therefore

jφη (x, y) = jη(x, y) + (cx,y(η) + cy,x(η))φN(x, y) + o(1/N) . (5.68)

Substituting (5.68) to jη in the second term in (3.43) and ignoring negligible terms we obtain

the extra factor

1

Nd

∑
x∈ΛN

∫ t

0

ds α(x)ηs(x)
[
N2

∑
y∈C(x)

Q({x, y})(f(s, y)− f(s, x))φN(x, y)
]
.
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With computations similar to the ones in the proof of Theorem 3.1 we have that the term

inside squared parenthesis in the above formulas coincides up to uniform infinitesimal terms

with

2Q(x)φ(x) · ∇f(x, s) .

This means that the hydrodynamic equation in presence of a weak external field becomes

∂tρ = ∇ · (D(x, ρ)∇ρ)− 2∇ ·
(
M(x, ρ)

(
φ− 1

2
∇ logα

))
.

We deduce that M(x, ρ) plays the role of the mobility matrix and we obtain a version of the

Einstein relation in the non–homogeneous framework.

5.2. Alternative proof

Since we are considering a system of independent particles we can obtain an alternative

proof under some special initial conditions. In particular we consider the case when the

initial condition is obtained with identical particles distributed independently. Note that

Theorem 3.1 covers much more general initial conditions. In this special case, the collective

behavior of the occupation variables can be deduced by the scaling behavior of one single

particle. We could however not find a specific reference for the scaling limit of one single

IRW. The following is a sketch of the general argument that can be used once the scaling

limit of one single IRW is established.

Consider the initial condition ρ0 in the hydrodynamic equation (3.34) and define the

corresponding probability measure ρ̂0(y) = ρ0(y)/
∫

Λ
ρ0(x)dx. We consider a sequence of

probability measures pN on ΛN such that∑
x∈ΛN

pN(x)δx → ρ̂0(y)dy ,

where the convergence is the weak one.

A simple generalization of the law of large numbers says the following. Suppose that for

each natural number N we have a random variable Y N
1 taking values on a Polish space A

and such that the law of Y N
1 is converging weakly to γ ∈ M1(A) when N diverges. We

called M1(A) the set of probability measures on A with the Borel sigma algebra. For each

N let us consider (Y N
i )i∈N be a collection of i.i.d. random variables each of them having the

same distribution of Y N
1 . Then we have that

1

N

N∑
i=1

δY Ni → γ (5.69)
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where the convergence is the weak one in probability (indeed even a.e.). More precisely the

above statement means that for any continuous and bounded function f : A → R we have

lim
N→+∞

P

(∣∣∣∣∣
∑N

i=1 f(Y N
i )

N
−
∫
A
dγ(a)f(a)

∣∣∣∣∣ > ε

)
= 0 , ∀ ε > 0 .

We consider at time zero
(∫

Λ
ρ0(x)dx

)
Nd particles independently distributed and each of

them distributed on ΛN according to pN . Let XN
i (0) be the random position in ΛN at time

0 of the particle number i. We consider D([0, t]; Λ) the Skorokhod space of trajectories. The

trajectory of the particle number i is denoted by XN
i (·) := (XN

i (s))s∈[0,t]. This is a random

variable taking values on D([0, t]; Λ). We consider each particle evolving with an IRW with

rates of jump accelerated by a factor of N2.

We assume in this argument that the law of the trajectory of one single particle converges

to the law Pρ̂0 of a diffusion process (see next Section 5.3 ) with initial distribution ρ̂0 and

Kolmogorov evolution equation for the distribution given by the hydrodynamic equation

(3.34) (with initial condition ρ̂0). This is an assumption because we could not find a precise

reference for this result.

We have therefore the convergence (5.69) that in this specific case implies that a.e., and

therefore in probability, we have

γN :=
1(∫

Λ
ρ0(x)dx

)
Nd

(
∫
Λ ρ0(x)dx)Nd∑

i=1

δXN
i (·)

N→+∞→ Pρ̂0 .

Consider a continuous and bounded function f : Λ→ R and the functional F : D([0, t],Λ)→
R defined by F (X(·)) := f(X(s)) where s ∈ [0, t] is a fixed time. The functional F is

not continuous with respect to the Skorokhod topology. We have however that under the

probability measure Pρ̂0 the set of discontinuous points of this functional has probability

zero. This is because the probability Pρ̂0 is concentrated on continuous paths. We can

therefore deduce by Portmanteau Theorem that a.e., and therefore in probability, we have

the convergence

EγN (F )
N→+∞→ Eρ̂0 (F ) =

∫
Λ

ρ̂(x, s)f(x) dx (5.70)

where ρ̂(s) is the solution of (3.34) with initial condition ρ̂0. We can deduce the hydrody-

namic behavior of the model observing that

∫
Λ

fdπN(ηs) =
1

Nd

(
∫
Λ ρ0(x)dx)Nd∑

i=1

f(XN
i (s)) =

(∫
Λ

ρ0(x)dx

)
EγN (F ) .
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5.3. Reversible diffusions

As we observed in the previous section, in the case of independent particles the hydrodynamic

equation describing the collective behavior of several particles is linear and coincides with

the equation of the evolution of the probability distribution of one single particle. Since the

scaling limit of one single particle is a diffusion process and since our discrete models are

reversible it is natural to compare the class of hydrodynamic equations that we obtained

with the possible Fokker Plank equations associated to reversible diffusions.

At the microscopic level we obtained that the reversibility condition has a geometric

interpretation. We have indeed that the models are reversible if and only if the rates are

chosen according to some weights associated to the edges and the vertices of the graph (see

Lemma 2.1). In the case of continuous diffusion process we have a similar geometric char-

acterization of reversibility, indeed reversible diffusions can be parameterized by a positive

function and a symmetric and positive definite matrix, that can be interpreted as the metric

tensor. These are the continuous counterparts of the discrete weights on the graph.

We refer to [15,17] for the basic facts about diffusion processes. For simplicity we consider

the processes on Rd instead that on the torus. Consider a diffusion process of the form

dXt = A(Xt)dt+ B(Xt)dWt (5.71)

where A = (A1(x), . . . , Ad(x)) is a smooth vector field, B(x) is a d × d matrix smoothly

depending on x and W = (W1, . . . .Wd) is a d dimensional standard Brownian motion. The

corresponding Fokker Plank equation describing the evolution of the probability distribution

is given by

∂tρ = ∇ · [−ρA+ C] (5.72)

where

Ci =
1

2

d∑
j=1

∂xj

(
ρ
(
BBT

)
i,j

)
, i = 1, . . . , d .

Note that while in the equation (5.71) appears the matrix B, the evolution of the probability

distribution depends just on the symmetric matrix BBT . The condition of reversibility

(see [15, 17]) is that the vector

Fi :=
d∑

k=1

(BBT )−1
i,k

[
2Ak −

∑
j

∂xj(BBT )k,j

]
, i = 1, . . . , d , (5.73)

is of gradient type. In this case, under additional confinements assumptions, the stationary

solution of the Fokker Planck equation is

ρ̄(x) =
e−ψ(x)

Z
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where F = −∇ψ. We have therefore that all the reversible diffusion processes can be

parameterized in terms of the function ψ and the symmetric and positive definite matrix

BBT . This is because you can fix arbitrarily these two objects and then A is completely

determined by (5.73). If we use instead the positive function α related to ψ by ψ = logα

and the symmetric positive definite matrix Q(x) = BBT (x)α−1(x)/2 we have that the Fokker

Plank equation (5.72) is given by

∂tρ = ∇ · (Q∇ (αρ)) (5.74)

that is exactly of the type of our hydrodynamic equation (3.34). It is important to note

however that in (3.34) the matrix Q has to be diagonal while instead this is not the case

in (5.74). As we will discuss in the next section this is due to the special lattice that we

are considering in Theorem 3.1. We can obtain non diagonal matrices considering different

lattices.

5.4. Different lattices

Here we show that we obtained just equations with diagonal matrices Q since we are consid-

ering a squared lattice. We briefly discuss how to handle different situations obtaining non

diagonal matrices Q. From the proof of Theorem (3.1) we known that the basic computation

to identify the limiting equation is to approximate up to uniformly infinitesimal corrections

the term inside square parenthesis in (3.44) that is

N2
∑
y∈C(x)

Q({x, y}) (f(s, x)− f(s, y)) . (5.75)

The generalized framework that we consider now is a lattice having vertices coinciding

again with ΛN but having more edges than the usual square lattice. This corresponds to

allowing more possible jumps to the particles. The graph on which the particles are evolving

is obtained as follows. We start with Zd with more edges with respect to the usual ones that

are connecting just the minimal distance vertices. The collection of directed edges exiting

form any vertex x ∈ Zd are of the form (x, x+ ṽi) where ṽi for i = 1, . . . , k is a collection of

vectors such that x+ ṽi ∈ Zd. Since we are always requiring that an un-oriented edge can be

crossed on both directions then k has to be necessarily an even number and for any vector

ṽi there should be a corresponding label j such that ṽj = −ṽi so that both (x, x + ṽi) and

(x + ṽi, x) are elements of the directed edges EN . The lattice that we consider is obtained

scaling by a factor of N−1 this lattice. In particular we call vi := N−1ṽi.

We have therefore that on each lattice site x ∈ ΛN there are k different edges incident

that correspond to k possible jumps of one particle from x to x + vj, j = 1, . . . , k. In the

case of the square lattice we had k = 2d and each vj is equal to ±ei for some i. Note that
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we have now |C(x)| = k. More general frameworks are of course possible but for simplicity

we restrict to this generalization.

We need to give weights to the vertices and the edges of the lattice suitably discretizing

smooth objects. The weights on the vertices are associated as before computing a smooth

function α on the corresponding point. For the edges we need to generalize the construction

done before.

We consider a smooth metrics Q(x) that is a symmetric and positive definite d×d matrix

depending in a regular way (C2 for example) on the continuous variable x ∈ Λ. We associate

the weight to an edge of the form {x, x+ vi} as

Q({x, x+ vi}) := ṽi · Q(x+ vi/2)ṽi =: Qi(x+ vi/2) . (5.76)

The appearance of the ṽi vectors above is due to the fact that we have |vi| ∼ 1/N (since

the vectors without tilde are comparable with the mesh of the lattice) and we want that the

weights to be associated to the edges are not infinitesimal in N but are of order one. The

last equality in (5.76) is just the definition of a shorthand for the weights. With a suitable

Taylor expansion we get that (5.75) coincides up to uniformly infinitesimal terms with

N2

k∑
i=1

(
Qi(x) +∇Qi(x) · v

i

2

)(
∇f(x) · vi +

1

2
vi ·H(x)vi

)
, (5.77)

where H(x) is the Hessian matrix at x of the function f having elements (H(x))l,m =

∂xl∂xmf(x).

Recall that k is an even number ad if vi is the vector associated to a possible jump then

also −vi is a vector associated to a possible jump. Due to this, we have that the leading

term in the product in (5.77) that is

N2

k∑
i=1

Qi(x)∇f(x) · vi (5.78)

is identically zero. This is because we can pair the edges exiting from x in such a way that

if the label i is paired to the label j then vi = −vj and consequently Qi(x) = Qj(x). Of the

remaining three terms obtained when we develop the product in (5.77) we have that one is

infinitesimal. The two relevant ones that survive are

1

2

k∑
i=1

Qi(x)Nvi ·H(x)Nvi +
1

2

k∑
i=1

(
∇Qi(x) ·Nvi

) (
∇f(x) ·Nvi

)
.

The above expression coincides up to uniform infinitesimal terms with

∇ · (Q(x)∇f(x))
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where the matrix Q is defined as

Ql,m(x) =
1

2

k∑
i=1

Qi(x)ṽil ṽ
i
m . (5.79)

With the same arguments of the proof of Theorem 3.1, but using this expansion, we can

prove that the limiting equation is again of the form (3.34) but the matrix Q is given by

(5.79) that in general is non–diagonal.

5.5. Uphill currents

A current is said to move “uphill” when particles migrate up the gradient, namely towards

regions of higher concentration, thus violating the basic tenets of Fick’s law of diffusion.

The onset of such uphill currents can be traced back to the action of an external field, to

the presence of mutual interactions in a multi-component system or, for single-component

systems, to a phase transition, and was recently investigated in a variety of lattice gas models,

cf. Refs [5, 9–12].

We look, here, at the case where two inhomogeneous diffusion processes take place in two

intervals of length L > 0, for two concentration functions v, u, being connected by conditions

of equality of concentration and of flux at the two endpoints. The latter is meant in the sense

that the outflux of v equals the influx of u. However, v solves Fick’s equation, while u solves

a Fokker-Planck type equation. The diffusivities are assumed to be piecewise constant.

We consider the stationary case, see also Refs. for a more general discussion about the

observation of uphill currents.

Thus the problem is, in a distributional formulation,

−(Kvx)x = 0 , 0 < x < L , (5.80)

−(Du)xx = 0 , 0 < x < L , (5.81)

v(0) = u(0) , (5.82)

v(L) = u(L) , (5.83)

Kvx(0) = −Dux(0) , (5.84)

Kvx(L) = −Dux(L) . (5.85)

Here

K(x) = K1χ(0,b)(x) +K2χ(b,L)(x) , (5.86)

and

D(x) = D1χ(0,a)(x) +D2χ(a,L)(x) , (5.87)

for given positive constants Ki, Di, and for b, a ∈ (0, L).
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We assume here D1 6= D2; see also Remark 1.

We refer to the following weak formulation of this problem: find v ∈ H1(0, L), u ∈
L∞(0, L) such that Du ∈ H1(0, L) and∫ L

0

{Kvxζx + (Du)xηx}dx = 0 , (5.88)

for all ζ, η ∈ C1([0, L]) such that ζ(0) = η(0) and ζ(L) = η(L). Here H1(0, L) is the standard

space of square integrable functions with square integrable Sobolev derivative, which is known

to be embedded in C([0, L]). Then, also using our assumptions on D, we impose (5.82) and

(5.83) in a classical pointwise sense.

It follows from straightforward reasoning and from (5.88) that Kvx and (Du)x are con-

stant in (0, L). Thus invoking the definitions of K and D, we recover in the classical sense

−vxx = 0 , in (0, b) ∪ (b, L), (5.89)

v(b−) = v(b+) , (5.90)

K1vx(b−) = K2vx(b+) , (5.91)

and

−uxx = 0 , in (0, a) ∪ (a, L), (5.92)

D1u(a−) = D2u(a+) , (5.93)

D1ux(a−) = D2ux(a+) . (5.94)

Note that more generally one should write e.g., (5.94) as

(D1u)x(a−) = (D2u)x(a+) .

but this is not relevant under our assumption of piecewise constant D. A similar remark

applies to (5.84), (5.85), which indeed are valid in a pointwise sense.

Clearly problem (5.80)–(5.85) is invariant for multiplication by a constant, and always

has the null solution. Therefore for the sake of precision we’ll impose also the following

normalization condition

v(0) = 1 . (5.95)

The formulation (5.89)–(5.91) yields immediately

v(x) =


vx(b−)(x− b) + v(b−) , 0 < x < b ,

K1

K2

vx(b−)(x− b) + v(b−) , b < x < L .
(5.96)
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Instead the formulation (5.92)–(5.94) implies

u(x) =


ux(a−)(x− a) + u(a−) , 0 < x < a ,

D1

D2

ux(a−)(x− a) +
D1

D2

u(a−) , a < x < L .
(5.97)

The normalization condition and (5.82) lead to

−vx(b−)b+ v(b−) = 1 , (5.98)

−ux(a−)a+ u(a−) = 1 , (5.99)

while (5.83) gives

K1

K2

vx(b−)(L− b) + v(b−) =
D1

D2

ux(a−)(L− a) +
D1

D2

u(a−) . (5.100)

Finally both (5.84) and (5.85) are equivalent to

K1vx(b−) = −D1ux(a−) . (5.101)

Thus we have a linear system (5.98)–(5.101) of 4 equations in the 4 unknowns v(b−), vx(b−),

u(a−), ux(a−).

Its solution is

v(b−) =
(D1K2 −D2K1)b+K1(D2 +K2)L

D2(K2 −K1)b+K1(D2 +K2)L
= 1 +

K2(D1 −D2)b

D2(K2 −K1)b+K1(D2 +K2)L
,

vx(b−) =
K2(D1 −D2)

D2(K2 −K1)b+K1(D2 +K2)L
,

u(a−) = 1 +
1

D1

K1K2(D2 −D1)a

D2(K2 −K1)b+K1(D2 +K2)L
,

ux(a−) =
1

D1

K1K2(D2 −D1)

D2(K2 −K1)b+K1(D2 +K2)L
,

provided

D2(K2 −K1)b+K1(D2 +K2)L 6= 0 .

But

D2(K2 −K1)b+K1(D2 +K2)L = D2K2b+K1K2L+K1D2(L− b) > 0 ,

since L > b.

We remark that each one of vx(x), x 6= b, and ux(x), x 6= a, has constant sign; the

two signs always differ. This remark does not imply that u is monotonic, in view of its

discontinuous character.
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Figure 5.7: Functions v (continuous line) and u (dashed line) for L = 4, b = a = 2, K1 = 1, and

K2 = 2 with D1 = 1 and D2 = 2 on the left and D1 = 2 and D2 = 1 on the right.

We may also compute

v(L) = u(L) = 1 + (D1 −D2)
(K2 −K1)b+K1L

D2(K2 −K1)b+K1(D2 +K2)L
> 0 ,

where the last inequality follows from elementary reasoning.

Remark 1. If D1 = D2 one can see easily that the solution is flat, that is v(x) = u(x) = 1

for all x ∈ (0, L). This is a special case of next Remark 2.

Instead the relative values of K1, K2 do not seem to play any special role.

Remark 2. If one assumes for u a Ficksian equation similar to the one solved by v, it follows

immediately that v(x) = u(x) = 1 for all x ∈ (0, L): indeed since both v and u are continuous

and piecewise linear, and then monotonic, they share their minimum and maximum values,

at the endpoints. But there their fluxes are opposite in sign, and must therefore actually

vanish, yielding the claim.

Remark 3. If we replace the conditions (5.82), (5.83) with the partition type balances

v(0) = Du(0) , (5.102)

v(L) = Du(L) , (5.103)

it can be immediately seen that setting ũ = Du we obtain for v, ũ a problem with two

equations of Fick type; more exactly we are in the case of Remark 2 with the diffusivity in

the equation for ũ being identically 1. Then we have

v(x) = 1 , D(x)u(x) = 1 , x ∈ (0, L) . (5.104)
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On the other hand, conditions (5.102) are comparable to (5.93); that is they are the conditions

we would expect if the whole system was subject to the equation

−(K(x)(D(x)U(x))′)′ = 0 ,

with the suitable choices of K, D.
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[12] M. Colangeli, C. Giardinà, C. Giberti and C. Vernia, Non-equilibrium 2D Ising model

with stationary uphill diffusion. Phys. Rev. E 97, 030103(R) (2018).

[13] R. Collins, S.R. Carson, J.A.D. Matthew, Diffusion equation for one–dimensional un-

biased hopping. American Journal od Physics 65, 230 (1997).

[14] A. De Masi, E. Presutti, Mathematical Methods for Hydrodynamic Limits. Springer–

Verlag, Berlin Heidelberg (1991).

[15] C. Gardiner, Stochastic methods. Springer–Verlag, Berlin Heidelberg, 2009.

[16] K. Ghosh, K.A. Dill, M.M. Inamdar, E. Seitaridou, R. Phillips, Teaching the principles

of statistical dynamics. American Journal of Physics 74, 123 (2006).

[17] N.G. van Kampen, Stochastic processes in physics and chemistry. North–Holland, 1981.

[18] C. Kipnis, C. Landim, Scaling Limits of Interacting Particle Systems. Springer–Verlag

Berlin Heidelberg, 1999.
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