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Abstract. We present a review of recent work on the statistical mechanics of non
equilibrium processes based on the analysis of large deviations properties of microscopic
systems. Stochastic lattice gases are non trivial models of such phenomena and can be
studied rigorously providing a source of challenging mathematical problems. In this
way, some principles of wide validity have been obtained leading to interesting physical
consequences.
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1 A Physicist motivation

In equilibrium statistical mechanics there is a well defined relationship, estab-
lished by Boltzmann, between the probability of a state and its entropy. This fact
was exploited by Einstein to study thermodynamic fluctuations. So far it does
not exist a theory of irreversible processes of the same generality as equilibrium
statistical mechanics and presumably it cannot exist. While in equilibrium the
Gibbs distribution provides all the information and no equation of motion has to
be solved, the dynamics plays the major role in non equilibrium.

When we are out of equilibrium, for example in a stationary state of a system
in contact with two reservoirs, even if the system is in a local equilibrium state so
thatitis possible to define the local thermodynamic variables e.g. density or mag-
netization, itis not completely clear how to define the thermodynamic potentials
like the entropy or the free energy. One possibility, adopting the Boltzmann-
Einstein point of view, is to use fluctuation theory to define their non equilibrium

Received 8 February 2006.



612 L. BERTINI, A. DE SOLE, D. GABRIELLI, G. JONA-LASINIO and C. LANDIM

analogs. In fact, in this way extensive functionals can be obtained although not
necessarily simply additive due to the presence of long range correlations which
seem to be a rather generic feature of non equilibrium systems.

Let us recall the Boltzmann-Einstein theory of equilibrium thermodynamic
fluctuations. The main principle is that the probability of a fluctuation in a
macroscopic region of fixed volumé is

P o exp{V AS/k} (1.1)

where A S is the variation of the specific entropy calculated along a reversible
transformation creating the fluctuation dnid the Boltzmann constant. Eq. (1.1)
was derived by Einstein simply by inverting the Boltzmann relationship between
entropy and probability. He considered (1.1) as a phenomenological definition
of the probability of a state. Einstein theory refers to fluctuations for equilibrium
states, thatis for systems isolated or in contact with reservoirs characterized by the
same chemical potentials. When in contact with resernoBss the variation of

the total entropy (system + reservoirs) which for fluctuations of constant volume
and temperature is equal teAF /T, that is minus the variation of the free
energy of the system divided by the temperature.

We consider a stationary non-equilibrium state (SNS), namely, due to external
fields and/or different chemical potentials at the boundaries, there is a flow of
physical quantities, such as heat, electric charge, chemical substances, across the
system. To start with, it is not always clear that a closed macroscopic dynam-
ical description is possible. If the system can be described by a hydrodynamic
equation, a fact which can be rigorously established in stochastic lattice gases,
a reasonable goal is to find an explicit connection between the thermodynamic
potentials and the dynamical macroscopic properties like transport coefficients.
The study of large fluctuations provides such a connection.

Besides the definition of thermodynamic potentials, in a dynamical setting a
typical question one may ask is the following: what is the most probable trajec-
tory followed by the system in the spontaneous emergence of a fluctuation or in
its relaxation to an equilibrium or a stationary state? To answer this question
one first derives a generalization of the Boltzmann-Einstein formula from which
the most probable trajectory can be calculated by solving a variational principle.
For equilibrium states and small fluctuations an answer to this type of questions
was given by Onsager and Machlup in 1953 [24]. The Onsager-Machlup theory
gives the following result under the assumption of time reversibility of the mi-
croscopic dynamics: the most probable creation and relaxation trajectories of a
fluctuation are one the time reversal of the other.

Bull Braz Math Soc, Vol. 37, N. 4, 2006
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We discuss this issue in the context of stochastic lattice gases in a box of linear
size N with birth and death process at the boundary modeling the reservoirs.
We consider the case when there is only one thermodynamic variable, the local
density denoted by. Its macroscopic evolution is given by the continuity
eqguation

to = V- [D(0)Vp - x(WE] = =V 3(p) (1.2)

whereD(p) is the diffusion matrix (o) the mobility andE the external field.

Here J(p) is the macroscopic instantaneous current associated to the density
profile p. Finally the interaction with the reservoirs appears as boundary condi-
tions to be imposed on solutions of (1.2). We shall denote the macroscopic
space coordinate and lpy= p(u) the unique stationary solution of (1.2), i@.

is the typical density profile for the SNS.

This equation derives from the underlying stochastic dynamics through an
appropriate scaling limit in which the microscopic time and space coordinates
are rescaled diffusively. The hydrodynamic equation (1.2) thus represents the
law of large numbers for the empirical density of the stochastic lattice gas. The
convergence has to be understood in probability with respect to the law of the
stochastic lattice gas. Finally, the initial condition for (1.2) depends on the initial
distribution of particles. Of course many microscopic configurations give rise to
the same initial conditiomg(u).

Let us denote byN the invariant measure of the stochastic lattice gas. The
free energyF (o), defined as a functional of the density profile= p (u), gives
the asymptotic probability of fluctuations of the empirical measutainder the
invariant measureN. More precisely

N (N~ p) ~ exp{ — N F(p)} (1.3)

whered is the dimensionality of the systemN ~ p means closeness in the
weak topology and- denotes logarithmic equivalencelds— co. In the above
formula we omitted the dependence on the temperature since it does not play
any role in our analysis; we also normalizédso thatF (p) = 0.

In the same way, the behavior of space time fluctuations can be described as
follows. Let us denote bi,n the stationary process of the stochastic lattice gas,
i.e. the initial distribution is given by the invariant measube The probability
that the evolution of the random variabté' deviates from the solution of the
hydrodynamic equation and is close to some trajecfpiyg exponentially small
and of the form

Py (N & fr, t € [ty to]) ~ exp{ — Nd[f(ﬁtl) + it (9]} (1.4)
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wherel (p) is a functional which vanishes & is a solution of (1.2) andF (p,)
is the free energy cost to produce the initial density prgfile Thereforel (o)
represents the extra cost necessary to follow the traje@arythe time inter-
val [t1, t2].

To determine the most probable trajectory followed by the system in the spon-
taneous creation of a fluctuation, we consider the following physical situation.
The system is macroscopically in the stationary sfas¢t = —oo but att = 0
we find it in the statep. According to (1.4) the most probable trajectory is the
one that minimized among all trajectorie$; connectingp to p in the time
interval[—o0, 0], that is the optimal path for the variational problem

V(p) = ir})f l[—c0.0(P) (1.5)

The functionalV (p), called the quasi-potential, measures the probability of
the fluctuationp. Moreover, the optimal trajectory for (1.5) determines the
path followed by the system in the creation of the fluctuagonAs shown in

[1, 2, 10] this minimization problem gives the non equilibrium free energy, i.e.

V = F. As we discuss here, by analyzing this variational problem for SNS,
the Onsager-Machlup relationship has to be modified in the following way: the
spontaneous emergence of a macroscopic fluctuation takes place most likely
following a trajectory which can be characterized in terms of the time reversed
process.

Beside the density, a very important observable is the current flux. This quan-
tity gives informations that cannot be recovered from the density because from a
density trajectory we can determine the current trajectory only up to a divergence
free vector field. We emphasize that this is due to the loss of information in the
passage from the microscopic level to the macroscopic one.

To discuss the current fluctuations in the context of stochastic lattice gases, we
introduce the empirical current™ which measures the local net flow of particles.

As for the empirical density, it is possible to prove a dynamical large deviations
principle for the empirical current which is informally stated as follow. Given a
vector fieldj : [0, T] x A — RY, we have

P (wh ~ j(t, w) ~ exp{ — N Zo1y(j)} (1.6)

whereP,n is the law of the stochastic lattice gas with initial condition given by
nN = {nN}, which represents the number of particles in each site, and the rate
functional is

: 17 : :
Tomi(j) = 5/0 dt{[j =31 x(@) ' [i = 3]} @7)
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in which we recall that

J(p) =—-D(P)Vp+ x(p)E.

Moreover,o = p(t, u) is obtained by solving the continuity equati@p+V-j =

0 with the initial conditionp(0) = po associated tgN. The rate functional
vanishes ifj = J(p), so thatp solves (1.2). This is the law of large numbers
for the observable’N. Note that equation (1.7) can be interpreted, in analogy to
the classical Ohm’s law, as the total energy dissipated in the time in{€Va|

by the extra curreni — J(p).

Among the many problems we can discuss within this theory, we study the
fluctuations of the time average of the empirical current over a large time interval.
We show that the probability of observing a time-averaged fluctuakioan be
described by a functiona (J) which we characterize in terms of a variational
problem for the functionaljo T,

) .1 )
o) = T|[)T1OO lfjlf T To11()) » (1.8)

where the infimum is carried over all patlis= j(t, u) having time average

J. We finally analyze the variational problem (1.8) for some stochastic lattice
gas models and show that different scenarios take place. In particular, for the
symmetric exclusion process with periodic boundary condition the optimal tra-
jectory is constant in time. On the other hand for the KMP model [22], also with
periodic boundary conditions, this is not the case: we show that a current path
in the form of a traveling wave leads to a higher probability.

2 Boundary driven simple exclusion process

For an integeN > 1, letAy := {1,..., N — 1}. The sites ofA\ are denoted
by x, y, andz while the macroscopic space variable (points in the intgfyl])

by u. We introduce the microscopic state spaceZas:= {0, 1}*N which is
endowed with the discrete topology; element&@f, called configurations, are
denoted by,. In this wayn(x) € {0, 1} stands for the number of particles at site

x for the configuration.
The one dimensional boundary driven simple exclusion process is the Markov
process on the state spakEq with infinitesimal generator defined as follows.
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Givena, 8 € (0, 1) we let

N2N2

(Ln)o = 72 [f©@*F ) — f(m)]

N2
+ S lefl— M+ I f @t — f1)]
NZ
+ S IBL=n(N=D}+ = pm(N - DI[f Nt — f(p)]

for every functionf : Xy — R. In this formulac*¥Yy is the configuration
obtained fromy by exchanging the occupation variablgx) andn(y):

n(y) if z=x
@@ = nx) if z=y
n@ if z#xy

ando*7 is the configuration obtained fromby flipping the configuration at:

@ N (@) = n@[1 -8zl + ALl—n@],

wheredy y is the Kronecker delta. The parameterg, which affect the birth
and death rates at the two boundaries, represent the densities of the reservoirs.
Without loss of generality, we assurae< B. Notice finally thatL y has been
speeded up biN?; this corresponds to the diffusive scaling.

The Markov proces§y; : t > 0} associated to the generatoy is irreducible.
It has therefore a unique invariant measure, denoted“gy The process is
reversible if and only ife = B, in which caseva is the Bernoulli product
measure with density

o

v i) =1 =
forl<x <N -—1.

If « # B the process is not reversible and the measg'\fg carries long
range correlations. SinCEvNﬂ[LNT)(X)] = 0, it is not difficult to show that

oN(x) = EVN/S[T](X)] is the solution of the linear equation

AnpN(X) =0, 1<x<N-1,
2.1
{pN<0)=a, PNN) =8, 1)
whereAy stands for the discrete Laplacian. Hence
X
p™ () =+ (B-0 (2.2)
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ComputingL nn(X)n(Y), it is also possible to obtain a closed expression for
the correlations

Eon, [n00: n(T = Eyn InCOn(] = En InCOTEN [n(Y)]
As shown in[11, 25], for I x <y < N — 1 we have

(B—a)? X(l y)

N—-1 N\ N

< (2.3)

E,n, [n00; n(y)] = —
Note that, if we take, y at distanceD (N) from the boundary, then the covari-
ance between(x) andn(y) is of orderO(1/N). Moreover the random variables
n(x) andn(y) are negatively correlated. This is the same qualitative behavior
as the one in the canonical Gibbs measure given by the uniform measure on

Snk=1{n€ TN Yng n(x) =Kkl

3 Stationary large deviations of the empirical density

Denote byM, the space of positive measures[Onl] with total mass bounded
by 1. We considemM . endowed with the weak topology. For a configuration
in Ty, letwN be the measure obtained by assigning ms$ to each particle
and rescaling space by

1 N—1
N
= — E X) 8
T (n) N XZl’I( ) x/N

wheres, stands for the Dirac measure concentratedioenote by(zN, H)
the integral of a continuous functidd : [0, 1] — R with respect tor N

\ 1 N-1
(N H) = 5 2 HO/N))
x=1

We use the same notation for the inner produdt #4[0, 1], du). Analogously
we denote the space integral of a functibiy (f) = foldu f(u).

The law of large numbers for the empirical density under the stationary state
va'g is provenin [11, 16, 17].

Theorem 3.1.For every continuous functioH : [0, 1] — R and every > 0,

lim vgfﬁHmN,H)—(/s,H)‘ >3} ~0,

N— o0
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where
p(U) =a(l—u)+ Bu. (3.2)
We remark thap is the solution of the elliptic linear equation
{ Ap=0,

which is the continuous analog of (2.1). Here and belavwstands for the
Laplacian.

Once a law of large numbers has been established, it is natural to consider
the deviations around the typical valge From the explicit expression of the
microscopic correlations (2.3) it is possible to prove a central limit theorem for
the empirical density under the stationary measg“f@ We refer to [25] for a
more detailed discussion and to [19] for the mathematical details.

Fix a profiley : [0, 1] — [0, 1] different fromp and a neighborhood, (y) of
radiuse > 0 around the measuggu)duin M. The mathematical formulation
of the Boltzmann-Einstein formula (1.1) consists in determining the exponential
rate of decay, abl 1 oo, of

vo'[\fﬁ{rrN € VE()/)} .

Derrida, Lebowitz and Speer[12, 13] derived, by explicit computations, the large
deviations principle for the empirical density under the stationary sjf%teThls

result has been obtained by a dynamical/variational approach in [2], a rigorous
proof is given in [3]. The precise statement is the following.

Theorem 3.2.For each profiley : [0, 1] — [0, 1],

Ilmsupllmsup Iogvaﬂ{n eV.iy)} = —F»).

e—0 N—o0

lim inf lim inf %Iogvaﬁ{n eV.(n)} = -F»),

e—0 N— o0

where
F0) = [ au[ywiogZY
e >)/(U) F'(u) 52
+ [1—-y(W] Iogl_ FO) +Iog/g .

andF e C1([0, 1)) is the unique increasing solution of the non linear boundary
value problem

" o__ (F/)z
F=0-Feics (3-3)
FO=a. F=4.
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It is interesting to compare the large deviation properties of the stationary
stateua“fl3 with the one ofuo'jﬁ, the product measure dby which has the same
marginals asvoﬁfﬁ, ie.

o gl 00 =1} = pN (%),

wherepN is given by (2.2). Itis not difficult to show that in this case

lim suplim sup1 loguy s {7 € Ve()} = —Foy) .
e—0 N— o0 N ' (34)

I RN
Ilrgn_)lgf |I,(|11_J£]Of Nlogua,ﬂ{n eV.(»} = —Foly) .
where

! y (U) 1-y(u)

Fo¥) /O du {y(u) log sw T Eorwl log T— ,5(u)} (3.5)
andp is given in (3.1). Notice that the functiondly is local while F is not.
Moreover, it is not difficult to show [3, 13] thafy < F. Therefore, fluctuations
have less probability for the stationary stagéﬂ than for the product measure
M(';{ﬁ. This bound reflects at the large deviations level the negative correlations
observed in (2.3).

4 Diffusivity, Mobility and Einstein relation

The large deviation principle presented in the previous section holds for a gen-
eral class of interacting particle systems. To state these results we introduce
two thermodynamical quantities which describe the macroscopic time evolution
of the system. To avoid an interminable sequence of definition, notation and
assumptions, we will be vague in the description of the dynamics.

Consider a boundary driven interacting particle system evolvingz6n,
whereE is a subset o, , and having an hydrodynamic scaling limit with a
diffusive rescaling. Assume that the total number of particles is the unique lo-
cally conserved quantity. For fixed parameters @ < 8, denote byizc[‘fﬂ the
unique stationary state whose density on the left (resp. right) boundary is
(resp.B).

For 0 < x < N — 1, denote byQ}*™* the net flow of particles through the
bond{x, x + 1} in themicroscopidime interval[0, t]. This is the total number
of particles which jumped from to X 4+ 1 in the time interva[0, t] minus the
total number of particles which jumped fromt- 1 tox in the same time interval.
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Microscopic means that time has not been rescalad.<If8, we expecQ}*

to be of ordetN~1(8 — ), while for 8 = «, we expect(Q}**)2 to be of
ordert.

Let C(E) be the convex hull ofe. The diffusivity D : C(E) — R, is
defined by

D(x) = lim lim LIEVaNﬂ[ ?’XH],

Iﬁ!ux N—ooo t(a — ,3)

and the mobilityx : C(E) — R, is defined by

. 1
x(@ = lim S [(QH7],

The diffusivity and the mobility are related through the Einstein relation
1
Do) = —x(o),
o(x)
whereo (@) is the static compressibility given by

o@ = lim »  En[n00:n(N/2)] .

XEAN

Below is a list of the diffusivity and the mobility of different models. Here
® : R, — R, is a smooth strictly increasing function aad R, — R, isa
smooth strictly positivéunction.

D (@) X (@)
Exclusion 1 a(l—a)
Zero-range D' () O (a)
Ginzbug-Landau | a(x) 1
KMP 1 o’

The law of large numbers for the empirical measure under the stationary state
vo')fﬂ, presented in the previous section for the symmetric exclusion process, holds
for a large class of models. It takes the following form. For every continuous
functionH : [0, 1] — R, and everny > 0,

lim vy, { |z, H) — (5. H)| > 8} = 0,

N—o00
wherep is the unique weak solution of the elliptic equation
V[D(p)Vp] = 0,

4.1)
p0) =a, p@l) =p.
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A large deviations principle for the empirical measure under the equilibrium
statev | similar to (3.4), also holds. The large deviations rate functfgris

o,

given by

1
Foly) = fo [y (W R (W) — log Zy(Ry (v (W)} du,

whereR, : C(E) — R is given by

. 1 . Z,0)
R.(0) = / S v and 2@ = 1. 20 = RO). (42)
In particular,
1)
T _ Ry
Y

The stationary law of large numbers and the equilibrium large deviations can
be proved in all dimensions, using, for example, the arguments of the following
sections. In higher dimension, we consider particles evolving.gnx TS 2,
whereT, is a discretal-dimensional torus witthN® points and assume that the
system is in contact at both extremities

xe AN xTh ixa =1}, {xe AN x Ty i x =N -1}

with infinite reservoirs at different densities.

The goal of the next sections is to prove a large deviations principle for the
empirical measure under the stationary st@tgthrough a dynamical approach
and to identify the rate function.

5 Hydrodynamics and dynamical large deviations of the density

We discuss the asymptotic behaviorNas> oo, of the evolution of the empirical
density. Denote bynN : t > 0} a Markov process introduced in the previous
section, accelerated by a facth?, and letrN = 7#N(»N). Fix a profiley :
[0, 1] — [0,1] and assumethatON converges ter (u)yduasN 4 oco. Observing
the time evolution of the process, we expegtto relax to the stationary profile
p(wduaccording to some trajectopy(u)du. This result, stated in Theorem 5.1
below, is usually referred to as the hydrodynamic limit. It has been proved for the
boundary driven simple exclusion process [16, 17], but the approach, based on
the entropy method, can be adapted to the non-gradient models in any dimension.
Fix T > 0 and denote, respectively, iy([0, T], M, ), D([0, T], =n) the
space ofM, -valued, X y-valued cadlag functions endowed with the Skorohod

Bull Braz Math Soc, Vol. 37, N. 4, 2006



622 L. BERTINI, A. DE SOLE, D. GABRIELLI, G. JONA-LASINIO and C. LANDIM

topology. For a configuratiom" in Xy, denote by, n the probability onthe path
spaceD([0, T], Zy) induced by the initial stateN and the Markov dynamics.

Theorem 5.1.Fix a profiley : [0, 1] — [0, 1] and a sequence of configurations
nN such thatrN (»N) converges ter (u)du, asN 1 oo. Then, for each > 0, =\
converges irP,n-probability to oy (u)duas N 1 oco. Here p(u) is the solution
of the parabolic equation

opr = (1/2V[D(p)Ver] ,
oo =7, (5.1)
pt(0) = a, p(D=4.

In other words, for each, T > 0 and each continuous functid# : [0, 1] - R
we have

lim P [ sup [(7, H) — (o, H)| > 8| = 0.
N— o0 te[0,T]

Equation (5.1) describes the relaxation path fromo o sincep; converges to
the stationary patp ast 1 oo. To examine the fluctuations paths, we need first
to describe the large deviations of the trajectories in a fixed time interval. This
result requires some notation.

Fix a profiley bounded away from 0 and 1: for sorie> 0 we haves <
y < 1—4 du-a.e. Denote by, the following subset oD([0, T], M,). A
trajectoryr, t € [0, T]isinC, ifitis continuous and, forarty < [0, T], we have
m(du) = A (u)du for some density (u) € [0, 1] which satisfies the boundary
conditionsig = y, A (0) = a, A;(1) = B. The latter are to be understood in the
sense that, for eadhe [0, T],

1 1t
Igirgg fo duii(u) =«o, Ig?gg Hdukt(u):ﬂ.

We define a functionaljo t1(-|y) on D([O, T], M) by settinglo1)(|y) =
+ooif m ¢ C, and by a variational expression fere C,. Referring to [3, Eq.
(2.4)—(2.5)] for the precise definition, here we note that {Hlu) = A;(u)dufor
some smooth densitywe have

1 T 1
omtely) = 5 /0 dt /0 du x (e (W) [VH W] (5.2)

Here, x is the mobility introduced in the previous section atdis the unique
solution of
it = (1/2VID() VA — V[x (i) VH], (5.3)

Bull Braz Math Soc, Vol. 37, N. 4, 2006



DYNAMICAL LARGE DEVIATIONS IN STOCHASTIC LATTICE GASES 623

with the boundary conditionsl; (0) = H;(1) = 0 for anyt € [0, T]. As before,
V stands for%. Hence, to computgo 1,(rr|y), we first solve equation (5.3) in
H and then plug itin (5.2).

The rate function o 1, should be understood as follows. Fix a smooth function
H : [0, T] x [0, 1] — R vanishing at the boundaty = 0, u = 1. If particles
where performing random walks with jump rates'2) + N=1(VH)(t, x/N)
to the right and1/2) — N~Y(VH)(t, x/N) to the left, the hydrodynamic equa-
tion would be

hrt = (1/2V[D()VA] — V[x(A)VH] .

Thus, fori; fixed, one finds an external field which turnsx a typical trajec-
tory. To prove the large deviations principle, it remains to compute the cost for
observing the trajectory, which is given by the relative entropy of the dynamics
in which particles jump with rate€l/2) £ N~1(VH)(t, x/N) with respect to

the original dynamics in which particles jump with constant ra 1t has been
shown [14, 23] that this entropy is asymptotically equalor(A).

The following theorem states the dynamical large deviation principle for
boundary driven interacting particle systems. It has been proven in [3] for
boundary driven symmetric exclusion processes by developing the techniques
introduced in [14, 23].

Theorem 5.2. Fix T > 0 and a profiley bounded away fror® and1. Con-
sider a sequencg" of configurations associated foin the sense thatN (»V)
converges tyy(uyduasN 1 oco. Fixw in D([0, T], M) and a neighborhood
V. () of & of radiuse. Then

IA

. . 1
lim suplim Sup logPn {7 e Ve(m)} < —lori(nly) ,

e—0 N— o0

T
lim |(r)1f "HL'L‘J N logP,n {7 € Vo(m)} = —lpom(nly) .

E—>

We may now formulate the following exit problem. Fix a profileand a path
7 such thatrg = pdu, 7+ = y du. The functionall|o1,(r|p) measures the
cost of observing the path. Therefore,

inf 10710 |0)
7 =ydu
measures the cost of joiningto y in the time interval0, T] and

V(y) = Efomlgdu lio,T1(|p) (5.4)
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measures the cost of observipgstarting from the stationary profile. The
functionalV is called the quasi-potential.

The quasi-potential is the rate functional of the large deviations principle for
the empirical density under the stationary stq')f%. This fact, expected to be
generally true, establishes a relation between a purely dynamical functional, the
guasi-potential, and a purely static functional, the large deviation rate function
under the stationary state.

This result has been proved by Bodineau and Giacomin [10], in the sequel of
the work of Bertini et al. [1, 2], adapting to the infinite dimensional setting the
method introduced by Freidlin and Wentzell [18] in the context of small perturba-
tions of dynamical systems. Bodineau and Giacomin proved-dimensional
boundary driven symmetric simple exclusion processes the following theorem.

Theorem 5.3. Let l|g1) be the rate function in Theorem 5.2 and define the
qguasi-potential as in(5.4). Then the empirical density under the stationary
state satisfies a large deviation principle with rate functional given by the quasi-
potential.

The method of the proof applies to other particle systems provided one is able
to show that the dynamical rate functidg r; is convex, lower semi-continuous
and has compact level sets.

Theorem 5.3 is not totally satisfactory, as the large deviations rate function
is given by a variational formula. There are two classes of boundary driven
examples (illustrated respectively in section 6.4 and 6.5), however, where one
can exhibit the path; which solves (5.4) and derive an explicit description of the
guasi-potential, as the one given in Theorem 3.2 for the boundary driven simple
exclusion process. Both class of examples are one-dimensional and include the
(also weakly asymmetric) simple exclusion process, the zero range processes,
the Ginzburg-Landau processes and the KMP model [1, 7, 15].

6 Dynamical approach to stationary large deviations

In this section we characterize the optimal path for the variational problem
(5.4) and derive an explicit formula for the quasi-potential for two classses of
one-dimensional boundary-driven interacting particle systems. Unless explic-
itly stated, the arguments presented in this section hold for interacting particle
systems under general assumptions. To simplify the notation, given a density
pathm € D([0, T]; M) such thatr; is absolutely continuous with respect to
the Lebesgue measure for eachk [0, T], 7;(du) = A(u)du, we shall write
lio.T1(A]y) instead ofl o 11(r |y).
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6.1 The reversible case

Let ¢ (u) be the optimal path for the variational problem (5.4) on the interval
(—o0, Olinstead of0, c0). Inthereversible case,= 8, from Onsager-Machlup
we expect that it is equal to the time reversal of the relaxation trajegiony
solution of (5.1):(u) = p_¢(u). We show that this is indeed the case.

The cost of the patlp is not difficult to compute. By definition op and
by (5.1),0t¢r = —(1/2)V[D(¢t)Ver]. In particular, ifo () stands for the static
compressibilityVH; = o (¢;) V¢, solves (5.3) so that

1 0 1 D 2
o) = 5 /_ dt /O du x(g) (V)2 -

Recall from (4.2) the definition oR,. SinceR, = D/x, we may rewrite
the integrand a® () Vo x VR, (). SinceR,(a) = 0 and sincep(t, 0) =
p(t, 1) = o, we may integrate by parts in space to obtain that

1 0 1
lo0(@15) = —5/ dt/0 duv [D(g) Ve Ru(ey) -

Sincedip = —(1/2)V[D(¢r) V], and sincé Fo(p) /8¢ = R, (¢), the previous
expression is equal to

0 1 S 0 d
/ dt/ dugy 3;0(%) = / dt — Foler)
—00 0 Pt —00 dt

= Folwo) — Fol¢-0)
= Fo(y)

becausefo(p) = 0. This proves tha/ < Fo.

The proof of Lemma 6.1 below, Wit R, (1;) instead of V{§W(r;)/dA¢},
shows that the cost of any trajectoky joining p to a profiley in the time
interval[Q, T] is greater or equal t§Fo(y):

lomi(A1p) = Fo(y) .

In particular, the trajectory is optimal anaV (y) = Fo(y).

6.2 The Hamilton-Jacobi equation

We have seen in Subsection 6.1 that the optimal path for reversible systems is the
relaxation path reversed in time. In the non reversible case, the problem is much
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more difficult and, in general, we do not expect to find the solution in a closed
form. We first derive a Hamilton-Jacobi equation for the quasi-potential by
interpreting the large deviation rate functiomalr;(-|0) as an action functional

i} 17 1 1 . 2
on@lp) = 5 [ dt [ du— (v - /290G VA

T .
= / dt.ﬁ()v[,)»t) .
0

The quasi-potentia¥ may therefore be written as

T

AT=y
From this variational formula, taking the Legendre transform of the Lagrangian,
we derive the Hamilton-Jacobi equation for the quasi-potential:

sV (y) SV (y) SV(y)
<V Sy XV 3y >+< Sy

VID()Vyl) =0 (62)

andéV (y) /8§y vanishes at the boundary.

One is tempted to solve the Hamilton-Jacobi to find the quasi-potential and
then to look for a trajectory whose cost is given by the quasi-potential. The
problem is not that simple, however, because the theory of infinite dimensional
Hamilton-Jacobi equations is not well established. Moreover, it is well known
that, even in finite dimension the solution may develop caustics in correspon-
dence to the Lagrangian singularities of the unstable manifold associated to the
stationary solutiorp, see e.g. [20]. Finally, the Hamilton-Jacobi equation has
more than one solution. In particular, even if one is able to exhibit a solution,
one still needs to show that the candidate solves the variational problem (6.1).

The next lemma shows that a solutidh of the Hamilton-Jacobi equation is
always smaller or equal than the quasi-potential:

Lemma 6.1. Let W be a solution of the Hamilton-Jacobi equatif$2). Then,
W(y) — W(p) < V(y) for all profilesy.

Sketch of the proof. Fix T > 0, a profiley, and consider a pathin C; such
thatit = y. We need to show that

lo(Ap) = W(y) — W(p).
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The functionall | 11(1|p) can be rewritten as

2, ot fon v

+ /OT dt (x () (VH) (ngjsl;fit))> - %/OT dt(X(“){VW:T(?t)r)'

(6.3)

SincesW(1y)/8A¢ vanishes at the boundary, an integration by parts gives that
the second integral is equal to

T J8W(w)
_/O dt (=52 V(G VHY)

t

SinceW is a solution of the Hamilton-Jacobi equation, the third integral is
equal to

T ISW(w)
/(;dt< = ,(l/Z)V{D(At)VAt}>.

t

Summing this two expressions and keeping in mind tHasolves (5.3), we
obtain thatl|o 1)(1|p) is greater than or equal to

T 8W(Oy) - _

[ at(T50 ) = W) - W) = W) - W)
0 t

This proves the lemma. O

To get an identity in the previous lemma, we need the first term in (6.3) to
vanish. This corresponds to haVeH;, = V&V (A;)/3A¢, i.e. to find a pathh
which is the solution of

SV()\t)} .

it = (1/2)V (DG V) = V{x G V=
t

Its time reversaly; = A_,t € [-T, 0] solves

5V(Wt)} ,

din = —(L/DV (DY) + V{x )V
i (6.4)

vt =y,
Vi) = a, YD) =8.

As we argue in the next subsection, equation (6.4) corresponds to the hydro-
dynamic limit of the empirical density under the time reversed dynamics; this is
the Markov process oRy whose generator is the adjointli in Lo(Zn, vo'l\fﬂ).
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The next lemma shows that a weakly lower semi-continuous solitiaof
the Hamilton-Jacobi equation is an upper bound for the quasi-pot&hiiane
can prove that the solution of (6.4) relax to the stationary prefile

Lemma 6.2. Let W be a solution of the Hamilton-Jacobi equatif$2), lower
semi-continuous for the weak topology. Fix a profileLety; be the solution
of (6.4)with V replaced byW. If y¢ convergess for T 4 oo, thenV(y) <
W(y) — W(p).

Sketch of the proof. To prove the lemma, given > 0, it is enough to find
T, > 0 and a patly; such that

o =p, or. =7V, lonilelp) <W(y)—W(p)+e.

Fix T > 0 and lety; be the solution of equation (6.4) in the time interval
[T, —1] with initial conditiony_t = y. Consider then an appropriate in-
terpolation betweeny_; and p which we again denoté, t € [—1,0]. Let

¢t = Y_, which is defined in the time intervgd, T]. By definition of ;o 1y,

loTi(0lp) = lpyulelp) + lpmlelv-1) .

Sincey_;1 convergestg asT 4 oo, the firstterm can be made as small as we want
by takingT large. The second one, by definitionyaf and by the computations
performed in the proof of Lemma 6.1, is equal\é(y) — W(y¥_1). Since
¥_1 converges t@ and sinceW is lower semi-continuous we haW(p) <
liminfr_ . W(¥_1). Hence

Ii;n suplioTi(elp) < W(y) —W(p).

This proves the lemma. O
Putting together the two previous lemmata, we get the following statement.

Theorem 6.3.LetW be a solution of the Hamilton-Jacobi equation, lower semi-
continuous for the weak topology. Suppose that the solutiaf (6.4), with V
replaced by, is such that) converges tg asT 1 oo for any initial profile

y. ThenV (y) = W(y) — W(p). Moreover,g; = {_; is the optimal path for
the variational problen{6.1)defined in the interval—oo, 0] instead of 0, o).

6.3 Adjoint hydrodynamic equation

We have just seen that equation (6.4) plays an important role in the derivation of
the quasi-potential. We show in this subsection that (6.4) describes in fact the
evolution of the density profile under the adjoint dynamics.
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Consider a diffusive interacting particle systefh satisfying the following
assumptions.

(H1) The limiting evolution of the empirical density is described by a differential
equation

dp =D(p) ,

whereD is a differential operator. In the symmetric simple exclusion
processD(p) = (1/2) Ap.

(H2) Denote bygN = N, the time-reversed process. The limiting evolution of
its empirical density is also described by a differential equation

dp =D*(p) (6.5)
for some integro-differential operat@*.

(H3) The empirical densities satisfy a dynamical large deviations principle with
rate functions

[l o). 122

where D! = D andD? = D* for the original and the time-reversed
processes, respectively.

Under assumptions (H1)-(H3), in [1, 2] it is shown that
Y
Dip) + D) = V(x(0)V5-). (6.6)
0
In this general context, equation (6.4) takes the form
Y .
hp = =D(p)+V(x(PVL) = Do) .
0
Therefore, under the above assumptions on the dynamics, the solution of (6.4)
represents the hydrodynamic limit of the empirical density under the adjoint

dynamics. In particular, the following principle extends the Onsager-Machlup
theory to irreversible systems.

Principle: For non reversible systems, the typical path which creates a fluctua-
tion is the time-reversed relaxation path of the adjoint dynamics.
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6.4 Explicit formula for the quasi-potential if x'(a¢) = CD(«x)

We obtain in this section a solution of the Hamilton-Jacobi equation which satis-
fies the assumption of Theorem 6.3 in the case whéie) = C D(«) for some
non-negative consta@. This class includes zero-range and Ginzburg-Landau
processes. In these two cases the stationary lslif%tés a product measure and

a stationary large deviations principle for the empirical measure can be proved
directly.

Theorem 6.4.Assume thag’(«) = C D(«) for some non-negative constadt
Then,
Zy(R:(¥)) .

1
V = — o)} — | i
») /0 PR = RD) —log 3 2

Notice that in this case the quasi-potential is an additive function and corre-
sponds to the rate function (3.5) (for the exclusion process) one would obtain if
the stationary state%\f s Were product measures.

Proof. Denote byW(y) the right hand side of the previous formula. To show
thatW is equal to the quasi-potential, we just need to check the three assumptions
of Theorem 6.3. We first show th¥lf solves the Hamilton-Jacobi equation.
Assume thaC # 0. The proof forC = 0 is similar. An elementary compu-
tation shows thatsW/sy} = Ry(y) — Ru(p). SinceR,(y) = D(y)/x(y) =
C1x'(y)/x(y) and sinceR,(y) — R,(p) vanishes at the boundary, an inte-
gration by parts show that the left hand side of (6.2) vifithin place ofV is
equal to

é{{x(y){vx(y) B Vx(ﬁ)}2> B <{Vx(y) _ Vx(p)

X 1) T W ALLR)]

_ _i<[VX(V) = VX@IVx(®) | V@ X(V)[Vx(ﬁ)]2>
Cc? x(P) x(P) x(9)?

Sincey andp take the same value at the boundary, we may integrate by parts
the first term to get that the previous expression is equal to

1 _ Ax(p)
C2< x() —x(@} <) > -
The previous expression vanishes becangéo) = CV[D(p)Vp] = 0.

Since it is easy to check th&¥ is lower-semicontinuous, it remains to show
that the solutions of the adjoint hydrodynamic equation relax to the stationary

Bull Braz Math Soc, Vol. 37, N. 4, 2006



DYNAMICAL LARGE DEVIATIONS IN STOCHASTIC LATTICE GASES 631

statep. Since{dW/8y} = R,(y) — R,(p), the adjoint hydrodynamic equation
(6.4) takes the form

D(p) -
d = (/2VIDWVH — V{xwo— 2 V5.
x(p)
It is easy to check that the solution of this equation for any initial condition
relaxes to equilibrium. This concludes the proof of the theorem. d

The adjoint hydrodynamic equation can be written as

dn = 12V D@V - V{xWOVRM)] .

Therefore, in order to obtain the adjoint hydrodynamic equation from the original
hydrodynamic equation, one needs to add a weak externaNiel®, (o) to the
dynamics. Remark that the external field does not depend on the profildnis
property is rather peculiar and explains the simplicity of the quasi-potential.

6.5 Explicit formula for the quasi-potential if x(«) = ag + ay + aa?,
D=1

We obtain in this subsection a solution of the Hamilton-Jacobi equation which

satisfies the assumptions of Theorem 6.3 in the case where the diffusivity is

constant and the mobility is equal to a second order polynonidaly) = 1,

x(a) = ag + asr + axr®. We may assume without loss of generality that

a; # 0, otherwise the system satisfy the conditions of the previous subsection.

This class includes exclusion processes and the KMP model.

Theorem 6.5.Assume thab («) = 1, x (&) = @ + a1 + aa?, ap # 0. Then,
ZoR(y)) _ 1 F
Zy(R(F)) @& " p-«
whereF is the unique increasing solution of

AF F—y

9

1
V(y) = /O y{Re(¥) — Ru(F)} —log

VFZ ~ 25F)

(6.7)
FO=a, FQ)=8.

Proof. For a density profiler and a smooth increasing functién let

F) = —R.(F)) —1| —Z__| I
Gy, F) fo Y{Ru(y) — Ry(F)} — log Z.R(F) 3 3
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andletW(y) = G(y, F(y)), whereF (y) is the solution of (6.7). An elementary
computation shows thaG(y, F)/8F vanishes aF = F(y) for all y because
F solves (6.7). In particulasW/§y = R,(y) — R, (F).

We claim thatR,(y) — R,(F) solves the Hamilton-Jacobi equation (6.2).
SinceR, = D/x and sincey and F assume the same value at the boundary,
after an integration by parts, we get that the left hand side of (6.2) Witin
place ofV is given by

55— ) - (55 -] ) -
ORI OERIGI N

VF VF \?
vy —vEl (= F) — :
<{V }mm+(mm){“) “”W

Sincey — F vanishes at the boundary, we may integrate by parts the first ex-
pression to get that the previous integral is equal to

VF VF \* x(F) = x(@)
=01 () * em) )
<V { GYARNIG YA =
The expression inside braces vanishes beckusehe solution of (6.7).
We now prove that the solutions of the adjoint hydrodynamic equation relax
to the stationary profil@é.

SincesW/sy = R,(y) — R, (F), the adjoint hydrodynamic equation (6.4)
takes the form

he = (/A% — V{xWoVR.(F)} , (6.8)

whereF is the solution of (6.7) withy = .

Observe that this equation gives an interpretation of the fundtiappear-
ing in the equation (3.3)For a fixed profiley, R,(F(y)) is the external field
one needs to introduce to transform the hydrodynamic equation into the adjoint
hydrodynamic equationin contrast with the examples discussed in Subsection
6.4, the external field now depends on the profile.

On the other hand, it seems hopeless to prove that the solution of the adjoint
hydrodynamic equation relaxesgsince(y, F;) solves a coupled of non-linear
equation (6.7), (6.8). This means that for each fixed timee need to solve
(6.7) with y = ¢, and then plug the solutioR; in (6.8) to obtain the time
evolution ofi;.
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A miracle, however, takes place. Taking time derivative in (6.7), it is not
difficult to show thatF; is solution of the heat equation! Thus, if for a fixed
profile y we defineF;, by

oF = %AFt
F () = «a, F(() = B,
Fo = F(y),

whereF (y) is the solution of (6.7)y; defined by

W =R+ xR GEwe

solves the adjoint hydrodynamic equation (6.8).

We have thus shown how a solution of the (non local, non linear) equation
(6.8) can be obtained from the linear heat equation by performing the non local
transformation (6.7) on the initial datum. In particular, since the solUtgn)
of the heat equation convergestas> oo to p, we see that the solution of the
adjoint hydrodynamic relaxes to the stationary density prgfile

To complete the proof, it remains to check thtis lower semi-continuous.
This follows from the fact thadV can be defined through a supremum or infimum
in F of G(y, F) (cf. [2, 3, 7]). O

7 Asymptotic behavior of the empirical current

We examine in this section the current fluctuations over a fixed macroscopic time
interval. In particular we discuss the law of large numbers and the dynamical
large deviations principle for the empirical current. We state these results in the
context of the boundary driven symmetric exclusion process but similar results
hold for more general dynamics and for periodic boundary conditions.
Consider the boundary driven symmetric simple exclusion process defined in
Section 2. For O0< x < N — 1, denote byjx x+1 the rate at which a particle
jumps fromx to x 4+ 1 minus the rate at which a particle jumps frer- 1 to x.
Forx = 0, this is the rate at which a particle is created minus the rate at which a
particle leaves the system. A similar interpretation holds at the right boundary.
An elementary computation shows that

a—n(l) for x=0,
jxxi1 = N2 n(x) —n(x+1) for 1<x<N-2,
n(IN—=1)—p8 for x=N—-1
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In view of (2.2), under the invariant measuxj}éfﬂ, the average Ofx x11 IS
Eu;\fﬁ[jx,x—kl] = N(a — B)

Given a bondx, x + 1}, 0 < x < N — 1, let J**™* (resp. J****) be the
number of particles that have jumped fronto x 4+ 1 (resp.x + 1 to x) in the
time interval[0, t]. Here we adopt the convention that! is the number of
particles created at 1 and that! represents the number of particles that left
the system from 1. A similar convention is adopted at the right boundary. The
differenceW ™ = J***1 _ 3**1Xis the net number of particles flown across
the bond{x, x + 1} in the time interval[0, t]. Let us consider the stationary

processtNﬁ, i.e. the boundary driven symmetric simple exclusion process in
which the initial condition is distributed according to the invariant measouge
A simple martingale computation shows thgf*™ /(Nt) converges, as— oo,
to (« — B) in probability. Namely, foreachl > 1,x =0, ..., N—-1,and$ > 0O,

we have
X, X+1

lim P HW‘ —(a—ﬁ)‘ . 5] ~0.

t>oo Yap Nt
Let M be the space of bounded signed measure®oh] endowed with the
weak topology. Fot > 0, define theempirical integrated currentWN € M
as the finite signed measure [ 1] induced by the net flow of particles in the
time interval[O, t]:

N-1
VVtN — N_ZZVVtX’)H_lSX/N .
x=0
Notice the extra factoN~! in the normalizing constant which corresponds to
the diffusive rescaling of time. In particular, for a functiénin C([0, 1]), the
integral of F with respect toA/N, also denoted bywN, F), is given by

N-1
(WY, F) = N72)° F(x/N) Wt (7.1)
x=0
It is not difficult to prove the law of large numbers for the empirical current
starting from an initial configuration associated to a density profile.

Proposition 7.1. Fix a profiley and consider a sequence of configuratiaf's
such thatr N (»N) converges tor (u)du, asN 1 co. Let p be the solution of the
heat equatior(5.1). Then, foreacll > 0,6 > 0andF in C([0, 1)),

N— o0

T 1
lim PnNH<WTN,F> + (1/2)/0 dt/o F(U)V,ot(u)du‘ >3] — 0.
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This result states that the empirical curréwt’ converges to the time integral
of —(1/2)V p;(u), which is the instantaneous current associated to the pgefile
Thus, if we denote bw(y) = —(1/2)Vy the instantaneous current of a profile
y, we have that

t
lim WN = / dsw(ps)
N—o0 0

in probability. Proposition 7.1 is easy to understand. The local conservation of
the number of particles is expressed by

Nt (X) — no(X) = V\/tX—l,X _ \Ntx,x+1 ‘

It gives the following continuity equation for the empirical density and current.
Let G : [0,1] — R be a smooth function vanishing at the boundary and let
(VNG)(X/N) = N{G(X + 1/N) — G(X/N)}. Then,

(N, G) — (13!, G) = (W, VNG) .

The previous identity shows that the empirical density at ticen be recovered
from the initial state and the empirical current at titnén contrast, the empirical
density at timé and at time 0 determines the empirical current at tiraely up
to a constant. Lettingl 1 oo in the previous identity, since™ converges to the
solution of the heat equation (5.1), an integration by parts gives that

1t 1t
(W, VG) = (o1, G) — (po. G) = 5/0 ds(Aps, G) = _E/o ds(Vps, VG) .

whereW is the limit of WN.

After proving this law of large numbers for the current, we examine its large
deviations properties. To state a large deviations principle for the current we
need to introduce some notation. Fix > 0 and recall that we denote by
w(y) = —(1/2)Vy the instantaneous current associgtedror a density profile
y and a pathW in D([0, T], M), denote byw; = W, and Iet,ot’”’W the weak
solution of

dpt + Vuwy = 0,
po(U) = y(U), (7.2)
pt(0) =a, pd) = B.

We note that the trajectom)(’w is the one followed by the density profile if the
initial condition isy and the instantaneous currentuis As for the empirical
density, the rate functional for the empirical current is given by a variational
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expression. Referring to [6] for the precise definition, we here note that for
trajectoriesW in D([0, T], M) the rate functional is finite only if the associated
density patr)oﬁ”wdu belongs taC ([0, T], M), moreover wheW is a smooth
path we have

17 1 . w12
ToT(Wly) = —/ dt< W —w(p!™) > ) (7.3)
2Jo  \x(p!™ { }
The following theorem is proven in [6] in the case of periodic boundary con-
dition. The proof can easily be modified to cover the present setting of the
boundary driven simple exclusion process.

Theorem 7.2. Fix T > 0 and a smooth profiler bounded away fron® and
1. Consider a sequenog' of configurations associated foin the sense that
NNy converges toy(uydu as N 4 oo. Fix W in D([0, T], M) and an
associated neighborhodd. (W) of radiuse. Then,

IA

1
lim suplim Sup logP,n {WN € V.(W)} < —Tom(W(y) ,

e—0 N— o0

e—>0 N-ooo

1
lim inf lim inf N logP,n {WN € V.(W)} > —To1(W]y) .

Since the trajectory of the empirical density can be recovered from the evolu-
tion of the current and the initial condition, the large deviations principle for the
empirical density stated in Theorem 5.2 can be obtained from the large deviations
principle for the current by the contraction principle, see [6] for the proof.

8 Large deviations of the time averaged empirical current

Inthis section we investigate the large deviations properties of the mean empirical
currentWTN/T as we leffirst N — oo andthenT — oo. As before, unless
stated explicitly, the analysis carried out in this section does not depend on the
details of the symmetric simple exclusion process so that it holds in a general
setting.

Since the density is bounded, forlarge the time averaged empirical current
must be constant with respect to the space variablehis holds in the present
one-dimensional setting; in higher dimensions the condition required would be
the vanishing of the divergence. Indeed, if this condition were not satisfied we
would have an unbounded (either positive or negative) accumulation of particles.
We next discuss the asymptotic probability that the time averaged empirical
current equals some fixed constant.
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For a smooth profiler bounded away from 0 and 1, &t : M — [0, +00]
be the functional defined by

1
5(3) _ %rlfo? Wj:rjqu‘q Tro.11(W|y) if J(du) = g du forsomeq € R

400 otherwise

(8.1)

where At 4 stands for the set of currents with time average equal to
1 (7, ..
Arqi=|W e D(10, Tl M) : ?/ dtVik@duw = qdul .
0

Itis not difficult to show tha is convex. Inthe present context of the boundary
driven simple exclusion process, it is also easy to verify that the functi®nal
does not depend on on the initial conditipn We emphasize however that, in
the case of periodic boundary conditiandepends ory only through its total
mass/duy(u). Indeed, we may start by driving the empirical density from a
profile y to a profiley’ in the time interval0, 1] paying a finite price, note that
in the periodic casg andy’ must have the same mass. Rst oo, this initial
cost vanishes and the problem is reduced to the original one starting from the
profile y’. Let us finally introducep as the lower semi-continuous envelope of
P, i.e. the largest lower semi-continuous function belbw The next theorem
states that, as we let firtt 1 oo and thenT 1 oo the time averaged empirical
currentW'/ T satisfies a large deviation principle with rate functién We
refer to [6] for the proof which is carried out by analyzing the variational problem
infwear T-17071(W|y) asT 4 oo and showing that it converges, in a suitable
sense, to the variational problem definidg

Theorem 8.1. Fix T > 0 and a smooth profiler bounded away fron® and
1. Consider a sequenog" of configurations associated o in the sense that
NNy converges ter (u)yduasN 4 oco. Fix J € M and a neighborhoo¥, (J)
of radiuse. Then,

lim suplim suplim sup_l_1 logP N[leN € VS(J)] < —-®(J),

e—0 T—->o0 N->oo

1 1
liminf liminf lim inf N logP N[ W e VS(J)] > —d(J).

e—>0 T—oo N-—oo

Aresultanalogous to Theorem 8.1 can be proven for other diffusive interacting
particle systems. Consider a system with a weak externaliietdE (u), whose
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hydrodynamic equation, describing the evolution of the empirical density on the
macroscopic scale, has the form

dpe = V(D(p)Ver) — V(x (p)E) . (8.2)

whereD(p) is the diffusion coefficient ang (p) is the mobility. For the sym-
metric simple exclusion proce§s = 1/2 andy (p) = p(1 — p). In the general
case, the large deviations functiorfg) 1;(-|y) has the same form (7.3) with
w(y) = —D()Vy + x(»)E and p”W the solution of (7.2). For systems
with periodic boundary conditions, the boundary conditions in (7.2) is modi-
fied accordingly. In the remaining part of this section we analyze the variational
problem (8.1) for different systems and show that different scenarios are possible.
A possible strategy for minimizingo t;(w|y) with the constraint thai <
At g, i.€. that the time average of is fixed, consists in driving the empirical
density to a density profilg*, remaining there most the time and forcing the
associated current to be equalgo This is the strategy originally proposed by
Bodineau and Derrida [8]. In view of (7.3) the asymptotic costT afs oo, of
this strategy is

1
S(la+ Do) vy] —=[a+ D).

x(¥*)
If we minimize this quantity over all profileg* we obtain a functionadl which
gives the cost of keeping a currenat a fixed density profile:

.1 1

U@ :=inf 5([q+ D(p)Vel, —oylat D(p)Vpl). (83
where the infimum is carried out over all smooth density profiles: p(u)
bounded away from 0 and 1 which satisfy the boundary conditidfs = «,
0(1) = B. As observed above, for boundary driven systems all density profiles
are allowed while for periodic boundary condition only profiles with the same
total massm = foldUp(u) are allowed. In the latter case, the functiokhl
depends on the total massand is denoted by,.

As provenin [4, 5, 6], for the symmetric simple exclusion process the strategy
above is the optimal one, i.@ = U. Itis in fact not difficult to show that in
this caseJ is lower semi-continuous, so th@ = ®. More generally we have
the following result.

Lemma8.2.LetE = 0. If D(p)x"(p) < D’(p)x’(p) for any p, then® = U.
Besides the symmetric simple exclusion process, the hypothesis of the lemma
is also satisfied for the zero range model, wHetg) = ¥'(p) andy (p) = ¥ (p)
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for some strictly increasing functiodr : R, — R, and for the non interacting
Ginzburg—Landau model, wheye € R, D(p) is an arbitrary strictly positive
function andy (p) is constant.

For systems with periodic boundary condition we have shown [5, 6] that the
profile which minimizedJ,, is the constant profile if Ay (o) is convex.

Lemma 8.3.Let E = 0. If the functionp — 1/ (p) is convex, then

U = 1 o
m(q) - E)((m)

and the constant profile(u) = m s optimal for the variational problen(8.3).

The assumption of this lemma is satisfied by the symmetric simple exclusion
process as well as by the KMP model [7, 22], whBrg) = 1 andy (p) = p°.

As first discussed in [4], the above strategy is not always the optimal one,
i.e. there are systems for whieh < U. In [4, 5] we interpreted this strict
inequality as a dynamical phase transition. In such a case the minimizers
for (8.1) become in fact time dependent and the invariance under time shifts
is broken. We now illustrate how different behaviors of the variational prob-
lem (8.1) leads to different dynamical regimes. We consider the system in the
ensemble defined by conditioning on the evéﬁl—leN (du) =qgdu g € R,
with N andT large. The parametey plays therefore the role of an intensive
thermodynamic variable and the convexity dfexpresses a stability property
with respect to variations af.

If ®(q) = U(qg) and the minimum for (8.3) is attained fpr= p6(q) we have
a state analogous to a unique phase: by observing the system at any fixed time
t = O(T) we see, with probability converging to oneldsT — oo, the density
7N ~ $(q) and the instantaneous curraiif ~ q.

While the functionald is always convexX) may be not convex; an example of
a system with this property is given in [5]. & is equal to the convex envelope
of U, we have a state analogous to a phase coexistence. Suppose for example

g=ph+(1—-p0ag and U(Q) >U™(Q) = pU(g) + 1 - pU(d)

for somep, g1, gz; hereU** denotes the convex envelope @f The values
p, 01, 2 are determined by andU. The density profile is then not determined,
but rather we observe with probabilifythe profiles(q;) and with probability
1 — pthe profileg(qp).

Consider now the case in which a minimizer for (8.1) is a current patiot
constant irt and suppose that it is periodic with peried We denote by the
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corresponding density. Of course we havé fO’dt wt = . Inthis situation we

have in fact a one parameter family of minimizers which are obtained by a time
shifta € [0, t]. This behavior is analogous to a non translation invariant state in
equilibrium statistical mechanics, like a crystal. Finally, if the optimal path for
(8.1) is time dependent and not periodic the corresponding state is analogous to
a quasi-crystal.

The explicit formula folU, derived in Lemma 8.3 permits to show that under
additional conditions on the transport coefficidhtand y, a dynamical phase
transition occurs. We discuss only the case of periodic boundary conditions. In
this situation a time-averaged currgninay be produced using a traveling wave
density profile,p;(U) = po(u — vt), with velocityv ~ . Assume now that
E = 0 and the functiorp — x(p) is strictly convex foro = m. Then, for
sufficiently largeg, the traveling wave strategy is more convenient than the one
using the constant profile [4, 5]. In particular, ifo — 1/x(p) is convex so
that Lemma 8.3 can be applied, we have

Dn(d) < Un(Q) (8-4)

for sufficiently largeg. In the KMP model the above hypotheses are satisfied for
anym > 0; we can thus conclude that a dynamical phase transition takes place
for sufficiently large time-averaged currents.

The above analysis can also be applied to the weakly asymmetric simple ex-
clusion process [5]. It yields that [E/q| > [m(1 — m)]~! for g large there
exists a traveling wave whose cost is strictly less than the one of the constant
profile p(u) = m. The analysis in [9] suggest however that the strict inequality
(8.4) holds also in this case. Moreover, the numerical simulations in [9] indicate
the existence, for the weakly asymmetric simple exclusion process, of a criti-
cal currentg* below which the optimal profile is constant and above which the
optimal profile is a traveling wave.
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