
635

0022-4715/02/0500-0635/0 © 2002 Plenum Publishing Corporation

Journal of Statistical Physics, Vol. 107, Nos. 3/4, May 2002 (© 2002)

Macroscopic Fluctuation Theory for Stationary
Non-Equilibrium States

L. Bertini,1 A. De Sole,2 D. Gabrielli,3 G. Jona-Lasinio,4 and C. Landim5
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We formulate a dynamical fluctuation theory for stationary non-equilibrium
states (SNS) which is tested explicitly in stochastic models of interacting par-
ticles. In our theory a crucial role is played by the time reversed dynamics.
Within this theory we derive the following results: the modification of the
Onsager–Machlup theory in the SNS; a general Hamilton–Jacobi equation for
the macroscopic entropy; a non-equilibrium, nonlinear fluctuation dissipation
relation valid for a wide class of systems; an H theorem for the entropy. We
discuss in detail two models of stochastic boundary driven lattice gases: the zero
range and the simple exclusion processes. In the first model the invariant
measure is explicitly known and we verify the predictions of the general theory.
For the one dimensional simple exclusion process, as recently shown by Derrida,
Lebowitz, and Speer, it is possible to express the macroscopic entropy in terms
of the solution of a nonlinear ordinary differential equation; by using the
Hamilton–Jacobi equation, we obtain a logically independent derivation of this
result.

KEY WORDS: Stationary non-equilibrium states; large deviations; boundary
driven lattice gases.



1. INTRODUCTION

The Boltzmann–Einstein theory of equilibrium thermodynamic fluctua-
tions, as described for example in Landau–Lifshitz, (1) states that the prob-
ability for a fluctuation from equilibrium in a macroscopic region of
volume V is proportional to

exp{VDS/k}

where DS is the variation of entropy density calculated along a reversible
transformation creating the fluctuation and k is the Boltzmann constant.
This theory is well established and has received a rigorous mathematical
formulation in classical equilibrium statistical mechanics via the so called
large deviation theory. (2) The rigorous study of large deviations has been
extended to hydrodynamic evolutions of stochastic interacting particle
systems. (3) In a dynamical setting one may ask new questions, for example
what is the most probable trajectory followed by the system in the sponta-
neous emergence of a fluctuation or in its relaxation to equilibrium. The
Onsager–Machlup theory (4) gives the following answer under the assump-
tion of time reversibility. In the situation of a linear macroscopic equation,
that is, close to equilibrium, the most probable emergence and relaxation
trajectories are one the time reversal of the other. Developing the methods
of ref. 3, this theory has been extended to nonlinear hydrodynamic regimes. (5)

In the present paper we formulate a general theory of large deviations
for irreversible processes, i.e., when detailed balance does not hold. This
question was previously addressed in ref. 6 for finite dimensional diffusions
and in ref. 7 for lattice gases. Natural examples are boundary driven sta-
tionary non-equilibrium states (SNS), e.g., a thermodynamic system in
contact with two reservoirs. In such a situation there is a flow of matter or
other physical property like heat, charge,... through the system. As we shall
see, the spontaneous fluctuations of the process are described by the time
reversed dynamics, which is defined below.
Spontaneous fluctuations, including Onsager–Machlup symmetry, have

been observed in stochastically perturbed reversible electronic devices. (8) In
their work, these authors study also nonreversible systems and observe
violation of Onsager–Machlup symmetry; in the present work we shall
connect such violations to the time reversed dynamics.

We are interested in many body systems in the limit of infinitely many
degrees of freedom. The basic assumptions of our theory are the following.

(1) The microscopic evolution is given by a Markov process Xt
which represents the configuration of the system at time t. This hypothesis
probably is not so restrictive because also the Hamiltonian case discussed
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in ref. 9 in the end is reduced to the analysis of a Markov process. The
stationary non-equilibrium state (SNS) is described by a stationary, i.e.,
invariant with respect to time shifts, probability distribution Pst over the
trajectories of Xt.

(2) The system admits also a macroscopic description in terms of
density fields which are the local thermodynamic variables. For simplicity
of notation we assume there is only one thermodynamic variable r. The
evolution of the field r=r(t, u) where u is the macroscopic space coordi-
nate, is given by a diffusion type hydrodynamical equation of the form

“tr=1
2N · (D(r) Nr)=1

2 C
1 [ i, j [ d

“ui (Di, j(r) “ujr)=D(r) (1.1)

The interaction with the reservoirs appears as boundary conditions to be
imposed on solutions of (1.1). We assume that there exists a unique sta-
tionary solution r̄ of (1.1), i.e., a profile r̄(u), which satisfies the appropri-
ate boundary conditions such that D(r̄)=0. This holds if the diffusion
matrix Di, j(r) in (1.1) is strictly elliptic, namely there exists a constant c > 0
such that D(r) \ c1 (in matrix sense).
This equation derive from the underlying microscopic dynamics

through an appropriate scaling limit. The hydrodynamic equation (1.1)
represents a law of large numbers with respect to the probability measure
Pst conditioned on an initial state X0. The initial conditions for (1.1) is
determined by X0. Of course many microscopic configurations give rise to
the same value of r(0, u). In general r=r(t, u) is an appropriate limit of a
rN(Xt) as the number N of degrees of freedom diverges.

(3) Let us denote by h the time inversion operator defined by
hXt=X−t. The probability measure P

g
st describing the evolution of the time

reversed process Xg
t is given by the composition of Pst and h−1 that is

Pg
st(X

g
t=ft, t ¥ [t1, t2])=Pst(Xt=f−t, t ¥ [−t2, −t1]) (1.2)

Let L be the generator of the microscopic dynamics. We remind that L
induces the evolution of observables (functions on the configuration space)
according to the equation “tEX0[f(Xt)]=EX0[(Lf)(Xt)], where EX0
stands for the expectation with respect to Pst conditioned on the initial
state X0, see, e.g., ref. 10, Chap. X. The time reversed dynamics is gener-
ated by the adjoint Lg of L with respect to the invariant measure m, that is

Em[fLg]=Em[(Lgf) g] (1.3)
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The measure m, which is the same for both processes, is a distribution over
the configurations of the system and formally satisfies mL=0. The expec-
tation with respect to m is denoted by Em and f, g are observables. We note
that the probability Pst, and therefore P

g
st, depends on the invariant

measure m. The finite dimensional distributions of Pst are in fact given by

Pst(Xt1=ft1 ,..., Xtn=ftn )=m(ft1 ) pt2 − t1 (ft1 Q ft2 ) · · · ptn − tn−1 (ftn−1 Q ftn )
(1.4)

where pt(f1 Q f2) is the transition probability. According to (1.2) the finite
dimensional distributions of Pg

st are

Pg
st(X

g
t1
=ft1 ,..., X

g
tn=ftn )

=m(ft1 ) p
g
t2 − t1
(ft1 Q ft2 ) · · · p

g
tn − tn−1 (ftn−1 Q ftn )

=m(ftn ) ptn − tn−1 (ftn Q ftn−1 ) · · · pt2 − t1 (ft2 Q ft1 ) (1.5)

in particular the transition probabilities pt(f1 Q f2) and p
g
t (f1 Q f2) are

related by

m(f1) pt(f1 Q f2)=m(f2) p
g
t (f2 Q f1) (1.6)

which reduces to the well known detailed balance condition if pt(f1 Q f2)
=pgt (f1 Q f2).

We require that also the evolution generated by Lg admits a hydro-
dynamic description, that we call the adjoint hydrodynamics, which, how-
ever, is not necessarily of the same form as (1.1). In fact we shall discuss a
model in which the adjoint hydrodynamics is nonlocal in space.
In order to avoid confusion we emphasize that what is usually called

an equilibrium state, as distinguished from a SNS, corresponds to the
special case Lg=L, i.e., the detailed balance principle holds. In such a case
Pst is invariant under time reversal and the two hydrodynamics coincide.

(4) The stationary measure Pst admits a principle of large deviations
describing the fluctuations of the thermodynamic variable appearing in the
hydrodynamic equation. This means the following. The probability that in
a macroscopic volume V containing N particles the evolution of the vari-
able rN deviates from the solution of the hydrodynamic equation and is
close to some trajectory r̂(t), is exponentially small and of the form

Pst(rN(Xt) ’ r̂(t), t ¥ [t1, t2]) % e−N[S(r̂(t1))+J[t1, t2](r̂)]=e−NI[t1, t2](r̂) (1.7)

where J(r̂) is a functional which vanishes if r̂(t) is a solution of (1.1) and
S(r̂(t1)) is the entropy cost to produce the initial density profile r̂(t1). We
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adopt the convention for the entropy sign opposite to the usual one, so that
it takes the minimum value in the equilibrium state. We also normalize it
so that S(r̄)=0. The functional J(r̂) represents the extra cost necessary to
follow the trajectory r̂(t). Finally rN(Xt) ’ r̂(t) means closeness in some
metric and % denotes logarithmic equivalence as NQ.. This formula is
a generalization of the Boltzmann–Einstein formula. We set the Boltzmann
constant k=1.
This paper is divided in two parts. In the first one we present a general

fluctuation theory of SNS based on the hypotheses formulated above
assuming the knowledge of the functional J(r̂). The main results are
outlined below.

1. The Onsager–Machlup relationship has to be modified in the
following way: ‘‘In a SNS the spontaneous emergence of a macroscopic
fluctuation takes place most likely following a trajectory which is the time
reversal of the relaxation path according to the adjoint hydrodynamics.’’
2. We show that the macroscopic entropy S(r) solves Hamilton–

Jacobi equation generalizing to a thermodynamic context known results for
finite dimensional Langevin equations. (6, 8, 11)

3. For a large class of systems we obtain a non-equilibrium nonlinear
fluctuation dissipation relationship which links the hydrodynamics of the
system and of its time reversal to the thermodynamic force, that is the
derivative of S(r). If S(r) is known this relationship determines the adjoint
hydrodynamics.
4. From the last two results we derive an H Theorem for S(r): it is

decreasing along the solutions of both the hydrodynamics and the adjoint
hydrodynamics.

In the second part we test the theory outlined above in two boundary
driven stochastic models of interacting particle systems: the zero range and
the simple exclusion processes. The main results are outlined below.

1. For the boundary driven zero range process, as observed in
ref. 12, the invariant measure is a product measure. It is therefore possible
to write the functional S(r), which in this case is a local functional of r,
in a closed form and to construct the microscopic time reversed process
explicitly. We derive both the hydrodynamics and the adjoint hydrodyna-
mics. We compute the functionals J(r̂) and Jg(r̂) and verify the generalized
Onsager–Machlup principle and the fluctuation dissipation relationship.
2. For the boundary driven simple exclusion process the invariant

measure has long range correlations and is not explicitly known. The
hydrodynamics has been obtained in ref. 13; we obtain the asymptotics
of the probability of large deviations, that is we calculate J(r̂). In one
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space dimension, Derrida et al. (14) have recently shown that the action
functional S can be expressed in terms of the solution of a nonlinear ordi-
nary differential equation. We show how this result can be recovered by
our approach: the Hamilton–Jacobi equation for S(r) (which is a func-
tional derivative equation) can be reduced to the solution of the ordinary
differential equation obtained in ref. 14. By using the fluctuation dissipa-
tion relationship we also find the adjoint hydrodynamics. Moreover, in any
spatial dimension, we can deduce a lower bound for the macroscopic
entropy in terms of the entropy of an equilibrium state. In the one dimen-
sional case this bound has been independently obtained in ref. 14.

Part of the results presented here have been briefly reported in ref. 15.
Rigorous mathematical treatment of the boundary driven simple exclusion
process will be given in ref. 16.
We conclude with some remarks to clarify the differences between

equilibrium and non-equilibrium states. The main problem in the SNS
derives from the following situation. In equilibrium states the thermo-
dynamic properties are determined by the Gibbs distribution which is
specified by the Hamiltonian without solving a dynamical problem. On the
contrary, in a SNS we cannot construct the appropriate ensemble without
calculating first the invariant measure. At thermodynamic level, we do not
need all the information carried by the invariant measure, but only the
functional S(r) appearing in the generalized Boltzmann–Einstein formula
(1.7). In general S(r), contrary to the equilibrium case, is a nonlocal func-
tional of the profile r. It turns out that the entropy S(r) can be obtained,
both in equilibrium and non-equilibrium, from J(r̂), which is therefore the
basic object of the macroscopic theory. This step is simple for equilibrium,
but highly nontrivial in non-equilibrium.

2. GENERAL THEORY

2.1. Generalized Onsager–Machlup Relationship

We now derive a first consequence of our assumptions, that is the
relationship between the action functionals I and Ig associated to the
dynamics L and Lg. From Eq. (1.2) and our assumptions it follows that Pg

st

also admits a large deviation principle with functional Ig given by

Ig[t1, t2](r̂)=I[−t2, −t1](hr̂) (2.1)

with obvious notation. More explicitly this equation reads

S(r̂(t1))+J
g
[t1, t2]

(r̂)=S(r̂(t2))+J[−t2, −t1](hr̂) (2.2)
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where r̂(t1), r̂(t2) are the initial and final points of the trajectory and
S(r̂(ti)) the entropies associated with the creation of the fluctuations r̂(ti)
starting from the SNS. The functional Jg vanishes on the solutions of the
adjoint hydrodynamics. From (2.2) we can obtain the generalization of
Onsager–Machlup relationship for SNS.
The physical situation we are considering is the following. The system

is macroscopically in the stationary state r̄ at t=−. but at t=0 we find it
in the state r. We want to determine the most probable trajectory followed
in the spontaneous creation of this fluctuation. According to (1.7) this
trajectory is the one that minimizes J among all trajectories r̂(t) connecting
r̄ to r in the time interval [−., 0]. From (2.2), recalling that S(r̄)=0, we
have that

J[−., 0](r̂)=S(r)+J
g
[0,.](hr̂) (2.3)

The right hand side is minimal if Jg
[0,.](hr̂)=0 that is if hr̂ is a solution of

the adjoint hydrodynamics. The existence of such a relaxation solution is
due to the fact that the stationary solution r̄ is attractive also for the
adjoint hydrodynamics. We have therefore the following generalization of
Onsager–Machlup to SNS
‘‘In a SNS the spontaneous emergence of a macroscopic fluctuation

takes place most likely following a trajectory which is the time reversal of the
relaxation path according to the adjoint hydrodynamics.’’
We note that the reversibility of the microscopic process Xt, which we

call microscopic reversibility, is not needed in order to deduce the classical
Onsager–Machlup principle (i.e., that the trajectory which creates the fluc-
tuation is the time reversal of the relaxation trajectory). In fact the classical
Onsager–Machlup principle holds if and only if the hydrodynamics coin-
cides with the adjoint hydrodynamics, which we call macroscopic reversi-
bility. Indeed it is possible to construct microscopic non-reversible models
in which the classical Onsager–Machlup principle holds, see refs. 17–19.

2.2. The Hamilton–Jacobi Equation for the Entropy

We assume that the functional J has a density (which plays the role of
a Lagrangian), i.e.,

J[t1, t2](r̂)= F
t2

t1
dtL(r̂(t), “tr̂(t)) (2.4)
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From (2.3) we have that the entropy is related to J by

S(r)=inf
r̂
J[−., 0](r̂) (2.5)

where the minimum is taken over all trajectories r̂(t) connecting r̄ to r.
Therefore S must satisfy the Hamilton–Jacobi equation associated to the
action functional J. Let us introduce the Hamiltonian H(r, H) as the
Legendre transform ofL(r, “tr), i.e.,

H(r, H)=sup
t

{Ot, HP−L(r, t)} (2.6)

where O · , ·P denotes integration with respect to the macroscopic space
coordinates u, that is the inner product in L2(du). This notation will be
employed throughout the whole paper.
Noting that H(r̄, 0)=0, the Hamilton–Jacobi equation associated to

(2.5) is

H 1r, dS
dr
2=0 (2.7)

This is an equation for the functional derivative A(r)=dS/dr but not
all the solutions of the equationH(r, A(r))=0 are the derivative of some
functional. Of course only those which are the derivative of some func-
tional are relevant for us. Furthermore, as well known in mechanics, the
Hamilton–Jacobi equation (2.7) has many solutions and we shall discuss
later the criterion to select the correct one.
Let also introduce the pressure G=G(h), where h=h(u) can be

interpreted as a chemical potential profile, as the Legendre transform of the
entropy S(r), namely

G(h)=sup
r

{Oh, rP−S(r)} (2.8)

Then, by Legendre duality, we have dG/dh=r and dS/dr=h so that G(h)
satisfies the dual Hamilton–Jacobi equation

H 1dG
dh
, h2=0 (2.9)
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We now specify the Hamilton–Jacobi equation (2.7) for boundary
driven lattice gases. We assume that the large deviation functional J may
be expressed as a quadratic functional of “tr̂

J[t1, t2](r̂)=
1
2 F

t2

t1
dtON−1(“tr̂−D(r)), q(r̂)−1 N−1(“tr̂−D(r))P

=1
2 F

t2

t1
dtON−1(“tr̂− 12 N · (D(r̂) Nr̂)),

q(r̂)−1 N−1(“tr̂− 12 N · (D(r̂) Nr̂))P (2.10)

where D(r)=Di, j(r) is the diffusion matrix in the hydrodynamic equation
(1.1) and by N−1f we mean a vector field whose divergence equals f. The
form (2.10), which we derive in the models discussed below, is expected to
be very general; the functional J(r̂) measures how much r̂ differs from a
solution of the hydrodynamics (1.1) and the matrix q(r)=qi, j(r) reflects
the intensity of the fluctuations. See ref. 20, II.3.7 for a heuristic derivation
of (2.10) for reversible lattice gases. This form of J is also typical for diffu-
sion processes described by finite dimensional Langevin equations. (11)

In this case the LagrangianL is quadratic in “tr̂(t) and the associated
Hamiltonian is given by

H(r, H)=1
2ONH, q(r) NHP+12OH, N · (D(r) Nr)P (2.11)

so that the Hamilton–Jacobi equation (2.7) takes the form

7N dS
dr
, q(r) N

dS
dr
8+7dS

dr
, N · (D(r) Nr)8=0 (2.12)

We remark that the macroscopic entropy S, given by the variational
principle (2.5), depends only on the action functional J and is therefore
stable with respect to microscopic perturbations which do not affect the
dynamical large deviations.

2.3. The Adjoint Hydrodynamics and a Non-Equilibrium Fluctuation

Dissipation Relation

By assuming the quadratic form (2.10) also for Jg, we deduce a
twofold generalization of the celebrated fluctuation dissipation relation-
ship: it is valid in non-equilibrium states and in nonlinear regimes.
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Such a relationship will hold provided the rate function Jg of the time
reversed process is of the form (2.10) with a different hydrodynamic equa-
tion (the adjoint hydrodynamics) that we write in general as

“tr
g=Dg(rg) (2.13)

with the same boundary conditions as (1.1).
We then assume Jg has the form

Jg
[t1, t2]

(r̂)=1
2 F
t2

t1
dtO(N−1(“tr̂−Dg(r̂)) , q(r̂)−1 N−1(“tr̂−Dg(r̂))P (2.14)

By taking the variation of the equation (2.2), we get

D(r)+Dg(r)=N ·1q(r) N dS
dr
2 (2.15)

This relation holds for the non-equilibrium zero range process which we
discuss later. We also note that it holds for the equilibrium reversible
models for which the large deviation principle has been rigorously proven
such as the simple exclusion process, (3) the Landau–Ginzburg model (21) and
its nongradient version. (22) It is also easy to check that the linearization of
(2.15) around the stationary profile r̄ yields a fluctuation dissipation rela-
tionship which reduces to the usual one in equilibrium. Accordingly, the
matrix q(r) coincides with the Onsager matrix as defined in refs. 18–20.
In order to verify the fluctuation dissipation relation (2.15), we need

D(r), Dg(r) and dS/dr. On the other hand, it can be used to obtain the
adjoint hydrodynamics from D(r) and dS/dr; the first is typically known
and the second can be calculated from the Hamilton–Jacobi equation (2.12).
Suppose we can decompose the hydrodynamics as the sum of a gra-

dient of some functional V and a vector field A orthogonal to it in the
metric induced by the operator K−1 where Kf=−N · (q(r) Nf), namely

D(r)=
1
2
N ·1q(r) N dV

dr
2+A(r)

with

7K dV
dr
, K−1A(r)8=7dV

dr
,A(r)8=0
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If dV/dr, like the thermodynamic force dS/dr, vanishes at the boundary,
it is easy to check that the functional V solves the Hamilton–Jacobi equation.
Conversely, given S(r), by using the fluctuation dissipation relation-

ship (2.15), we can introduce a vector fieldA(r) such that

D(r)=
1
2
N ·1q(r) N dS

dr
2+A(r)

Dg(r)=
1
2
N ·1q(r) N dS

dr
2−A(r)

and the Hamilton–Jacobi equation implies the orthogonality condition

7dS
dr
,A(r)8=0

Note the analogy with ref. 11, Thm. IV.3.1 for diffusion processes.

2.4. H Theorem

We show that the functional S is decreasing along the solutions of
both the hydrodynamic equation (1.1) and the adjoint hydrodynamics

“tr=Dg(r)=N ·1q(r) N dS
dr
2−D(r) (2.16)

Let r(t) be a solution of (1.1) or (2.16), by using the Hamilton–Jacobi
equation (2.12), we get

d
dt
S(r(t))=7dS

dr
(r(t)), “tr(t)8

=−
1
2
7N dS

dr
(r(t)) , q(r(t)) N

dS
dr
(r(t))8 [ 0 (2.17)

In particular we have that ddtS(r(t))=0 if and only if
dS
dr
(r(t))=0. Since we

assumed there exists a unique stationary profile r̄, this implies that r̄ is
globally attractive also for the adjoint hydrodynamics (2.16).
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2.5. A Lower Bound for the Entropy S

Let us consider any functional V(r), normalized so that V(r̄)=0,
whose derivative satisfies the Hamilton–Jacobi equation (2.12) and the
condition dV(r)/dr=0 at the boundary. We shall prove the bound

S(r)=inf
r̂
J[−., 0](r̂) \ V(r) (2.18)

where the trajectory r̂(t) connects r̄ to r.
Fix t1 < t2, two profiles r1, r2 and a path r̂(t) in the time interval

[t1, t2] that joins r1 to r2: r̂(t1)=r1, r̂(t2)=r2. Let H, vanishing at the
boundary, be given by the equation

“tr̂=1
2N · (D(r̂) Nr̂)−N · (q(r̂) NH) (2.19)

We then claim that

J[t1, t2](r̂)=V(r2)−V(r1)

+
1
2
F
t2

t1
dt 7N 3H−dV(r̂)

dr̂
4 , q(r̂) N 3H−dV(r̂)

dr̂
48 (2.20)

Since the last term above is positive the bound (2.18) follows from the
above identity.
To prove (2.20) we note, recalling (2.10), that, since H is the solution

of (2.19),

J[t1, t2](r̂)=
1
2 F
t2

t1
dtONH, q(r̂) NHP

We add and subtract in this expression N{dV(r̂)/dr̂} to obtain

J[t1, t2](r̂)=
1
2
F
t2

t1
dt 7N 3H−dV(r̂)

dr̂
4 , q(r̂) N 3H−dV(r̂)

dr̂
48

+F
t2

t1
dt 7N dV(r̂)

dr̂
, q(r̂) NH8

−
1
2
F
t2

t1
dt 7N dV(r̂)

dr̂
, q(r̂) N

dV(r̂)
dr̂
8 (2.21)
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We leave the first term unchanged and we show that the sum of the second
and third gives V(r2)−V(r1). Since dV(r̂)/dr̂ vanishes at the boundary,
we may integrate by parts the second term; we get

−F
t2

t1
dt 7dV(r̂)

dr̂
, N · (q(r̂) NH)8

By the Hamilton–Jacobi equation (2.12), the third term is equal to

1
2
F
t2

t1
dt 7dV(r̂)

dr̂
, N · (D(r̂) Nr̂)8

Adding together the previous two expressions, we obtain that the sum of
the last two terms in (2.21) is equal to

F
t2

t1
dt 7dV(r̂)

dr̂
, 31
2
N · (D(r̂) Nr̂)−N · (q(r̂) NH)48

Since r̂ is the solution of (2.19), this expression is equal to

F
t2

t1
dt 7dV(r̂)

dr̂
, “tr̂8=V(r̂(t2))−V(r̂(t1))=V(r2)−V(r1)

which proves the claim.

2.6. Identification of the Entropy

In order to have a selection criterion for the solution V(r) of the
Hamilton–Jacobi equation, we consider the partial differential equation

“tr=−
1
2
N · (D(r) Nr)+N ·1q(r) N dV

dr
2 (2.22)

As in the previous Subsection we assume V(r) is normalized so that
V(r̄)=0 and satisfies dV(r)/dr=0 at the boundary. Note that this is the
adjoint hydrodynamics (2.16) if V coincides with S.
If V=S we then have, by using the H Theorem (2.17), that the solu-

tion of the Cauchy problem (2.22) with initial condition r relaxes to the
stationary profile r̄ so that

lim
tQ.
V(r(t))=V(r̄)=0 (2.23)
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Conversely if the above property holds, we can choose in (2.20) the trajec-
tory r̂(t)=r(−t), where r(t) solves (2.22). We then have H=dV(r̂)/dr̂ in
(2.20). The last term in (2.20) becomes thus zero and V(r1) can be made
arbitrary small; therefore (2.18) holds as an equality.
The above argument shows that V=S if and only if (2.23) holds.

2.7. Hamiltonian Interlude

As in Section 2.2, let us interpret the large deviation functional J as
the action for the Lagrangian L(r, “tr), see (2.4), and Jg as the action for
the Lagrangian Lg(r, “tr), see (2.14). Let alsoH(r, H) andHg(r, H) be
the corresponding Hamiltonians obtained as Legendre transforms, see
(2.6).
The time reversal relationship (2.2) implies the following relation

between Lagrangians:

L(r, “tr)=Lg(r, −“tr)+7
dS
dr
, “tr8 (2.24)

As a consequence we obtain

H(r, H)=Hg 1r, dS
dr
−H2 (2.25)

Since L(r, “tr) and Lg(r, −“tr) differ by a total time derivative, see
(2.24), we have the following. Given any r̂ solution of either “tr̂=D(r̂) or
“tr̂=−Dg(r̂) then r̂ is a solution of the Euler–Lagrange equation for
the Lagrangian L. Likewise given any r̂ solution of either “tr̂=Dg(r̂) or
“tr̂=−D(r̂) then r̂ is a solution of the Euler–Lagrange equation for the
LagrangianLg.
In the case of the quadratic functional (2.10), we have

L(r, “tr)=1
2ON

−1(“tr̂−D(r)) , q(r̂)−1 N−1(“tr̂−D(r))P (2.26)

The momentum conjugate to “tr is

H=
dL

d(“tr)
=−N−1(q(r)−1 N−1(“tr−D(r))) (2.27)

where we recall that D(r)=1
2 N · (D(r) Nr). Note that the above equation

is the relationship (2.19); as we shall see later, H is the external field we
have to add to the microscopic dynamics to produce the fluctuation r̂.
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The Hamiltonian is given by (2.11), so that the Hamilton equations
are

˛“tr=dH

dH
=
1
2
N · (D(r) Nr)−N · (q(r) NH)

“tH=−
dH

dr
=−

1
2

C
1 [ i, j [ d

[q −i, j(r) “uiH “ujH+Di, j(r) “ui“ujH]

(2.28)

where r(t, u) satisfies the same boundary conditions as in the hydrodyna-
mical equation (1.1) H(t, u) vanishes at the boundary, and qŒ(r) is the
derivative of q(r) with respect to r.
We note that (r̄, 0) is an equilibrium solution of (2.28) belonging to

the zero energy manifold H(r, H)=0. Any solution r(t) of the hydrody-
namical equation (1.1) corresponds to a solution (r(t), 0) of the Hamilton
equation (2.28) which converges asymptotically, as tQ+., to the equi-
librium point (r̄, 0). The action J evaluated on this solution is identically
zero; this corresponds to the trivial solution S=0 of the Hamilton–Jacobi
equation (2.12) and is consistent with the vanishing of the conjugate
moment H. Furthermore, if we take the time reversal of any solution of
the adjoint hydrodynamics, i.e., “tr(t)=−Dg(r(t)) we find a solution of
the Hamilton equations given by (r(t), (dS/dr)(r(t))) which converges
asymptotically, as tQ −., to the equilibrium point (r̄, 0); the action J
evaluated on this solution, as a function of the final state r, is the macro-
scopic entropy S(r). Both these trajectories live on the zero energy mani-
fold. Similar properties hold for the Hamiltonian flow ofHg.
Let us introduce the involution G on the phase space (r, H) defined

by

G(r, H)=1r, dS
dr
(r)−H2

If we denote by Ft, resp. Fg
t , the Hamiltonian flow of H, resp. H

g, then,
by using (2.25), as easy computation shows that G acts as the time reversal
in the sense that

GFt=Fg
−tG (2.29)

equivalently, in terms of the Liouville operators, we have

G{f,H}=−{Gf,Hg}

where f is a function on the phase space and { · , · } is the Poisson bracket.
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The relationship (2.29) is nontrivial also for reversible processes, i.e.,
when H=Hg, in such a case it tells us how to change the momentum
under time reversal. This definition of time reversal in a Hamiltonian
context agrees with the one given in ref. 23.

3. BOUNDARY DRIVEN ZERO RANGE PROCESS

We consider now the so called zero range process which models a
nonlinear diffusion of a lattice gas, see, e.g., ref. 24. The model is described
by a positive integer variable gx(y) representing the number of particles
at site x and time y of a finite subset LN of the d-dimensional lattice,
LN=Zd 5N L where L is a bounded open subset of Rd. The particles
jump with rates g(gx) to one of the nearest-neighbor sites. The function
g(k) is increasing and g(0)=0. We assume that our system interacts with
particle reservoirs at the boundary of LN whose activity at site x is given by
k(x/N) for some given smooth strictly positive function k(u). The micro-
scopic dynamics is then defined by the generator (see ref. 12 for the one
dimensional case)

LN=LN, bulk+LN, bound.

where

LN,bulkf(g)=1
2 C
x, y ¥ LN
|x−y|=1

g(gx)[f(gx, y)−f(g)]

LN,bound.f(g)=1
2 C
x ¥ LN,y ¨ LN
|x−y|=1

{g(gx)[f(gx, −)−f(g)]+k(y/N)[f(gx,+)−f(g)]}
(3.1)

in which

gx, yz =˛
gz if z ] x, y

gz−1 if z=x

gz+1 if z=y

(3.2)

is the configuration obtained from g when a particle jumps from x to y,
and

gx, ±z =˛
gz if z ] x

gz±1 if z=x
(3.3)
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is the configuration where we added (resp. subtracted) one particle at x.
Note that, since g(0)=0, the number of particles cannot become negative.
We also remark that if g(k)=k the dynamics introduced represents

simply non-interacting random walks on LN (with the appropriate bound-
ary conditions) in terms of the occupation numbers gx.

3.1. Invariant Measure

Since the generator LN is irreducible (we can go with positive proba-
bility from any configuration to any other), under very general hypotheses
on the function g(k) there exists a unique invariant measure. It is however
remarkable that such invariant measure can be constructed explicitly (see
ref. 12 for the one dimensional case).
Let lN(x) be the solution of the discrete Laplace equation with

boundary condition k, namely

˛
1
2 DNlN(x) — 1

2 C
y ¥ Z

d

|x−y|=1

[lN(y)−lN(x)]=0 for any x ¥ LN

lN(x)=k(x/N) for any x ¨ LN such that

,y ¥ LN for which |x−y|=1

(3.4)

The invariant measure mN is the grand-canonical measure mN=<x ¥ LN
mx, N

obtained by taking the product of the marginal distributions

mx, N(gx=k)=
1

Z(lN(x))
lkN(x)

g(1) · · · g(k)
(3.5)

where

Z(j)=1+C
.

k=1

jk

g(1) · · · g(k)
(3.6)

is the normalization constant.
The fact that mN is an invariant measure can be verified by showing

that

C
g

mN(g) LNf(g)=0
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for any bounded observable f. The above identity can be easily checked
taking into account that, since lN solves (3.4), it is an harmonic function; in
particular we have

C
x ¥ LN, y ¨ LN
|x−y|=1

[lN(y)−lN(x)]=0 (3.7)

We emphasize that, if k is not constant, the generator LN is not self-
adjoint with respect to the invariant measure so that the process is different
from its time reversal and detailed balance does not hold.

3.2. Hydrodynamic Limit

Let us introduce now the macroscopic time t=y/N2 and space
u=x/N. For u ¥ L, t \ 0, we introduce the empirical density as

rN(t, u)=
1
Nd

C
x ¥ LN

gx(N2t) d 1u− x
N
2 (3.8)

where d denotes the Dirac function. Note that

F
L

du rN(t, u)=
1
Nd

C
x ¥ LN

gx(N2t)

is the average density of particles at (macroscopic) time t.
Let G(u), u ¥ L be a smooth function and consider

OrN(t), GP=F
L

du rN(t, u) G(u)

To compute the time evolution of OrN(t), GP we first note that, according
to the general theory of Markov processes, see, e.g., ref. 10, Chap. X, we
have

d
dt

ENg (OrN(t), GP)=ENg (N
2LNOrN(t), GP) (3.9)

where ENg denotes the expectation with respect to the microscopic process
with initial configuration g.
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Let us assume that G has compact support K … L, so that only LN, bulk
gives a non-zero contribution; by summing by parts, we get

N2LNOrN(t), GP=
1
2
1
Nd

C
x ¥ LN

g(gx(N2t)) N2DNG(x/N)

%
1
2
1
Nd

C
x ¥ LN

g(gx(N2t)) DG(x/N) (3.10)

where we recall that DN denotes the discrete Laplacian.
At this point we face the main problem in the hydrodynamical limit:

Equation (3.10) is not closed in rN(t) (its r.h.s. is not a function of rN(t)).
In order to derive the macroscopic hydrodynamic equation we need to
express g(gx(N2t)) in terms of the empirical density rN(t). This will be
done by assuming a ‘‘local equilibrium’’ state (which can be rigorously jus-
tified in this context). Let us consider a microscopic site x which is at dis-
tance O(N) from the boundary and introduce a volume Q, centered at x,
which is very large in microscopic units, but still infinitesimal at the
macroscopic level. The time evolution in Q is essentially given only by the
bulk dynamics LN, bulk; since the total number of particles in Q changes only
via boundary effects and we are looking at what happened after O(N2)
microscopic time units, the system in Q has relaxed to the canonical state
corresponding to the density rN(t, x/N).
Let us construct first the grand-canonical measure in Q with constant

activity j > 0, namely the product measure mjQ=<x ¥ Q mjx with marginal
given by

mjx (gx=k)=
1
Z(j)

jk

g(1) · · · g(k)

where Z(j), which has been defined in (3.6), is the normalization constant.
Let now naQ be the associated canonical measure at density a, i.e.,

naQ(g)=mjQ 1g : C
x ¥ Q

gx=a |Q|2

We introduce a function f(a) by

f(a)= lim
Q ‘ Z

d
En

a
Q(g(gx)) (3.11)

where we recall that En
a
Q denotes the expectation with respect to the prob-

ability naQ.
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According to the previous discussion, the system in the volume Q is well
approximated by a canonical state with density rN(t, x/N); we can thus
replace, for N large, g(gx(N2t)) on the r.h.s. of (3.10) by f(rN(t, x/N))
thus obtaining

d
dt

ENg (OrN(t), GP) %
1
2
ENg (Of(rN(t)), DGP) (3.12)

To see which are the boundary conditions satisfied by rN(t) we need
to consider the boundary dynamics, LN, bound.. In contrast to the bulk
dynamics, this is a non-conservative, Glauber-like, dynamics. Since we are
looking after O(N2) microscopic time units the density at the boundary has
well thermalized to its equilibrium value which impose

ENg (f(rN(t, u))) % k(u) u ¥ “L (3.13)

where the function f has been defined above.
Assume the initial configuration g of the process is such that for any

smooth function G we have

lim
NQ.

OrN(0), GP= lim
NQ.

1
Nd

C
x ¥ LN

gxG(x/N)=F
L

du c(u) G(u) (3.14)

for some function c. By the law of large numbers, rN(t) becomes a deter-
ministic function in the limit NQ., so that we can eliminate the expecta-
tion values in (3.12) and (3.13). In conclusion we have obtained, for any
smooth function G, that

lim
NQ.

OrN(t), GP=F
L

du r(t, u) G(u)

where the convergence is in probability. Recalling (3.12), the limiting
density r=r(t, u) solves

˛“tr(t, u)=
1
2 Df(r(t, u)) u ¥ L

f(r(t, u))=k(u) u ¥ “L

r(0, u)=c(u)

(3.15)

which is the hydrodynamic equation for the boundary driven zero range
process.
We finally show that, by the equivalence of ensembles, we can express

the function a W f(a) introduced in (3.11), in a more convenient way, in
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terms of the grand-canonical measure mjQ. By exploiting the product struc-
ture of mjQ and choosing the activity j(a) so that mj(a)x (gx)=a, we have

f(a)=Em
j(a)
x (g(gx))

A straightforward computation shows now that f(a)=j(a) so that the
function a W f(a) is the inverse of the function j W R(j) given by

R(j)=Em
j
x(gx)=j

ZŒ(j)
Z(j)

(3.16)

i.e., R(j) is the equilibrium density corresponding to the activity j. From
the assumptions on g it follows that R(j) is strictly increasing.

3.3. Dynamical Large Deviations

In order to compute the probability of deviation from the typical
behavior described by Eq. (3.15), namely the action functional J(r̂), we
follow the classical strategy in large deviation theory: we need ‘‘only’’ to
consider a perturbation of the system which makes the deviation r̂ the
typical behavior and write the probability in the unperturbed system in
terms of the perturbed one. From this computation we shall extract,
asymptotically in N, the factor exp{−NdJ(r̂)}.
We consider the zero range process in a (space time dependent) exter-

nal field H(t, u) which is a smooth function of the macroscopic variables
vanishing outside L, i.e.,H(t, u)=0 for u ¨ L, t \ 0. The perturbed dynamics
is specified by the time dependent generator LHN, y=L

H
N, y, bulk+L

H
N, y, bound.

where

LHN, y, bulkf(g) =1
2 C
x, y ¥ LN
|x−y|=1

g(gx) eH(y/N
2, y/N)−H(y/N2, x/N)[f(gx, y)−f(g)]

LHN, y, bound.f(g)=1
2 C
x ¥ LN, y ¨ LN
|x−y|=1

{g(gx) eH(y/N
2, y/N)−H(y/N2, x/N)[f(gx, −)−f(g)]

+k(y/N) eH(y/N
2, x/N)−H(y/N2, y/N)[f(gx,+)−f(g)]}

(3.17)

The interpretation of the perturbed dynamics is the following: in the
macroscopic scale, we simply introduced a small space-time dependent drift
N−1NH(t, u) in the motion of the particles.
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Assuming the initial configuration g is associated to a density profile c

in the sense of (3.14), by similar computations as the ones given for H=0,
we get that the hydrodynamic equation for the perturbed system is

˛“tr̂(t, u)=
1
2 Df(r̂(t, u))−N · (f(r̂(t, u)) NH(t, u)) u ¥ L

f(r̂(t, u))=k(u) u ¥ “L

r̂(0, u)=c(u)

(3.18)

If we regard r̂(t, u) as given and consider H(t, u) as the unknown, the
above equation tells us which is the perturbation for which r̂(t, u) is the
typical behavior. Note (3.18) is precisely the relationship (2.27) between “tr̂
and the conjugate momentumH.
Let us denote by PNg , resp. P

N, H
g , the probability for the unperturbed,

resp. perturbed, process with initial configuration g. We then have

dPN, Hg (g(N2t), t ¥ [0, T])
dPNg (g(N

2t), t ¥ [0, T])
=exp{JN

[0, T](g( · ), H)} (3.19)

where

JN
[0, T](g( · ), H)= C

x ¥ LN

[H(T, x/N) gx(N2T)−H(0, x/N) gx(0)]

−F
T

0
dt C
x ¥ LN

“tH(t, x/N) gx(N2t)

−
N2

2
F
T

0
dt C
x ¥ LN, y ¥ Z

d

|x−y|=1

g(gx(N2t))[eH(t, y/N)−H(t, x/N)−1]

−
N2

2
F
T

0
dt C
x ¥ LN, y ¨ LN
|x−y|=1

k(y/N)[eH(t, x/N)−H(t, y/N)−1]
(3.20)

See Appendix A for a derivation of the above formula (another proof can
be found in ref. 24, Prop. A1.7.3).
With the help of Eq. (3.19) we can write the probability that rN(t) is

close to r̂(t) for the unperturbed system as follows

PNg (rN(t) ’ r̂(t), t ¥ [0, T])=EN, Hg (e−J
N
[0, T](g( · ), H)1rN ’ r̂) (3.21)
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where EN, Hg denotes the expectation with respect to the perturbed process.
Using the explicit expression (3.20), by Taylor expansion, we get

JN
[0, T](g( · ), H)

%Nd 3OrN(T), H(T)P−OrN(0), H(0)P−F
T

0
dtOrN(t), “tH(t)P

−
1
2
F
T

0
dt
1
Nd

C
x ¥ LN

g(gx(N2t))[DH(t, x/N)+|NH(t, x/N)|2]

+
1
2
F
T

0
dt F

“L

du k(u) “n̂H(t, u)4 (3.22)

where “n̂H(t, u) is the normal derivative of H(t, u) (n̂ being the outward
normal to L).
If g(N2t) is a typical trajectory for the perturbed process, by the same

argument given in derivation of the hydrodynamical equation, we can
replace g(gx(N2t)) above by f(rN(t, x/N)). Since rN(t) is close to r̂(t),
and

lim
NQ.

PN, Hg (rN(t) ’ r̂(t), t ¥ [0, T])=1

from (3.21) we get

PNg (rN(t) ’ r̂(t), t ¥ [0, T]) % exp{−NdJ[0, T](r̂)} (3.23)

where

J[0, T](r̂)=Or̂(T), H(T)P−Or̂(0), H(0)P−F
T

0
dtOr̂(t), “tH(t)P

− 12 F
T

0
dtOf(r̂(t)), DH(t)+|NH(t)|2P

+12 F
T

0
dt F

“L

du k(u) “n̂H(t, u) (3.24)

Recalling that H and r̂ are related by (3.18), we finally get, after an inte-
gration by parts (recall that H(t, u) vanishes at the boundary “L)

J[0, T](r̂)=1
2 F

T

0
dtOf(r̂(t)), |NH(t)|2P (3.25)
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The action functional J is defined to be infinite if r̂ does not satisfy the
boundary conditions in (3.18). From (3.25) and (3.18) we see that J[0, T] is
of the form (2.10) with Di, j(r̂)=fŒ(r̂) di, j and qi, j(r̂)=f(r̂) di, j.
The rigorous derivation of the action functional J requires some diffi-

cult estimates. In fact, while in the proof of the hydrodynamic limit it is
enough to show that we can replace g(gx(N2t)) by f(rN(t, x/N)) with an
error vanishing as NQ., in the proof of the large deviations we need such
an error to be o(e−N

d
). This can be proven by the so called super exponen-

tial estimate, see refs. 3 and 24, which is the key point in the rigorous
approach.

3.4. Macroscopic Entropy and Adjoint Hydrodynamics

From the expression (3.25) for J it follows that the Hamilton–Jacobi
equation (2.12) for the boundary driven zero range process is

7N dS
dr
, f(r) N

dS
dr
8+7dS

dr
, Df(r)8=0 (3.26)

Let us consider the functional

S(r)=F
L

du 5r(u) log f(r(u))
l(u)

− log
Z(f(r(u)))
Z(l(u))
6 (3.27)

where Z(j) has been defined in (3.6) and l(u) is the stationary activity
profile, namely l(u)=f(r̄(u)) where r̄ is the stationary solution of the
hydrodynamic equation (3.15). Note that l is also the macroscopic limit
of lN, solution of (3.4). By using that j W R(j) given in (3.16) is the
inverse function of r W f(r), we get

dS(r)
dr(u)

=log f(r(u))− log l(u) (3.28)

We remark that the functional S given in (3.27) is uniquely characterized
by (3.28) once we impose the normalization S(r̄)=0.
An easy computation shows that the functional S given in (3.27) solves

the Hamilton–Jacobi equation (3.26). Recalling that f(r(u))=l(u)=k(u)
for u ¥ “L we have indeed
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7N log f(r)
l
, f(r) N log

f(r)
l
8+7 log f(r)

l
, Df(r)8

=−7N log f(r)
l
, f(r)

Nl

l
8

=7f(r), |Nl|2

l2
8−7N[f(r)−l],

Nl

l
8−7Nl,

Nl

l
8

=7f(r), |Nl|2

l2
8−7Nl,

Nl

l
8+7[f(r)−l], N ·

Nl

l
8=0 (3.29)

since Dl(u)=0 for u ¥ L.
From the fluctuation-dissipation relationship (2.15) we get that the

adjoint hydrodynamic equation for the boundary driven zero range process
is

˛“tr
g(t, u)=1

2 Df(rg(t, u))−N · (f(rg(t, u)) N log l(u)) u ¥ L

f(rg(t, u))=k(u) u ¥ “L

rg(0, u)=c(u)

(3.30)

Recalling that l(u)=f(r̄(u)), the density profile r̄ is also a stationary
solution of (3.30). Since fŒ(a) > 0, the right hand side of (3.30) is dissipa-
tive; therefore we have that rg(t)Q r̄ as tQ.; so that we meet the cri-
terion (2.23).
Since in this model we know explicitly the invariant measure mN we

can check whether the predictions (3.27) on the macroscopic entropy and
(3.30) on the adjoint hydrodynamics of the general theory are correct.
Given a smooth function h(u) let us introduce the pressure G(h) cor-

responding to the chemical potential profile h as

G(h)= lim
NQ.

1
Nd
log EmN(exp{NdOrN, hP})

= lim
NQ.

1
Nd
log C

g

mN(g) exp 3 C
x ¥ LN

h(x/N) gx 4

= lim
NQ.

1
Nd

C
x ¥ LN

[log Z(lN(x) eh(x/N))− log Z(lN(x))]

=F
L

du[log Z(l(u) eh(u))− log Z(l(u))] (3.31)

where Z(j) has been defined in (3.6) and lN(x) is the solution of (3.4).
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By a standard computation due to Cramer we have that the Legendre
transform of the pressure G(h), i.e., the macroscopic entropy, is the rate func-
tional for the asymptotic probability of large deviations of the density profile in
the invariantmeasure mN. Let us in fact introduce a perturbedmeasure mhN by

mhN(g)= D
x ¥ LN

Z(lN(x))
Z(lN(x) eh(x/N))

exp{h(x/N) gx} mx, N(gx)

and, for a fixed density profile r(u), choose the chemical potential profile h
so that

Em
h
N(gx)=r(x/N) (3.32)

namely h(x/N)=log[f(r(x/N))/lN(x)]. We then have

mN(rN ’ r)=Em
h
N(e−;x ¥ LN [h(x/N) gx − log Z(lN(x) e

h(x/N))+log Z(lN(x))]1rN ’ r)

% Em
h
N(e−N

d[OrN, hP−G(h)]1rN ’ r) % e−N
d[Or, hP−G(h)] (3.33)

since, by the law of large numbers, limNQ. mhN(rN ’ r)=1. From (3.32)
we have that dG/dh=r. We therefore have obtained precisely that S is the
Legendre transform of G. A computation, which is left to the reader, shows
now that the Legendre transform of the right hand side of (3.31) gives
indeed the functional S(r) defined in (3.27).
We want to stress a main difference between the macroscopic compu-

tation (3.29) and the microscopic one just given. While the former depends
on the action functional J, which involves only macroscopic quantities, the
latter depends on the explicit expression of the invariant measure mN. In
particular the macroscopic computation is independent of the specific way
the interaction with reservoirs is modeled (provided of course the func-
tional J is not affected).
We now discuss the adjoint hydrodynamics from a microscopic point of

view. Since the invariant measure mN is explicitly known we can obtain the
adjoint generator Lg

N which is defined by the identity (1.3). Recalling that lN
solves (3.4) and that (3.7) holds, we have that Lg

N=L
g
N, bulk+L

g
N, bound. where

Lg
N, bulkf(g)=

1
2

C
x, y ¥ LN
|x−y|=1

g(gx)
lN(y)
lN(x)

[f(gx, y)−f(g)]

Lg
N, bound.f(g)=

1
2

C
x ¥ LN, y ¨ LN
|x−y|=1

3g(gx)
k(y/N)

lN(x)
[f(gx, −)−f(g)]

+lN(x)[f(gx,+)−f(g)]4 (3.34)
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Notice that the form of (3.34) is the same as (3.1) with the rates modified in
such a way to invert the particle flux. The generator Lg

N can also be inter-
preted as the original system perturbed by a time independent external field
H(t, x/N)=log lN(x), compare (3.17) to (3.34). In particular we have that
the adjoint hydrodynamic equation is indeed given by (3.30).
By repeating the same argument given in Section 3.3, it is not difficult to

show that the action functional Jg describing the probability of large devia-
tions from the hydrodynamic behavior for the adjoint process is given by

Jg
[0, T](r̂)=1

2 F
T

0
dtOf(r̂(t)), |NK(t)|2P (3.35)

where K(t)=K(t, u) is to be obtained from r̂ by solving the equation

˛“tr̂(t, u)=
1
2 Df(r̂(t, u))−N · (f(r̂(t, u)) N[log l(u)+K(t, u)]) u ¥ L

f(r̂(t, u))=k(u) u ¥ “L

r̂(0, u)=c(u)

(3.36)

A computation now allows us to check that the identity (2.2), which has
been obtained only by a time symmetry argument, holds for the boundary
driven zero range process.

4. BOUNDARY DRIVEN SIMPLE EXCLUSION PROCESS

The simple exclusion process is a model of a lattice gas with an exclu-
sion principle: a particle can move to a neighboring site, with rate 1/2 for
each side, only if this is empty. Let, as in the previous section, LN=
Zd 5N L and denote by gx(y) ¥ {0, 1} the number of particles at the site x
at (microscopic) time y. The system is in contact with particle reservoirs at
the boundary of LN whose activity at site x is given by k(x/N) for some
given strictly positive smooth function k(u).
The microscopic dynamics is defined by the generator LN=LN, bulk+

LN, bound. where

LN, bulkf(g)=1
2 C
x, y ¥ LN
|x−y|=1

gx(1−gy)[f(gx, y)−f(g)]

LN, bound.f(g)=1
2 C
x ¥ LN, y ¨ LN
|x−y|=1

{gx[f(gx, −)−f(g)]

+k(y/N)(1−gx)[f(gx,+)−f(g)]}

(4.1)

where gx, y and gx, ± have been defined in (3.2) and (3.3).
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In contrast to the zero range model the invariant measure mN is not
known explicitly; we shall see that it carries long range correlations making
the entropy nonlocal.

4.1. Hydrodynamic Equation and Dynamical Large Deviations

The hydrodynamic equation for the simple exclusion process can be
derived by the same argument given for the zero range process; in fact it is
easier in this case because a computation analogous to (3.10) leads directly
to a closed equation in the empirical density. We find that the limiting
density evolves according to the linear heat equation

˛“tr(t, u)=
1
2

Dr(t, u) u ¥ L

r(t, u)=
k(u)
1+k(u)

u ¥ “L

r(0, u)=c(u)

(4.2)

where c is the initial density profile, associated to the initial microscopic
configuration g in the sense (3.14). In this case the density of particles r

takes values in [0, 1]. The hydrodynamic limit for more general boundary
driven models has been discussed in ref. 13. As in the previous section we
shall denote by r̄=r̄(u) the unique stationary solution of (4.2).
The action functional J describing the probability of large deviations

from the hydrodynamic behavior can be obtained as for the zero range
process. In this case the perturbed dynamics is defined by the time depen-
dent generator LHN, y=L

H
N, y, bulk+L

H
N, y, bound. where

LHN, y, bulkf(g) =1
2 C
x, y ¥ LN
|x−y|=1

gx(1−gy) eH(y/N
2, y/N)−H(y/N2, x/N)[f(gx, y)−f(g)]

LHN, y, bound.f(g)=1
2 C
x ¥ LN, y ¨ LN
|x−y|=1

{gxeH(y/N
2, y/N)−H(y/N2, x/N)[f(gx, −)−f(g)]

+k(y/N)(1−gx) eH(y/N
2, x/N)−H(y/N2, y/N)[f(gx,+)−f(g)]}

(4.3)

and the external field H(t, u) vanishes for u ¨ L.
The hydrodynamic equation for the perturbed dynamics is then given

by
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˛“tr̂(t, u)=
1
2

Dr̂(t, u)−N · {r̂(t, u)[1− r̂(t, u)] NH(t, u)} u ¥ L

r̂(t, u)=
k(u)
1+k(u)

u ¥ “L

r̂(0, u)=c(u)

(4.4)

For the simple exclusion process the functional JN
[0, T] defined in (3.19) is

given by

JN
[0, T](g( · ), H)

= C
x ¥ LN

[H(T, x/N) gx(N2T)−H(0, x/N) gx(0)]

−F
T

0
dt C
x ¥ LN

“tH(t, x/N) gx(N2t)

−
N2

2
F
T

0
dt C
x, y ¥ LN
|x−y|=1

gx(N2t)[1−gy(N2t)][eH(t, y/N)−H(t, x/N)−1]

−
N2

2
F
T

0
dt C
x ¥ LN, y ¨ LN
|x−y|=1

gx(N2t)[eH(t, y/N)−H(t, x/N)−1]

−
N2

2
F
T

0
dt C
x ¥ LN, y ¨ LN
|x−y|=1

k(y/N)[1−gx(N2t)][eH(t, x/N)−H(t, y/N)−1]
(4.5)

we refer again to Appendix A for the derivation of the above formula.
By Taylor expansion, summation by parts, the replacements gx(N2t)×

[1−gy(N2t)] % rN(t, x/N)[1−rN(t, x/N)] in the bulk and gx(N2t) %
k(t, x/N)/[1+k(t, x/N)] at the boundary (which can be heuristically
justified by the same argument given for the zero range process) we get

JN
[0, T](g( · ), H) %N

d 3OrN(T), H(T)P−OrN(0), H(0)P

−F
T

0
dt7rN(t), “tH(t)+

1
2

DH(t)8

−
1
2
F
T

0
dtOrN(t)[1−rN(t)] , |NH(t)|2P

+
1
2
F
T

0
dt F

“L

du
k(u)
1+k(u)

“n̂H(t, u)4 (4.6)
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Recalling that the hydrodynamic equation for the perturbed dynamics is
given by (4.4), after an integration by parts, we finally get the action func-
tional J

J[0, T](r̂)=1
2 F

T

0
dtOr̂(t)[1− r̂(t)] , |NH(t)|2P (4.7)

which is of the form (2.10) with Di, j(r̂)=di, j and qi, j(r̂)=r̂[1− r̂] di, j. As
for the zero range, the functional J[0, T](r̂) is defined to be infinite if r̂ does
not satisfy the boundary condition in (4.4).

4.2. Reduction of Hamilton–Jacobi to a Nonlinear Differential

Equation (d=1)

We consider here the boundary driven simple exclusion process in one
space dimension. In a very interesting paper, by using a matrix representa-
tion of the microscopic invariant measure and combinatorial techniques,
Derrida et al. (14) have recently shown that the action functional S (which
we called the macroscopic entropy) can be expressed in terms of the solu-
tion of a nonlinear ordinary differential equation. We show next how this
result can be recovered in our approach by following the dynamical/varia-
tional route explained in Section 2. Namely, we consider the variational
problem (2.5) for the one-dimensional simple exclusion process and show
that the associated Hamilton–Jacobi equation which, taking into account
(4.7) and (4.4), is the functional derivative equation

7N dS
dr
, r(1−r) N

dS
dr
8+7dS

dr
, Dr8=0 (4.8)

can be reduced to the nonlinear ordinary differential equation first
obtained in ref. 14.
For notation simplicity, we assume that L=(−1, 1), so that “L=±1.

We shall also assume the macroscopic density profile r=r(u) satisfies the
boundary conditions in Eq. (4.2).
We look for a solution of the Hamilton–Jacobi equation (4.8) by per-

forming the change of variable

dS
dr(u)

=log
r(u)
1−r(u)

−f(u; r) (4.9)

for some functional f(u; r) to be determined satisfying the boundary con-
ditions f(±1)=log r(±1)/[1−r(±1)]=log k(±1).
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Inserting (4.9) into (4.8), we get (note that r−ef/(1+ef) vanishes at
the boundary)

0=−7N 1 log r

1−r
−f2 , r(1−r) Nf8

=−ONr, NfP+Or(1−r), (Nf)2P

=−7N 1r− ef

1+ef
2 , Nf8−71r− ef

1+ef
21r− 1

1+ef
2 , (Nf)28

=71r− ef

1+ef
2 , 1Df+

(Nf)2

1+ef
−r(Nf)228 (4.10)

We obtain a solution of the Hamilton–Jacobi if we solve the following
ordinary differential equation which relates the functional f(u)=f(u; r)
to r

˛ Df(u)
[Nf(u)]2

+
1

1+ef(u)
=r(u) u ¥ (−1, 1)

f(±1)=log k(±1)

(4.11)

A computation shows that the derivative of the functional

S(r)=F
1

−1
du 3r log r+(1−r) log(1−r)+(1−r) f− log(1+ef)+log

Nf

Nr̄
4

(4.12)

is given by (4.9) when f(u; r) solves (4.11). According to the discussion in
Section 2.6, we will be able to conclude that (4.12) is indeed the macro-
scopic entropy as soon as we show that it meets the criterion (2.23). This
will be done in the next Subsection. By the change of variable f=
log[F/(1−F)] Eq. (4.11) becomes the one obtained in ref. 14.
One may be tempted to repeat the same computation in arbitrary

dimension; one would obtain a partial differential equation analogous to
(4.11). However, in more than one dimension it does not exist, in general,
a functional S whose derivative is given by (4.9) with f and r related by
such partial differential equation.
The equation (4.11), considered as a relationship expressing r in terms

of f, can be interpreted in the following way. Let

S0(r)=F
1

−1
du{r log r+(1−r) log(1−r)} (4.13)

Macroscopic Fluctuation Theory for Stationary Non-Equilibrium States 665



be the equilibrium entropy. Since dS0/dr=log[r/(1−r)] we have

f(u; r)=
dS0
dr
−

dS
dr

If G(f) is the Legendre transform of S0−S, we find that dG/df=r which
is the relationship (4.11).
We note that the remark after (3.33) for the zero range process also

applies to the present context. In particular the macroscopic computation
(4.10) depends only on the action functional J and is therefore stable with
respect to microscopic perturbations which do not affect the dynamical
large deviations.

4.3. Adjoint Hydrodynamics (d=1)

By using the fluctuation dissipation relationship (2.15) and the
expression (4.9) for dS/dr, we find that the adjoint hydrodynamics is given
by the equation nonlocal in space

˛“tr
g(t, u)=

1
2

Drg(t, u)−N{rg(t, u)[1−rg(t, u)] Nf(u; rg(t))}

u ¥ (−1, 1)

rg(t, ±1)=
k(±1)
1+k(±1)

rg(0, u)=c(u)

(4.14)

where f(u; rg(t)) is to be obtained from rg(t) by solving (4.11). Since
f(u; r̄)=log[r̄/(1− r̄)], we see that r̄ is also a stationary solution of
(4.14).
We now show how (4.14) can be related to the heat equation. Let

rg(t, u) be the solution of (4.14) and introduce F=F(t, u) as

F(t, u)=
ef(u; rg(t))

1+ef(u; rg(t))
(4.15)

it is not too difficult to check (see Appendix B) that F(t, u) satisfies the
heat equation
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˛“tF(t, u)=
1
2

DF(t, u) u ¥ (−1, 1)

F(t, ±1)=
k(±1)
1+k(±1)

F(0, u)=
ef(u; c)

1+ef(u; c)

(4.16)

Conversely, given F=F(t, u) which solves (4.16), by setting

rg(t, u)=F(t, u)+F(t, u)[1−F(t, u)]
DF(t, u)
[NF(t, u)]2

(4.17)

a computation (see again Appendix B) shows that rg solves (4.14).
We have thus shown how a solution of the (nonlocal, nonlinear)

Eq. (4.14) can be obtained from the linear heat equation by performing the
nonlocal transformation (4.15) on the initial datum. In particular, since the
solution F(t, u) of (4.16) converges as tQ. to r̄, we see that the func-
tional S(r) given in (4.12) satisfies the criterion (2.23) so that it is indeed
the macroscopic entropy.

4.4. Non-Perturbative Lower Bound on the Macroscopic

Entropy (d \ 1)

We discuss here a non-perturbative bound for the macroscopic
entropy in the boundary driven simple exclusion process in arbitrary space
dimension d. Let S0(r) be the equilibrium entropy as defined in (4.13), we
shall obtain the following lower bound on S(r)

S(r) \ S0(r)−S0(r̄)−7r− r̄,
dS0
dr
(r̄)8

=F
L

du 3r log r

r̄
+(1−r) log

1−r

1− r̄
4=S̃(r) (4.18)

with a strict inequality for r ] r̄. In the one dimensional case the bound
(4.18) has been independently obtained in ref. 14.
Recalling that the dynamical action functional J of this model is given

by (4.7), a somewhat lengthy but straightforward computation gives
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J[−T, 0](r̂( ·))=
1
2
F
0

−T
dt 7N−1 1“tr̂−

1
2

Dr̂2 , 1
r̂[1− r̂]

N−1 1“tr̂−
1
2

Dr̂28

=S̃(r̂(0))− S̃(r̂(−T))

+
1
2
F
0

−T
dt 7N−1 1“tr̂+

1
2

Dr̂−N ·1 r̂[1− r̂] N log
r̄

1− r̄
22 ,

1
r̂[1− r̂]

N−1 1“tr̂(t)+
1
2

Dr̂−N ·1 r̂[1− r̂] N log
r̄

1− r̄
228

+
1
2
F
0

−T
dt F

L

du
|Nr̄(u)|2

[r̄(u)(1− r̄(u))]2
(r̂(t, u)− r̄(u))2 (4.19)

The last two terms on the right hand side of (4.19) are positive. Therefore,
if r̂(t) is trajectory connecting r̄ to r, we have

S(r)=inf
r̂
J[−., 0](r̂) \ S̃(r)− S̃(r̄)=S̃(r)

Moreover, since the last term on the right hand side of (4.19) is strictly
positive as soon as r̂ ] r̄, we have the strict inequality in (4.18) for r ] r̄.

4.5. Perturbative Solution of the Hamilton–Jacobi Equation (d \ 1)

We show here how the Hamilton–Jacobi equation (2.12) can be used
to get a perturbative expansion for the entropy S around the stationary
profile r̄. We discuss only the expansion up to the second order but it will
be clear how to generate an iterative approximation scheme.
From a computational point of view it is convenient to expand the

pressure G(h) defined in (2.8). Since r(u)=dG(h)/dh(u) and h(u)=
dS(r)/dr(u), the dual Hamilton–Jacobi equation (2.9) in this model is

7Nh, 5dG
dh
11−dG

dh
26 Nh8=7Nh, N dG

dh
8 (4.20)

where h(u) satisfies the boundary conditions h(u)=0 for u ¥ “L.
Recall that r̄(u) is the stationary solution of the hydrodynamic equa-

tion (4.2) and introduce

G̃(h)=F
L

du log[1+r̄(u)(eh(u)−1)] (4.21)
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Note that G̃(h) is the Legendre transform of S̃(r) defined in (4.18). We
look for a solution of (4.20) in the form

G(h)=G̃(h)+Og, hP+12Oh, BhP+O(h
3) (4.22)

for some function g=g(u) and some linear operator B.
Note that S(r) has a minimum for r=r̄ and

S(r)=1
2Or− r̄, C−1(r− r̄)P+O((r− r̄)3)

where C is the covariance of the density fluctuations with respect to the
invariant measure. Therefore

G(h)=Or̄, hP+12Oh, ChP+O(h
3) (4.23)

hence the second derivative of G at h=0 is the covariance of the density
fluctuations. By comparing (4.22) to (4.23) we get

C=
d2G̃
dh2
:
h=0
+B=r̄(1− r̄) 1+B (4.24)

Since G̃ is the pressure for the equilibrium system the operator B represents
the contribution to the covariance due to the non-equilibrium boundary
conditions. For the boundary driven simple exclusion process the covari-
ance of the fluctuation has been derived in refs. 25 and 26 where it is shown
that it is nonlocal in space. Therefore the perturbative expansion of the
Hamilton–Jacobi equation will give a different derivation of the covari-
ance.
We have

dG̃
dh
11−dG̃

dh
2= r̄(1− r̄) eh

[1+r̄(eh−1)]2

N
dG̃
dh
=

r̄(1− r̄) eh

[1+r̄(eh−1)]2
Nh+

eh

[1+r̄(eh−1)]2
Nr̄

so that by plugging (4.22) into (4.20) and expanding up to second order in
h we get

ONh, [1+(1−2r̄) h] Nr̄+Ng+NBhP=0

Recalling that h vanishes at the boundary, we thus get g=0 and

7N 1h
2

2
2 , (1−2r̄) Nr̄8=Oh, DBhP
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which, after an integration by parts, becomes (recall that Dr̄=0)

Oh, DBhP=Oh, |Nr̄|2 hP

The operator B therefore satisfies

1
2 [DB+BD]=|Nr̄|2

In particular, if Nr̄ is constant, B has the kernel

B(u, v)=|Nr̄|2 D−1(u, v) (4.25)

where D−1(u, v) is the Green function of the Laplacian (with Dirichlet
boundary conditions). The fact that B is a negative operator can also be
obtained as a consequence of the bound S(r) \ S̃(r).
By analogous computation one can obtain also the higher order terms

in the expansion of the pressure which are the higher order cumulants. In
the one dimensional case Nr̄ is constant and we state below the result of
the expansion up to the third order.

G(h)=G̃(h)+12 |Nr̄|2 Oh, D−1hP

+13 (Nr̄)2 [Oh2(1− 23 r̂), D
−1hP−O(Nh)2 (1−2r̂), D−2hP]+O(h4)

APPENDIX A. DERIVATION OF (3.20) AND (4.5)

Let W be a finite set and consider a continuous time jump Markov
process Xt on the state space W with generator given by

Lf(w)= C
wŒ ¥ W

l(w) p(w, wŒ)[f(wŒ)−f(w)] (A.1)

where the rate l is a positive function on W and p(w, wŒ) is a transition
probability. We can construct a realization of Xt as follows. Fix an initial
condition X0=w0. The process waits an exponential time y1 with rate
l(w0) and then jumps to w1 with probability p(w0, w1); the law of y1 is

P(y1 < t)=F
t

0
ds l(w0) e−l(w0) s (A.2)

The process waits now an exponential time y2, independent of y1, with rate
l(w1) and then jumps to w2 with probability p(w1, w2), and so on. Con-
sider the piecewise constant trajectory Xs, s ¥ [0, T] with n jumps given by
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Xs=˛
w0 0 [ s < t1
w1 t1 [ s < t1+t2
x x

wn−1 t1+t2+·· ·+tn−1 [ s < t1+t2+·· ·+tn
wn t1+t2+·· ·+tn [ s [ T

(A.3)

Its probability density is given by

dPw0 (Xs, s ¥ [0, T])=D
n

i=1
(l(wi−1) p(wi−1, wi) e−l(wi−1) ti dti) · e−l(wn)[T−sn]

where sn=t1+·· ·+tn
If l and p depend explicitly on time we can construct a realization Xt

by the same procedure; in such a case the law of y1 is

P(y1 < t)=F
t

0
ds l(w0, s) e−>

s
0 dsŒ l(w0, sŒ) (A.4)

and analogous distributions for yi. We thus get

dPw0 (Xs, s ¥ [0, T])=D
n

i=1
(l(Xsi−1 , si) p(Xsi−1 , Xsi ; si) dti) · e

−>T0 ds l(Xs, s)

(A.5)

where sk=t1+·· ·+tk (resp. s0=0) are the jump times of Xs.
Let us now consider two processes Xt (resp. X

−

t) of this type with
rates l(w, t) (resp. lŒ(w, t)) and transition probability p(w, wŒ; t) (resp.
pŒ(w, wŒ; t)). We can write the formula (A.5) also for the process XŒ and,
by taking the ratio of those expressions, we get the so called Radon–
Nikodym derivative

dP −w0
dPw0

(Xs, s ¥ [0, T])

=exp{J[0, T](X)}

=exp 3 C
n

i=1
log

lŒ(Xsi−1 , si) pŒ(Xsi−1 , Xsi ; si)
l(Xsi−1 , si) p(Xsi−1 , Xsi ; si)

−F
T

0
ds[lŒ(Xs, s)−l(Xs, s)]4

(A.6)
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We now consider the special case in which X has generator given by
(A.1) and XŒ=XF has a time dependent generator

LFt f(w)= C
wŒ ¥ W

l(w) p(w, wŒ) eF(wŒ, t)−F(w, t)[f(wŒ)−f(w)] (A.7)

which is of the same form with

lŒ(w, t)= C
wŒ ¥ W

l(w) p(w, wŒ) eF(wŒ, t)−F(w, t)

pŒ(w, wŒ; t)=
1

lŒ(w, t)
l(w) p(w, wŒ) eF(wŒ, t)−F(w, t)

From (A.6) we get that the Radon–Nikodym derivative is given by

dPFw0
dPw0

(Xs, s ¥ [0, T])=exp{J[0, T](X, F)}

with

J[0, T](X, F)=C
n

i=1
[F(Xsi , si)−F(Xsi−1 , si)]

−F
T

0
ds l(Xs) C

wŒ ¥ W

p(Xs, wŒ)[eF(wŒ, s)−F(Xs, s)−1]

=C
n

i=1

5F(Xsi , si)−F(Xsi−1 , si−1)−F
si

si−1

ds “sF(Xsi−1 , s)6

−F
T

0
ds e−F(Xs, s)LeF(Xs, s)

=F(XT, T)−F(X0, 0)−F
T

0
ds[“sF(Xs, s)+e−F(Xs, s)LeF(Xs, s)]

(A.8)

Formulae (3.20) and (4.5) are special cases of (A.8) obtained by
choosing

F(g, y)= C
x ¥ LN

H(y/N2, x/N) gx
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APPENDIX B. ADJOINT HYDRODYNAMICS FOR ONE

DIMENSIONAL SIMPLE EXCLUSION

Let rg(t) be a solution of the adjoint hydrodynamics for the one
dimensional simple exclusion process (4.14). By the remarks in Section 2.7,
(r(t), H(t)) with

r(t)=rg(−t)

H(t)=
dS
dr
(rg(−t))=log

rg(−t)
1−rg(−t)

−f(rg(−t)) (B.1)

is a solution of the Hamilton equations (2.28) which for this model read

“tr=1
2Dr−N(r(1−r) NH)

“tH=− 12 (1−2r)(NH)
2− 12DH

(B.2)

By plugging (B.1) into (B.2) and performing the change of variable (4.15),
a straightforward computation yields

“tr
g=
1
2

Drg−N 1r
g(1−rg)
F(1−F)

NF2

“tF=−
1
2

DF+(rg−F)
(NF)2

F(1−F)

(B.3)

By writing Eq. (4.11) in terms of F=ef/(1+ef) and r replaced by rg we
get

˛ (rg−F)=F(1−F)
DF
(NF)2

for any (t, u) ¥ [0,.)×(−1, 1)

F(t, ±1)=rg(t, ±1)=
k(±1)
1+k(±1)

(B.4)

which inserted in (B.3) concludes the proof that F(t, u) as defined in (4.15)
satisfies the heat equation.
The converse statement, namely that if we define rg=rg(t, u) as in

(4.17) (with F=F(t, u) the solution of (4.16)) then it satisfies the nonlocal
equation (4.14), can be checked without invoking the Hamiltonian for-
malism. Indeed, from (4.17) we get that

rg(1−rg)
F(1−F)

=1+(1−2F)
DF
(NF)2

−F(1−F)
(DF)2

(NF)4
(B.5)
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recalling (4.16), by a somehow tedious computation of the partial derivatives
which we omit, we get

1“t−
1
2

D25F(1−F) DF
(NF)2
6=−N 1r

g(1−rg)
F(1−F)

NF2 (B.6)

Therefore, recalling (4.17), the function rg(t) satisfies

“tr
g=
1
2

Drg−N 1r
g(1−rg)
F(1−F)

NF2 (B.7)

which is precisely (4.14) written in terms of the variable F=F(rg) instead
of f=f(rg).
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