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Abstract. This paper provides an introduction to some stochastic models of
lattice gases out of equilibrium and a discussion of results of various kinds
obtained in recent years. Although these models are different in their microscopic
features, a unified picture is emerging at the macroscopic level, applicable,
in our view, to real phenomena where diffusion is the dominating physical
mechanism. We rely mainly on an approach developed by the authors based
on the study of dynamical large fluctuations in stationary states of open systems.
The outcome of this approach is a theory connecting the non-equilibrium
thermodynamics to the transport coefficients via a variational principle. This
leads ultimately to a functional derivative equation of Hamilton–Jacobi type
for the non-equilibrium free energy in which local thermodynamic variables are
the independent arguments. In the first part of the paper we give a detailed
introduction to the microscopic dynamics considered, while the second part,
devoted to the macroscopic properties, illustrates many consequences of the
Hamilton–Jacobi equation. In both parts several novelties are included.
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1. Introduction

Models have played a fundamental role in equilibrium statistical mechanics. The Ising
model provided the first proof that statistical mechanics can explain the existence
of phase transitions and was a main guide in the study of critical behaviour. A
reason for this effectiveness is the circumstance that the macroscopic behaviour is, to
a considerable extent, independent of the microscopic details. Hence different systems
exhibit qualitatively the same phenomenology at large scales.

Out of equilibrium the situation is more complex. First the variety of non-equilibrium
phenomena one can conceive makes it more difficult to define general classes of phenomena
for which a unified study is possible. Furthermore the details of the microscopic dynamics
play a far greater role than in equilibrium. Since the first attempts to construct a
non-equilibrium thermodynamics, a guiding idea has been that of local equilibrium.
This means the following. Locally on the macroscopic scale it is possible to define
thermodynamic variables like density, temperature, chemical potentials, etc, which vary
smoothly on the same scale. Microscopically this implies that the system reaches local
equilibrium in a time which is short compared to the times typical of macroscopic
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evolutions, as described, for example, by hydrodynamic equations. So what characterizes
situations in which this description applies is a separation of scales both in space and
time. There are important cases, however, where local equilibrium apparently fails like
ageing phenomena in disordered systems due to insufficient ergodicity.

The simplest non-equilibrium states one can imagine are stationary states of systems
in contact with different reservoirs and/or under the action of external fields. In such
cases, to the contrary of equilibrium, there are currents (electrical, heat, matter of various
chemical constitutions, etc) through the system whose macroscopic behaviour is encoded
in transport coefficients like the diffusion coefficient, the conductivity or the mobility.
The ideal would be to approach the study of these states starting from a microscopic
model of atoms interacting with realistic forces and evolving with Newtonian dynamics.
This is beyond the reach of present-day mathematical tools and much simpler models
have to be adopted in the reasonable hope that some essential features are adequately
captured.

In the last decades stochastic lattice gases have provided a very useful laboratory for
studying properties of stationary non-equilibrium states (SNS). Besides many interesting
results specific to the different models considered, the following features of general
significance have emerged.

(1) Local equilibrium and hydrodynamic equations have been derived rigorously from the
microscopic dynamics for a wide class of stochastic models.

(2) A definition of non-equilibrium thermodynamic functionals has emerged via a theory
of dynamic large fluctuations; moreover, a general equation which they have to satisfy
has been established. This is a time-independent Hamilton–Jacobi (H–J) equation
whose independent arguments are the local thermodynamic variables and requires as
input the transport coefficients. These coefficients can be either calculated explicitly
for given models or obtained from measurements so that H–J can be used also as a
phenomenological equation.

(3) Non-equilibrium long range correlations, which have been observed experimentally in
various types of fluids [22], appear to be generic consequences of H–J. An important
connection between the behaviour of the mobility and the sign of these correlations
can be derived from the H–J equation.

(4) An analysis of the fluctuations of the currents averaged over long times has revealed
the possibility of different dynamical regimes, which are interpreted as dynamical
phase transitions. Such phase transitions have actually been proved to exist in some
models. This theoretical prediction should be investigated experimentally.

As an overall comment we may say that the macroscopic theory obtained so far
encompasses the theory developed long ago by Onsager [45] and then by Onsager–
Machlup [46] for states close to equilibrium and we believe to be applicable in general
to states where diffusion is the dominant dynamical mechanism.

The present paper intends to provide a unified introduction to models studied
intensively in the last decade for which several results have been obtained. We shall
concentrate on time-independent properties that are mainly on the topics (2) and (3)
mentioned above. Our treatment is based on an approach developed by the authors
in [2]–[5]. For item (1) we refer to [39, 49, 50] for the case of periodic boundary conditions

doi:10.1088/1742-5468/2007/07/P07014 3

http://dx.doi.org/10.1088/1742-5468/2007/07/P07014


J.S
tat.M

ech.
(2007)

P
07014

Stochastic interacting particle systems out of equilibrium

and to [26, 27] for open systems. For item (4), which we do not discuss here, see [6]–[9],
[13]–[15]. For recent overviews on non-equilibrium phenomena see also [34, 44].

There are two parts in this paper, due to the natural separation into microscopic and
macroscopic properties. As a rule we do not include proofs except for statements which
require a short argument. Most of the results discussed here are in published articles to
which we shall refer for the details. We do outline, however, the following new results
which will be the subject of forthcoming papers. In section 2.4 we consider the KMP
process [38]. We give an explicit representation of the invariant measure of this process in
the case of a single oscillator and we compute exactly the two-point correlations for the
general case. In section 3.3 we show, for a particular class of one-dimensional models, that
non-equilibrium long range correlations are positive if the mobility is convex and negative
if it is concave. The general case is discussed in [10]. In section 3.4 we show that for any
weakly asymmetric model with periodic boundary conditions the non-equilibrium free
energy does not depend on the external field, so that it coincides with the equilibrium one
and there are no long range correlations. In section 3.6 we consider the one-dimensional
boundary-driven totally asymmetric exclusion process. For a particular choice of the
parameters, starting from the results in [23] we obtained a new variational representation
of the non-equilibrium free energy. In particular, while the representation in [21] requires
the maximization of a trial functional, we show how it can be formulated as a minimization
problem.

2. Nonreversible microscopic models

Stochastic lattice gases are—loosely speaking—a collection of random walks moving
in the lattice and interacting with each other. These ‘particles’ are to be considered
indistinguishable. Accordingly, the microscopic state is specified by giving the occupation
number in each site of the lattice. The effect of the interaction is that the jump rates
depend on the local configuration of the particles. For non-isolated systems we model the
effect of the reservoirs by adding creation/annihilation of particles at the boundary. The
effect of an external field is modelled by perturbing the rates and giving a net drift toward
a specified direction.

In section 2.1 we give the precise definition of non-equilibrium stochastic lattice gases.
Some special models, the zero-range process and the exclusion process, are discussed in
sections 2.2 and 2.3. For the zero-range process the invariant measure is always product
and can be computed explicitly. On the other hand, the boundary-driven exclusion process
carries long range correlations, which can be computed explicitly in the one-dimensional
case. In section 2.4 we recall the definition of the KMP process [38] and we compare it
with the exclusion process. In section 2.5 we consider gradient lattice gases with periodic
boundary conditions; the peculiarity of such models is that the invariant measure does not
depend on the applied external field. In section 2.6 we consider the Glauber + Kawasaki
model, in which a reaction term allowing creation/annihilation of particles in the bulk is
added. We discuss under which conditions on the reaction rates it is reversible. Finally,
in section 2.7 we consider the boundary-driven totally asymmetric exclusion process and
we recall the representation of the invariant measure obtained in [23]. This representation
suggests a new variational expression for the non-equilibrium free energy that will be
discussed in section 3.6.
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2.1. Stochastic lattice gases

As basic microscopic model we consider a stochastic lattice gas in a finite domain, with
an external field, and either with periodic boundary conditions or with particle reservoirs
at the boundary. The process can be informally described as follows. At each site,
independently from the others, particles wait exponential times, at the end of which one
of them jumps to a neighbouring site. In the case of particle reservoirs, in addition to
this dynamics, we have creation and annihilation of particles, at exponential times, at
the boundary. To define formally the microscopic dynamics, recall that a continuous time
Markov chain ωt on some state space Ω can be described in terms of its infinitesimal
generator L defined as follows. Let f : Ω → R be an observable, then

E(f(ωt+h)|ωt) = (Lf)(ωt)h + o(h) (2.1)

where E(|) is the conditional expectation, so that the expected infinitesimal increment of
f(ωt) is (Lf)(ωt) dt. The transition probability of the Markov process ωt is then given by
the kernel of the semigroup generated by L, i.e.

pt(ω, ω′) = etL(ω, ω′). (2.2)

Let Λ be the d-dimensional torus of side length one, i.e. (R/Z)d, respectively a
smooth domain in R

d, and, given an integer N > 1, set ΛN := (Z/NZ)d, respectively
ΛN := (NΛ) ∩ Z

d. The configuration space is XΛN , where X is a subset of N,
e.g. X = {0, 1} when an exclusion principle is imposed and X = N when there is no
limitation on the number of particles. The number of particles at the site x ∈ ΛN is
denoted by ηx ∈ X and the whole configuration by η ∈ XΛN . The microscopic dynamics is
then specified by a continuous time Markov chain on the state space XΛN with infinitesimal
generator given by LN = L0,N , resp. LN = [L0,N + Lb,N ], if Λ is the torus, resp. a smooth
domain in R

d, where, for functions f : XΛN → R,

L0,Nf(η) = 1
2

∑

x,y∈ΛN
|x−y|=1

cx,y(η)[f(σx,yη) − f(η)] (2.3)

Lb,Nf(η) = 1
2

∑

x∈ΛN ,y /∈ΛN
|x−y|=1

{cx,y(η)[f(σx,yη) − f(η)] + cy,x(η)[f(σy,xη) − f(η)]}. (2.4)

Here |x| stands for the usual Euclidean norm. For x, y ∈ ΛN , σx,yη is the configuration
obtained from η by moving a particle from x to y, i.e.

(σx,yη)z =

⎧
⎪⎨

⎪⎩

ηz if z �= x, y

ηy + 1 if z = y

ηx − 1 if z = x

and similarly, if x ∈ ΛN , y /∈ ΛN , then σy,xη is obtained from η by creating a particle at x,
while σx,yη is obtained by annihilating a particle at x. Therefore, for x, y ∈ ΛN , cx,y is the
rate at which a particle at x jumps to y. We assume that cx,y(η) = 0 if σx,yη /∈ XΛN so that
L0,N and Lb,N are well defined linear operators on the set of functions f : XΛN → R. The
generator L0,N describes the bulk dynamics which preserves the total number of particles
whereas Lb,N models the particle reservoirs at the boundary of ΛN .
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We assume that the bulk rates cx,y, x, y ∈ ΛN , are obtained starting from reversible
rates c0

x,y satisfying the detailed balance with respect to a Gibbs measure defined by a
Hamiltonian H, and perturbing them with an external field F . Likewise, in the case of
particle reservoirs, we assume that the boundary rates cx,y, cy,x, x ∈ ΛN , y /∈ ΛN , are
obtained from rates c0

x,y, c0
y,x satisfying the local detailed balance with respect to H and

in presence of a chemical potential λ0, and again perturbed by the external field F . Our
analysis is restricted to the high temperature phase: in particular, we shall assume that
the correlations in the Gibbs measure decay exponentially.

The above conditions are met by the following formal definitions. Consider jump
rates c0

x,y satisfying the detailed balance with respect to the Gibbs measure associated to

the Hamiltonian H : XΛN → R with free boundary conditions. For the bulk rates this
means

c0
x,y(η) = exp{−[H(σx,yη) −H(η)]}c0

y,x(σ
x,yη), x, y ∈ ΛN . (2.5)

Note that we included the inverse temperature in H. As before if σx,yη /∈ XΛN we assume
c0
x,y(η) = 0. From a mathematical point of view, the detailed balance condition means

that the generator is self-adjoint w.r.t. the Gibbs measure μ(η) ∝ e−H(η); namely if we let
L0

0,N be the generator in (2.3) with c replaced by c0, for each f, g : XΛN → R we have

〈f, L0
0,Ng〉μ :=

∑

η

μ(η)f(η)L0
0,Ng(η) = 〈L0

0,Nf, g〉μ. (2.6)

Let ΛN := {x ∈ Z
d | ∃ y ∈ ΛN with |x − y| ≤ 1} be the 1-neighbourhood of ΛN .

When ΛN is the discrete torus we agree that ΛN = ΛN . We also let ∂ΛN := ΛN \ ΛN .
In the case when Λ is not the torus, the boundary dynamics with no external field is
specified as follows. Denote by λ0 : ∂ΛN → R the chemical potential of the reservoirs. If
x ∈ ΛN , y /∈ ΛN the detailed balance condition (2.5) is modified by adding the chemical
potential λ0:

c0
x,y(η) = exp{−[H(σx,yη) −H(η)] − λ0(y)}c0

y,x(σ
x,yη), x ∈ ΛN , y /∈ ΛN . (2.7)

We denote by B(ΛN) := {(x, y)|x, y ∈ ΛN , {x, y}∩ΛN �= ∅, |x−y| = 1} the collections
of ordered bonds intersecting ΛN . A discrete vector field is then defined as a real function
F : B(ΛN) → R satisfying F (x, y) = −F (y, x) for any (x, y) ∈ B(ΛN). An asymmetric
lattice gas is defined by the jump rates

cx,y(η) := eF (x,y)c0
x,y(η), (2.8)

where c0 are the unperturbed rates and F is a discrete vector field.
The case of weakly asymmetric models is obtained by choosing

F (x, y) ≡ FN(x, y) = E

(
x + y

2N

)
· y − x

N
, (2.9)

where E : Λ → R
d is a smooth vector field and · denotes the inner product in R

d. Namely,
for N large, by expanding the exponential, particles at site x feel a drift N−1E(x/N).

doi:10.1088/1742-5468/2007/07/P07014 6
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We can rewrite the full generator LN , using the notation introduced above, as follows:

LNf(η) = 1
2

∑

(x,y)∈B(ΛN )

cx,y(η)[f(σx,yη) − f(η)]. (2.10)

Fix an initial condition η ∈ XΛN . The trajectory of the Markov process η(t), t ≥ 0,
is then an element on the path space D(R+; XΛN ), which consists of piecewise constant
paths with values in XΛN . We shall denote by P

N
η the probability measure on D(R+; XΛN )

corresponding to the distribution of the process η(t), t ≥ 0, with initial condition η. It is
related to the generator LN by P

N
η (η(t) = η′) = etLN (η, η′).

A probability measure μN on XΛN is an invariant measure for the process η(t) if
∑

η∈XΛN

μN(η)etLN (η, η′) = μN(η′) (2.11)

namely, if we distribute the initial condition η according to μN , then the distribution of
η(t) is μN for any t ≥ 0. According to general results on Markov processes, if the process
is irreducible, i.e. there is a strictly positive probability to go from any state to any other,
then the invariant measure is unique and it encodes the long time behaviour of the system.
More precisely, starting from any configuration η the distribution of η(t) converges to μN

as t → ∞. In the case of a stochastic lattice gas with particle reservoirs, if cx,y(η) > 0
for any η ∈ XΛN and any (x, y) ∈ B(ΛN) such that σx,yη ∈ XΛN , then the process is
irreducible and there exists a unique invariant measure. On the other hand, if ΛN is the
discrete torus, the total number of particles

∑
x∈ΛN

ηx is conserved and there exists a
one-parameter family of invariant measures. Since in general the transition probability
cannot be expressed in a closed form, condition (2.11) is not convenient. However, it
is easy to obtain a necessary and sufficient infinitesimal condition for a measure to be
invariant. The measure μN is invariant for the process generated by LN if and only if, for
any f : XΛN → R, we have

μN(LNf) = 0, (2.12)

where hereafter for a measure μ and an observable f we denote by μ(f) the expectation
of f with respect to μ.

If the generator LN satisfies the detailed balance condition with respect to some
measure μN , namely

μN(gLNf) = μN(fLNg) ∀f, g : XΛN → R, (2.13)

then μN is necessarily an invariant measure. In such a case the process is said to be
reversible. This terminology is due to the following fact. Let P

N
μN

the stationary process,
i.e. the distribution on the path space induced by the Markov process with initial condition
distributed according to the invariant measure μN . Since μN is invariant, the measure P

N
μN

is invariant with respect to time shifts. We can thus regard P
N
μN

as a measure on paths

defined also for t ≤ 0, i.e. as a probability on D(R; XΛN ). This probability is invariant
under time reversal if and only if the measure μN is reversible, i.e. (2.13) holds. More
generally, if we denote by ϑ the time reversal, i.e. (ϑη)(t) := η(−t), we have that P

N
μN

◦ ϑ
is the stationary process with generator L∗

N , the adjoint to LN in L2(dμN). In particular,
if (2.13) holds, we have P

N
μN

◦ ϑ = P
N
μN

.
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When there is a unique invariant measure which is not reversible, we say the
corresponding process is non-reversible. As we shall discuss, non-equilibrium models are
necessarily non-reversible, while there exist non-reversible processes describing equilibrium
phenomena, see, for example, [1], [30]–[32]. The main topic that we shall discuss is the
asymptotic behaviour, as N diverges, of the invariant measure μN for specific classes of
non-reversible models.

Conditions (2.5) and (2.7) are called local detailed balance for the following reason.
If the chemical potential λ0 is constant, it is easy to show that the Gibbs measure
μ(η) ∝ e−H(η)+λ0

∑
z ηz is reversible with respect to the generator L0

N , that is (2.10) with
rates c0

x,y. On the other hand, if λ0 is not constant, the boundary dynamics forces a
current in the system which becomes non-reversible.

We discuss next the effect of the external field. A very particular choice of F is that
of a discrete gradient vector field, such that

F (x, y) = 1
2
[λ(y) − λ(x)] (2.14)

for some function λ : ΛN → R. If we further assume that λ(y) = λ0(y) for y ∈ ∂ΛN , recall
that λ0 is the chemical potential of the boundary reservoirs, then it is easily shown that
the generator LN in (2.10) is reversible w.r.t. the measure

μλ
N(η) =

1

Zλ
N

exp

{
−H(η) +

∑

x∈ΛN

λ(x)ηx

}
, (2.15)

where Zλ
N is the appropriate normalization constant. In this situation the reversibility of

the process is due to the fact that the driving from the reservoirs and the external field
compensate.

An equivalence principle. We can interpret the above result from two different perspectives,
getting the answer to two opposite questions.

Consider a model with a given chemical potential λ0 at the boundary. We ask if we
can find an external field F which compensates the driving from the boundary, namely
such that the corresponding stationary measure μN is reversible. The answer to this
question is certainly yes. In fact, from the above consideration, we have a whole family
of external fields that fulfil this condition: take a gradient vector field F as in (2.14) with
λ such that λ(y) = λ0(y) for y ∈ ∂ΛN . In this case the corresponding stationary measure
happens to be the Gibbs measure (2.15).

Conversely, suppose that we have an asymmetric model with a given external field F .
We ask if we can find a chemical potential λ0 : ∂ΛN → R such that the model is reversible.
We can immediately answer affirmatively this question if we know that the external field
F is gradient, i.e. (2.14) holds for some λ : Λ̄N → R. In this case we can just fix, up to
an overall additive constant, λ0(y) = λ(y), y ∈ ∂ΛN .

2.2. Zero-range process

The so-called zero-range process is a special case of the lattice gases introduced in
section 2.1. In each site any number of particles is allowed so that X = N and the
bulk symmetric jump rates are

c0
x,y(η) = g(ηx), x, y ∈ ΛN , |x − y| = 1, (2.16)

doi:10.1088/1742-5468/2007/07/P07014 8
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where g : N → R+ is a function satisfying g(0) = 0 with at most linear growth. In other
words, the jump rate from x to y depends only on the occupation number at x; this
explains the name of the model. Given λ0 : ∂ΛN → R, we choose the boundary rates as

c0
x,y(η) = g(ηx), c0

y,x(η) = eλ0(y), x ∈ ΛN , y ∈ ∂ΛN , |x − y| = 1. (2.17)

It is not hard to check that the detailed balance conditions (2.5) and (2.7) are satisfied
with the Hamiltonian

H(η) =
∑

x∈ΛN

log(g(ηx)!),

where, by definition, g(0)! = 1 and g(k)! = g(1) · · ·g(k) for k ≥ 1. The particular case in
which g is the identity, i.e. g(k) = k, k ∈ N, corresponds to independent random walks
described in terms of the occupation variables η ∈ N

ΛN .
A peculiar feature of this model is that its invariant measure, both with particle

reservoirs and external field, is always product. Consider this model with external field
F . Denote by ψ : ΛN → R+ the solution to

∑

y∈ΛN
|x−y|=1

[eF (y,x)ψ(y) − eF (x,y)ψ(x)] = 0, x ∈ ΛN

ψ(x) = exp{λ0(x)}, x ∈ ∂ΛN .

(2.18)

The invariant measure of the zero-range process with external field F and boundary
chemical potential λ0 is then the grand-canonical product measure μN =

∏
x∈ΛN

μx with
marginal distributions

μx(ηx = k) =
1

Z(ψ(x))

ψ(x)k

g(k)!
, (2.19)

where

Z(ϕ) =

∞∑

k=0

ϕk

g(k)!
(2.20)

is the normalizing constant. This can be verified by showing that (2.12) holds. If ΛN is the
discrete torus and F vanishes, any constant ψ solves (2.18) and the corresponding invariant
measures are thus the grand-canonical measures with arbitrary chemical potential. Since
the invariant measure is always product, the zero-range process never exhibits long range
correlations.

2.3. Exclusion process

The exclusion process is a much studied stochastic lattice gas. In this model an exclusion
principle is imposed. In each site x ∈ ΛN at most one particle is allowed so that X = {0, 1}
and there is no other interaction. The symmetrical bulk rates are defined by

c0
x,y(η) = ηx(1 − ηy), x, y ∈ ΛN , |x − y| = 1 (2.21)

namely a particle at x jumps to a nearest-neighbour site y with rate 1/2 if that site is
empty. Then (2.5) holds with H = 0. Note that the rates (2.21) satisfy the constraint
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c0
x,y(η) = 0 if σx,yη /∈ {0, 1}ΛN . Given a chemical potential λ0 : ∂ΛN → R, the local

detailed balance condition (2.7) is met by choosing the boundary rates as

c0
x,y(η) = ηxK(y), c0

y,x(η) = (1 − ηx)K(y)eλ0(y),

x ∈ ΛN , y ∈ ∂ΛN , |x − y| = 1
(2.22)

for some K : ∂ΛN → R+.
We first discuss this symmetric case. In the case of periodic boundary conditions

there is a one-parameter family of invariant measures which are the Bernoulli measures
with an arbitrary parameter. Since the total number of particles is conserved, given
k > 0, we can consider the process on the set ΣN,k = {η ∈ {0, 1}ΛN :

∑
x∈ΛN

ηx = k}.
In this set the process is irreducible and the unique invariant measure is the uniform
measure on ΣN,k which is the canonical ensemble associated to the Bernoulli measures.
In the case with particles reservoirs, if the chemical potential λ0 is constant then the
unique invariant measure is the Bernoulli measure with parameter ρ̄ = eλ0/(1 + eλ0),

i.e. μN(η) = eλ0
∑

x∈ΛN
ηx/(1 + eλ0)|ΛN |. In both these situations the process is reversible.

One-dimensional boundary-driven exclusion process. Unlike the zero-range model, if λ0 is
not constant, so that this becomes a non-equilibrium model, the invariant measure is not
a product measure and carries long range correlations. Let us discuss in more detail the
one-dimensional case. Assume that Λ = (0, 1) so that ΛN = {1, . . . , N − 1}; we also let
λ0 := λ0(0) and λ1 := λ0(N) be the two chemical potentials of the reservoirs.

An old result by Kingman [37] computes the marginals of the unique invariant measure
for a special choice of the injection rates. More precisely, in the case analysed by
Kingman the bulk rates are as in (2.21) while the boundary rates are obtained by the
following limiting procedure. In (2.22) choose K(0) = (eA + e−A)−1e−λ0/2 and K(N) =
(eA + e−A)−1e−λ1/2 for some A ∈ R. Consider then the asymmetric model with rates cx,y

as in (2.8) by introducing the external field F given by F (0, 1) = F (N − 1, N) = A,
F (1, 0) = F (N, N − 1) = −A, and F (x, y) = 0 in all the remaining bonds. Finally we
take the limit A → ∞ obtaining

c0,1(η) = (1 − η1)e
λ0/2, cN−1,N(η) = ηN−1 e−λ1/2, c1,0(η) = cN,N−1(η) = 0 (2.23)

i.e. from the left endpoint particles enter with rate (1/2)eλ0/2 but do not exit, while
particles from the right endpoint exit with rate (1/2)e−λ1/2 but do not enter.

By some smart duality computations, Kingman shows that, for this particular choice
of the boundary rates, the marginals of the invariant measure μN are

μN (ηx1 = 1, . . . , ηxm = 1) =
(A − m − x1)(A − m − x2 + 1) · · · (A − 1 − xm)

(B − m)(B − m + 1) · · · (B − 1)
, (2.24)

where 1 ≤ x1 < x2 < · · · < xm ≤ N − 1 are lattice sites and the parameters A and B are
defined as

A = N + eλ1/2; B = N − 1 + eλ1/2 + e−λ0/2. (2.25)

More recent work based on matrix methods allows us to get some representation of
the invariant measure in the general one-dimensional case, see, for example, [42, 47] and
references therein.
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We consider now the one-dimensional boundary-driven symmetric exclusion model
with boundary rates as in (2.22) with K(0) = (1 + eλ0)−1 and K(N) = (1 + eλ1)−1.
As before λ0 and λ1 are the chemical potentials of the boundary reservoirs. Letting
ρi = eλi/(1 + eλi), i = 0, 1, be the corresponding densities, we then get

c1,0(η) = (1 − ρ0)η1, c0,1(η) = ρ0(1 − η1),

cN−1,N(η) = (1 − ρ1)ηN−1, cN,N−1 = ρ1(1 − ηN−1).

Let μN be the unique invariant measure, it is not difficult to show that the density
profile μN(ηx) is linear so that

μN(ηx) = ρ0 +
x

N
(ρ1 − ρ0). (2.26)

As first shown in [48], it is also possible to obtain a closed expression for the two-point
correlations. For 1 ≤ x < y ≤ N − 1 we have

μN(ηx; ηy) := μN(ηxηy) − μN(ηx)μN(ηy) = −(ρ1 − ρ0)
2

N − 1

x

N

(
1 − y

N

)
. (2.27)

To prove this result it is enough to compute LN(ηxηy), i.e. the action of LN on the function
ηxηy, and solve the equation

μN(LN (ηxηy)) = 0. (2.28)

Note that, if we take x < y at distance O(N) from the boundary, then the covariance
between ηx and ηy is of the order of O(1/N). Moreover the random variables ηx and ηy are
negatively correlated. This is the same qualitative behaviour of the two-point correlation
for the uniform measure on ΣN,k. As we shall show below, quite the opposite behaviour
is found in another model, the KMP process.

One-dimensional periodic asymmetric exclusion process. We finally discuss the case of the
asymmetric exclusion process on the discrete torus. It is defined by the jump rates

cx,x+1(η) = eF ηx(1 − ηx+1) cx+1,x(η) = e−Fηx+1(1 − ηx) (2.29)

for some F ∈ R so that (2.8) holds with constant external field F . A simple computation
shows that the Bernoulli measure μρ with arbitrary ρ ∈ [0, 1] is an invariant measure.
Note, however, that for F �= 0 the process is not reversible; in fact the stationary process
w.r.t. μρ carries the mean current ρ(1− ρ) sinh(F ). Unlike the zero range, if the external
field F is not constant the invariant measures are in general not anymore product. Note,
however, that if F is a gradient vector field, as shown before, the process is reversible
w.r.t. a product measure. We emphasize that a constant vector field on the torus is not
gradient.

2.4. The boundary-driven KMP process

The Kipnis–Marchioro–Presutti (KMP) model [38] describes a chain of one-dimensional
harmonic oscillators which are mechanically uncoupled but interact stochastically as
follows. Each pair of nearest-neighbour oscillators waits an exponential time of rate
one and then redistributes uniformly its total energy. The two oscillators at the end
points are coupled to heat reservoirs. Since the single spin space state is not discrete
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and the elementary dynamics is associated to the bonds, this model does not really fit
in the framework introduced in section 2. However, the precise definition of the model is
straightforward. Let Λ = (0, 1) so that ΛN = NΛ ∩ Z ≡ {1, . . . , N − 1}. We denote by
ξx the energy of the oscillator at the site x ∈ ΛN , so that the state space is R

ΛN
+ . On it

we introduce the Markov generator LN as follows. Given (x, y) ∈ B(ΛN) and p ∈ [0, 1] we
let ξ(x,y),p be the configuration obtained from ξ by moving a fraction p of the total energy
ξx + ξy across the bond (x, y) to x and a fraction 1 − p to y, i.e.

(ξ(x,y),p)z :=

⎧
⎪⎨

⎪⎩

ξz if z �= x, y

p(ξx + ξy) if z = x

(1 − p)(ξx + ξy) if z = y.

We then set LN :=
∑N−1

x=0 Lx,x+1 where, for f : R
ΛN
+ → R, the bulk dynamics is given by

Lx,x+1f(ξ) :=

∫ 1

0

dp [f(ξ(x,x+1),p) − f(ξ)], x = 1, . . . , N − 2

while the boundary generators L0,1 and LN−1,N are

L0,1f(ξ) :=

∫ ∞

0

dξ0
1

T0
e−(ξ0/T0)

∫ 1

0

dp [f(ξ(0,1),p) − f(ξ)]

LN−1,Nf(ξ) :=

∫ ∞

0

dξN
1

T1
e−(ξN /T1)

∫ 1

0

dp [f(ξ(N−1,N),p) − f(ξ)].

(2.30)

Namely, we suppose that there is an energy exchange across the ghost bonds (0, 1) and
(N − 1, N), and we put at the sites 0 and N oscillators whose energies are randomly
chosen according to the Gibbs distributions with temperatures T0 and T1.

We emphasize that the above choice of the boundary dynamics differs slightly from
the original one in [38]. Besides being more natural, this choice simplifies some microscopic
computations. Note that in the case T = T0 = T1, namely of an equilibrium model, the
above process is reversible with respect to the Gibbs measure

dμN(ξ) =

N−1∏

x=1

1

T
e−ξx/T dξx (2.31)

which is just the product of exponential distributions.
Later, in order to find a closed expression for the microscopic two-point correlation

functions, we introduce a more general class of boundary dynamics which is obtained by
replacing in (2.30) the two exponential distributions on boundary sites 0 and N by the
other two probability measures on R+. Of course the macroscopic behaviour is the same
for any reasonable choice of the boundary dynamics.

Invariant measure for a single oscillator. We consider the KMP model with a single
oscillator, i.e. N = 2. Even in this case, as the system is in thermal contact with two
reservoirs, its stationary state is not trivial. We next show that the invariant measure is
a mixture of the Gibbs distributions with temperatures between T0 and T1. Furthermore
we compute the weight of each distribution which turns out to be the arcsine law in the
interval [T0, T1]; here we assume T0 ≤ T1. We emphasize that this result depends on the
specific choice of the boundary dynamics.
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We claim that the invariant measure (a probability measure on R+) is absolutely
continuous w.r.t. the Lebesgue measure dξ and its density can be expressed as

dμ

dξ
=

∫ T1

T0

d�T0,T1(T )
1

T
e−ξ/T , (2.32)

where �T0,T1 is the arcsine distribution in the interval [T0, T1], namely for T in this interval
we have

d�T0,T1(T ) =
1

π

1√
(T1 − T )(T − T0)

dT. (2.33)

To show that μ in (2.32) is the invariant measure of the KMP process with a single
oscillator, we need to check that, for each smooth real function, f on R+ (2.12) holds. By
linearity and approximation by linear combinations of exponential functions, it is enough
to show that (2.12) holds if f(ξ) = exp{−λξ}, λ > 0. With this choice we have

Lf(ξ) =

∫ ∞

0

dξ0

T0

e−ξ0/T0

∫ ∞

0

dξ2

T1

e−ξ2/T1

∫ 1

0

dp [e−λp(ξ0+ξ) + e−λp(ξ+ξ2) − 2e−λξ]

=

∫ 1

0

dp

[
1

1 + λpT0
e−λpξ +

1

1 + λpT1
e−λpξ − 2e−λξ

]
.

If we now take the average of the above expression when ξ is an exponential random
variable of parameter T we get

∫ ∞

0

dξ

T
e−ξ/T Lf(ξ) =

∫ 1

0

dp

[
1

(1 + λpT0)(1 + λpT )
+

1

(1 + λpT )(1 + λpT1)
− 2

1 + λT

]
.

(2.34)

We next note that the arcsine distribution in the interval [T0, T1] is characterized by
the following property. For each γ ≥ 0 we have

∫
d�T0,T1(T )

1

1 + γT
=

1√
(1 + γT0)(1 + γT1)

. (2.35)

The integral on the lhs can be, in fact, computed by using the density in (2.33) and the
residue theorem. Conversely, by expanding the above equation in power series of γ, we
get that the moments of �T0,T1 are determined.

Recalling (2.34), to complete the proof of (2.32) it remains to show that
∫

d�T0,T1(T )

∫ 1

0

dp

[
1

(1 + λpT0)(1 + λpT )
+

1

(1 + λpT )(1 + λpT1)
− 2

1 + λT

]
= 0,

which, in view of (2.35), is equivalent to
∫ 1

0

dp

[
1

(1 + λpT0)3/2(1 + λpT1)1/2
+

1

(1 + λpT0)1/2(1 + λpT1)3/2

]

=
2

(1 + λT0)1/2(1 + λT1)1/2
.
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By a direct integration we get
∫ 1

0

dp
1

(1 + λpT0)3/2(1 + λpT1)1/2
=

2

λ(T1 − T0)

[√
1 + λT1√
1 + λT0

− 1

]

and simple algebraic computations yield the result.
It seems quite hard to obtain an analogous representation for N ≥ 3. On the other

hand, we compute explicitly below the one-and two-point correlation functions of μN for
any N ≥ 2.

Two-point correlations. We here consider the KMP process with boundary dynamics given
by

L0,1f(ξ) :=

∫ ∞

0

dνN
0 (ξ0)

∫ 1

0

dp [f(ξ(0,1),p) − f(ξ)]

LN−1,Nf(ξ) :=

∫ ∞

0

dνN
1 (ξN)

∫ 1

0

dp [f(ξ(N−1,N),p) − f(ξ)],

where νN
i , i = 0, 1, are probability measures on R+ with mean Ti and variance

νN
i ([ξ − Ti]

2) = T 2
i +

(T1 − T0)
2

N(N + 1)
i = 0, 1 (2.36)

and note that the exponential distributions chosen in (2.30) fail to satisfy the above
condition only by a term O(N−2).

Given T0 ≤ T1, let μN be the invariant measure of the KMP process with N − 1
oscillators and set EN(x) := μN(ξx), x = 1, . . . , N − 1, as well as EN(0) := T0, EN(N) :=
T1. By choosing linear functions f in (2.12) and computing LNξx, x = 1, . . . , N − 1, we
get a closed equation for EN which yields

EN (x) = T0 + (T1 − T0)
x

N
. (2.37)

Let CN(x, y) := μN(ξx; ξy) = μN(ξx ξy) − EN (x)EN (y), x, y ∈ {1, . . . , N − 1},
be the two-point correlation function of μN . We also set CN(0, 0) := νN

0 ([ξ − T0]
2),

CN(N, N) := νN
1 ([ξ −T1]

2), CN(0, y) = CN(x, N) := 0 for 1 ≤ y ≤ N , 0 ≤ x ≤ N − 1. By
choosing quadratic functions in (2.12), by some elementary but tedious computations we
get that CN(·, ·) solves

(ΔN
x + ΔN

y )CN(x, y) = 0 1 ≤ x ≤ y ≤ N − 1, y − x ≥ 2

CN(x, x + 2) + CN(x − 1, x + 1) − 10
3

CN(x, x + 1) + 1
3
CN (x, x) +

1

3
CN(x + 1, x + 1)

=
2

3

(
T1 − T0

N

)2

+
2

3
EN(x)EN (x + 1) 1 ≤ x ≤ N − 2

CN(x − 1, x − 1) + CN(x + 1, x + 1) + 2CN(x − 1, x) + 2, CN(x, x + 1) − 4CN(x, x)

= −2

(
T1 − T0

N

)2

− 2EN(x)2 1 ≤ x ≤ N − 1,

where ΔN
x f(x, y) = f(x + 1, y) + f(x − 1, y) − 2f(x, y) is the discrete Laplacian w.r.t. x

and ΔN
y is the discrete Laplacian w.r.t. y.
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As can be easily checked, the solution is given by

CN(x, y) =

⎧
⎪⎪⎨

⎪⎪⎩

(T1 − T0)
2

N + 1

x

N

(
1 − y

N

)
0 ≤ x < y ≤ N

EN(x)2 + 2
(T1 − T0)

2

N + 1

x

N

(
1 − x

N

)
+

(T1 − T0)
2

N(N + 1)
0 ≤ x = y ≤ N .

(2.38)

Comparing (2.38) with (2.27) we observe that the off-diagonal terms are essentially
the same in the macroscopic limit N → ∞. We emphasize, however, that the sign is
different: while for the boundary-driven symmetric exclusion the occupation variables ηx,
x ∈ ΛN , are negatively correlated, for the KMP process the local energies ξx, x ∈ ΛN ,
are positively correlated. As we shall discuss in section 3.3, this qualitative difference is
related to the different convexity properties of the mobilities of the two models. For the
exclusion it is concave while it is convex for KMP.

We mention that an analogous computation has been recently performed for a
somewhat similar model, see [33].

2.5. Gradient models with periodic boundary conditions

In this section we consider only the case of periodic boundary conditions, namely ΛN is
the discrete torus (Z/NZ)d. We also assume that the model is translationally covariant
in the sense that, for any (x, y) ∈ B(ΛN ), z ∈ ΛN , and η ∈ XΛN , we have

cx,y(η) = cx+z,y+z(τzη), (2.39)

where τz is the space shift, i.e. (τzη)x := ηx−z.
Let the bulk rates c0

x,y satisfy (2.5). The expected instantaneous current across the
bond (x, y) ∈ B(ΛN) is, up to a factor 2,

j0
x,y(η) := c0

x,y(η) − c0
y,x(η).

The corresponding lattice gas (with no external field) satisfies the gradient condition if
the discrete vector field j0

x,y(η) is gradient for any η ∈ XΛN , namely there exist functions

hx : XΛN → R, x ∈ ΛN , such that for any (x, y) ∈ B(ΛN )

j0
x,y(η) = hy(η) − hx(η). (2.40)

The zero-range process of section 2.2 is a gradient lattice gas for any choice of the function
g. Indeed, for the rates (2.16) condition (2.40) holds with hx(η) = −g(ηx). Also the
exclusion process is gradient, (2.40) holding with hx(η) = −ηx.

In the stochastic gases literature, see [39, 49], the gradient condition is usually stated
in a stronger form. More precisely, one considers a translationally invariant lattice gas
on the whole lattice Z

d and says that the model is gradient if there exists a function
h̃ : XZ

d → R which is local, i.e. it depends on ηx only for a finite number of x ∈ Z
d, and

such that for any (x, y) ∈ B(Zd) and η ∈ XZ
d

j0
x,y(η) = h̃(τyη) − h̃(τxη). (2.41)

Of course (2.41) implies (2.40) for N large enough. Conversely, it is possible to show that

if (2.40) holds then there exists a function h̃ : XΛN → R such that (2.41) holds for any
(x, y) ∈ B(ΛN ).
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Consider now a lattice gas with constant (non-zero) external field F . By this we
mean that F (x, x ± ei) = ±Fi, where ei, i = 1, . . . , d is the canonical basis in R

d and
(F1, . . . , Fd) is a vector in R

d. As discussed in [36], if the bulk rates c0 satisfy the gradient
condition (2.41) then the grand-canonical Gibbs measures exp{−H(η) + λ

∑
x∈ΛN

ηx},
λ ∈ R, which are the invariant measures for the system with no external field, are invariant
also for the process with external field F , i.e. with rates cx,x±ei

= c0
x,x±ei

e±Fi , i = 1, . . . , d.
In particular this result shows that gradient lattice gases with constant external field and
periodic boundary conditions do not exhibit long range correlations. In section 3.1 we
show that, from a macroscopic point of view, any weakly asymmetric lattice gas with
periodic boundary conditions does not have long range correlations.

We next discuss, from a microscopic point of view, gradient lattice gases in some
more detail, obtaining the above mentioned result as a particular case. Let us consider
an asymmetric lattice gas with external field F : B(ΛN ) → R, rates cx,y as in (2.8) and
generator given by (2.10). We look for an invariant measure of the form (2.15) for some
λ : ΛN → R. The condition for a stationary state is
∑

η∈XΛN

μλ
N(η)

∑

(x,y)∈B(ΛN )

cx,y(η)[f(σx,yη) − f(η)] = 0, ∀f : XΛN → R. (2.42)

Performing some change of variables and using the conditions (2.5) and (2.7) of local
detailed balance, (2.42) becomes
∑

η∈XΛN

f(η)μλ
N(η)

∑

(x,y)∈B(ΛN )

e−λ(x)eF (x,y)
[
eλ(y)c0

y,x(η) − eλ(x)c0
x,y(η)

]
= 0. (2.43)

Let

Gλ(x, y) := e−λ(x)eF (x,y) − e−λ(y)eF (y,x)

jλ
y,x(η) := eλ(y)c0

y,x(η) − eλ(x)c0
x,y(η).

Note that, if F is a discrete vector field, i.e. it satisfies F (x, y) = −F (y, x), then eF is
not a discrete vector field but Gλ and jλ are indeed discrete vector fields. We then get
that (2.43) is equivalent to

∑

(x,y)∈B(ΛN )

Gλ(x, y)jλ
y,x(η) = 0, ∀η ∈ XΛN . (2.44)

Notice that (2.44) is an orthogonality condition. In general there is no solution to (2.44);
note, in fact, that it is a system of |X||ΛN | equations (corresponding to different particle
configurations) but we have only |ΛN | parameters (corresponding to the chemical potential
profile λ : ΛN → R). Non-existence of solutions to (2.44) means that the invariant measure
is not of the form (2.15). There are, however, few remarkable cases in which (2.44) can
be easily solved.

If the model is gradient, so that (2.40) holds, we claim that μλ
N(η) in (2.15) with λ ∈ R

constant is an invariant measure for any asymmetric lattice gas provided the external field
F satisfies

∑

y:|x−y|=1

[eF (x,y) − eF (y,x)] = 0 ∀x ∈ ΛN (2.45)
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that is, the discrete vector field Gλ, λ ∈ R, has vanishing discrete divergence. Conversely,
if we require that μλ

N(η), λ ∈ R, is an invariant measure for any external field
satisfying (2.45), we get that the rates c0

x,y have to satisfy (2.40) for some functions

hx : XΛN → R, x ∈ ΛN . The proof of both statements is accomplished by some
computations which essentially amounts to proving the Hodge theorem in a discrete
setting, see [43].

Generalized gradient models. Consider asymmetric lattice gases with constant external
fields F . Some computations show that μλ

N as in (2.15) is an invariant measure for any
constant λ ∈ R if and only if the rates c0

x,y satisfy
∑

x∈ΛN

j0
x,x+ei

(η) = 0, ∀η ∈ XΛN , ∀i = 1, . . . , d, (2.46)

which is exactly the condition that identifies the orthogonal complement, w.r.t. the inner
product defined in (2.44), of the constant vector fields. Moreover (2.46) is equivalent
to the following generalized gradient condition. There is a function hi,j : XΛN → R,
i, j = 1, . . . , d, such that

j0
x,x+ei

(η) =
d∑

j=1

[hi,j(τx+ej
η) − hi,j(τxη)], i = 1, . . . , d. (2.47)

We finally mention that (2.47) is a particular case of the condition stated in [39, Def. 2.5].
To summarize the previous discussion, gradient models in the sense of (2.40) have the

property that any external field satisfying (2.45) will not change the invariant measure,
while generalized gradient models in the sense of (2.47) have this property only for constant
external fields.

2.6. Glauber + Kawasaki dynamics

Unlike the models discussed so far, the so-called Glauber + Kawasaki process is not a
lattice gas in the sense that the number of particles is not locally conserved. A reaction
term allowing creation/annihilation of particles is added in the bulk. We consider the case
with exclusion rule so that X = {0, 1} and discuss only the one-dimensional case with
periodic boundary condition, ΛN a ring with N sites. The generator is defined as

LNf(η) =
1

2

∑

(x,y)∈B(ΛN )

ηx(1 − ηy)[f(σx,yη) − f(η)] +
1

N2

∑

x∈ΛN

cx(η)[f(σxη) − f(η)], (2.48)

where σx denotes the particle flip at x, i.e. (σxη)x = 1 − ηx and (σxη)y = ηy for y �= x.
The first term of the generator corresponds to the symmetric exclusion process while the
second one involves the reaction defined by the corresponding rates cx, x ∈ ΛN . The factor
N2 in (2.48) has been inserted to get, after diffusive rescaling, a meaningful macroscopic
evolution.

The first question one can ask is when there exists a reversible measure for this
process. As we shall see, this happens only if we impose some restrictions on the reaction
rates cx. The condition of reversibility w.r.t. the measure μN is (2.6), which in this case,
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after some algebra, is

1
2

∑

η

∑

x∈ΛN

g(η)f(ηx,x+1)[μN(η) − μN(ηx,x+1)]

+
1

N2

∑

η

∑

x∈ΛN

g(η)f(σxη)[cx(η)μN(η) − cx(σ
xη)μN(σxη)] = 0, (2.49)

where ηx,x+1 denotes the configuration obtained from η by exchanging the occupation
numbers in x and x + 1. Since this equality must hold for every g and f , this condition
is equivalent to

μN(η) − μN(ηx,x+1) = 0

cx(η)μN(η) − cx(σ
xη)μN(σxη) = 0

(2.50)

for any η and x. The first condition imposes that the measure μN has the form

μN(η) = MN

( ∑

x∈ΛN

ηx

)
(2.51)

namely μN must assign an equal weight to configurations with the same number of
particles. The second condition, with a μN of this type, is a restriction on the reaction
rates and on the function MN . The most general form of cx(η) that satisfies this condition
is

cx(η) = A1(1 − ηx)h(τxη) + A2ηxh(τxη), (2.52)

where A1, A2 are arbitrary positive constants, and h : {0, 1}ΛN → R+ is an arbitrary
positive function such that h(σ0η) = h(η), i.e. it does not depend on η0. Recall that τx

denotes the shift by x. Notice that the rates cx(η) in (2.52) are translation invariant,
namely they satisfy cx(η) = c0(τxη). With this choice, the unique reversible measure μN

is the Bernoulli measure with parameter p = A1/(A1 + A2) [32].
We emphasize that periodic boundary conditions are crucial for the validity of (2.52)

with a nontrivial h. In this special case there are no long range correlations. In section 3.5
we show that if the rates cx are not of type (2.52) then—generically—there are long range
correlations.

2.7. Totally asymmetric exclusion process

The one-dimensional totally asymmetric exclusion process is the particular case of the
one-dimensional asymmetric exclusion process introduced in section 2.3 in which particles
jump only to the right. As discussed there, in the case of periodic boundary conditions,
the invariant measures are the Bernoulli measures with any density. We instead consider
here the boundary-driven model. As usual we set ΛN = {1, . . . , N − 1} and we let λ0 and
λ1 be the chemical potentials of the two reservoirs. The bulk jump rates are

cx,x+1(η) = ηx(1 − ηx+1), cx+1,x(η) = 0 x = 1, . . . , N − 2 (2.53)

while the boundary rates are

c0,1(η) = η1e
λ0/2, cN−1,N(η) = ηNe−(λ1/2), c1,0(η) = cN,N−1(η) = 0. (2.54)
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These rates can be obtained from our standard choice by a limiting procedure analogous
to the one described to get (2.23).

The unique invariant measure for this model has an interesting representation due to
Duchi and Schaeffer [23] that we briefly recall. We duplicate the variables by introducing
new random variables ξ ∈ {0, 1}ΛN . We then define a joint distribution νN for the variables
(η, ξ) as follows. Let

Ex :=
x∑

z=1

(ηz + ξz) − x, x = 1, . . . , N − 1

and E0 := 0. The measure νN gives positive weight only to complete configurations,
defined by the conditions

EN−1 = 0, Ex ≥ 0, x = 1, . . . , N − 1. (2.55)

Given a complete configuration we give some labels to the lattice sites according to
the following rules:

x ∈ ΛN has label W if ξx = 0 and Ex−1 = Ex = 0;
x ∈ ΛN has label B if ξx = 1, Ex−1 = 0 and there are no sites on the left of x labelled

W .
Let us denote by NW = NW (η, ξ) the number of sites with label W for the complete

configuration (η, ξ) and by NB = NB(η, ξ) the number of sites with label B. The measure
νN is then defined as

νN (η, ξ) =
1

ZN

exp{NW λ1/2 − NBλ0/2}, (2.56)

where ZN = ZN(λ1, λ2) is the appropriate normalization constant.
The invariant measure of the boundary-driven totally asymmetric exclusion process

is then the first marginal of the measure νN , i.e.

μN(η) =
∑

ξ∈{0,1}ΛN

νN (η, ξ). (2.57)

This result is proven by constructing a suitable Markov dynamics on the complete
configurations (η, ξ) such that its projection to the η variables coincides with the dynamics
of the totally asymmetric exclusion process. The invariant measure of the enlarged Markov
dynamics can be easily computed and yields (2.56).

3. Macroscopic theory

As previously stated, an issue that we want to discuss is the asymptotic behaviour of
the invariant measure μN . Let us first briefly recall the situation of reversible models.
For definiteness consider a stochastic lattice gas with reservoirs at the boundary and
assume that the chemical potential λ0 of the boundary reservoirs is constant and that
there is no external field. As discussed in section 2.1 the unique invariant measure is the
grand-canonical Gibbs distribution

μλ0
N (η) =

1

ZN(λ0)
exp

{
−H(η) + λ0

∑

x∈ΛN

ηx

}
, (3.1)
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where, letting ΣN,k := {η ∈ XΛN |
∑

x∈ΛN
ηx = k}, the grand-canonical partition function

ZN(λ) is

ZN(λ) =
∑

k≥0

eλk
∑

η∈ΣN,k

e−H(η). (3.2)

We then define p0(λ) as

p0(λ) := lim
N→∞

1

|ΛN |
log μλ0

N (eλ
∑

x∈ΛN
ηx), (3.3)

where |ΛN | is the number of sites in ΛN . Note that p0 can be easily related to
the pressure. Let in fact p̄0(λ) := limN→∞ |ΛN |−1 log ZN(λ) be the pressure, then
p0(λ) = p̄0(λ0 + λ) − p̄0(λ0).

We then define the free energy f0 as the Legendre transform of p0, i.e.

f0(ρ) := sup
λ∈R

{λρ − p0(λ)}. (3.4)

According to the normalization chosen f0 is a convex function which takes its minimum at
the density associated to the chemical potential λ0, i.e. at ρ0 = p′0(0) = p̄′0(λ0). Moreover
f0(ρ0) = 0.

According to the Einstein fluctuation formula [24, 40], see also Lanford’s lectures [41]
for a complete mathematical treatment, the free energy f0 gives the asymptotic probability
of observing a fluctuation of the density, namely

μλ0
N

(
1

|ΛN |
∑

x∈ΛN

ηx ≈ ρ

)
∼ exp{−|ΛN |f0(ρ)}. (3.5)

Here a ≈ b means closeness in R and ∼ denotes logarithmic equivalence as |ΛN | diverges.
In discussing non-equilibrium models, which are not translationally invariant, it is

important to establish a generalization of the above fluctuation formula. We want to
compute the asymptotic probability of a fluctuation not of the average density but of
the density profile. In fact, already Einstein [24] considered density profiles in small
fluctuations from equilibrium. We introduce the empirical density as follows. To each
microscopic configuration η ∈ XΛN we associate a macroscopic profile πN(u) = πN(η; u),
u ∈ Λ, by requiring that for each smooth function G : Λ → R

〈πN , G〉 =

∫

Λ

du πN(u)G(u) =
1

Nd

∑

x∈ΛN

G(x/N)ηx (3.6)

so that πN(u) is the local density at the macroscopic point u = x/N in Λ. Let ρ = ρ(u)
be a given density profile. Then (3.5) can be recast as

μλ0
N (πN ≈ ρ) ∼ exp{−NdF0(ρ)}. (3.7)

Here ρ ≈ ρ′ means that their averages over macroscopically small neighbourhoods are
close and F0(ρ) is the local and convex functional

F0(ρ) =

∫

Λ

du f0(ρ(u)). (3.8)
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For non-reversible systems we shall look for a fluctuation formula like (3.7) which, in
the same spirit as Einstein, we shall consider as the definition of the non-equilibrium free
energy. While in the reversible setting discussed above the invariant measure μN is given
by the Gibbs distribution (3.1), in a non-reversible system μN is not, in general, explicitly
known. For special models, powerful combinatorial methods have been used [19]–[21], [25].
In the following we shall discuss instead the strategy introduced in [2, 3] which is based
on the following idea. As N diverges the evolution of the thermodynamic variables is
described by a closed macroscopic evolution called the hydrodynamic equation. The
microscopic details are then encoded in the transport coefficients appearing in the
hydrodynamic equation. In the cases discussed here, these transport coefficients are the
diffusion coefficient and the mobility. For the Glauber + Kawasaki dynamics the reaction
rates are also involved. We then compute the asymptotic probability of fluctuations from
the typical hydrodynamical behaviour generalizing to a dynamical setting the Einstein
fluctuation formula (3.7). The non-equilibrium free energy F is then characterized as
the solution of a variational problem, from which we derive a Hamilton–Jacobi equation
involving the transport coefficients. This is an infinite-dimensional strategy analogous to
the Freidlin–Wentzell theory for diffusion processes [29].

Of course, in the case of reversible systems, the solution to the Hamilton–
Jacobi equation coincides with the equilibrium free energy F0. This is essentially the
characterization of F0 given by Onsager–Machlup [46], extended to a nonlinear context.

In section 3.1 we discuss the hydrodynamics and the associated dynamical large
deviations principle of weakly asymmetric lattice gases. In section 3.2 we recall the
derivation of the Hamilton–Jacobi equation and we discuss the form of the non-equilibrium
free energy for the specific models introduced in section 2. We will also discuss a
toy model for the invariant measure of the KMP process. In section 3.3 we obtain
the macroscopic equation satisfied by the correlation functions and we discuss whether
correlations are positive or negative. In section 3.4 we show that for weakly asymmetric
lattice gases with periodic boundary conditions the non-equilibrium free energy coincides
with the equilibrium one. In section 3.5 we discuss the macroscopic property of the
Glauber + Kawasaki dynamics [1, 32]. Finally, in section 3.6, starting from the results
in [23], we show how the representation for the non-equilibrium free energy of the totally
asymmetric exclusion process obtained in [21] can be formulated as a minimization
problem.

3.1. Hydrodynamics and dynamical large deviations

We consider an asymmetric model as defined by the rates (2.8). If the microscopic external
field F is of order 1, the appropriate scaling is the Euler one, i.e. both space and time
are rescaled by a factor N , and the hydrodynamic equation is given by a hyperbolic
equation, see [39] and references therein. We here consider instead the case in which the
external field is of the order 1/N as in (2.9). Then the hydrodynamic limit is obtained
in the diffusive scaling and given by a parabolic equation. Let πN(t) be the empirical
density, as defined in (3.6), corresponding to the particle’s configuration at time N2t;
πN (t, u) is then a random space–time trajectory; as N → ∞ it converges, however, to
a deterministic function. Referring to [39, 49, 50] for periodic boundary conditions and
to [3, 7, 26, 27] for open systems, we here state the law of large numbers, as N → ∞, of
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the empirical density πN for weakly asymmetric lattice gases. The macroscopic evolution
of the density is described by a (in general nonlinear) diffusion equation with a transport
term corresponding to the external field, namely

∂tρ = ∇ · [1
2
D(ρ)∇ρ − χ(ρ)E], (3.9)

where D is the diffusion matrix, obtained from the microscopic dynamics by a Green-Kubo
formula [49, II.2.2], and χ is the mobility matrix, obtained by linear response theory [49,
II.2.5]. In (3.9) · denotes the standard inner product in R

d. This equation has to be
supplemented by the boundary conditions which are either periodic when Λ is the torus
or the non-homogeneous Dirichlet condition

λ(ρ(t, u)) = λ0(u), u ∈ ∂Λ (3.10)

in the case of boundary-driven systems. Here ∂Λ is the boundary of Λ, λ(ρ) = f ′
0(ρ) is the

chemical potential associated with the microscopic Hamiltonian H and λ0 is the chemical
potential of the boundary reservoirs. Finally the initial condition for (3.9) is obtained as
the limiting empirical density of the chosen microscopic initial configuration of particles.

We obtain an equilibrium model either if Λ is the torus and there is no external field
or in the case of boundary-driven systems in which the external field in the bulk matches
the driving from the boundary; in particular, if λ0 is constant and E vanishes. In the
other cases the stationary state supports a non-vanishing current and the systems is out
of equilibrium.

The coefficients D and χ are related by the Einstein relation D = R−1χ, where R
is the compressibility: R−1 = f ′′

0 , in which f0 is the equilibrium free energy associated
with the Hamiltonian H, see [49]. For gradient lattice gases, as defined in section 2.5,
the diffusion matrix D and the mobility χ are multiples of the identity. For non-gradient
models in general D and χ are not diagonal, however, as shown in [50, Lemma 8.3], if the
Hamiltonian H is invariant w.r.t. rotation of π/2, then D and χ are diagonal.

We next discuss the large deviation properties of the empirical density; the derivation
can be found in [3, 4, 39, 49]. Fix a smooth trajectory ρ̂ ≡ ρ̂(t, u), (t, u) ∈ [0, T ] × Λ. We
want to compute the asymptotic probability that the empirical density πN is in a small
neighbourhood of ρ̂. If ρ̂ is not a solution to (3.9), this probability will be exponentially
small and the corresponding rate is called the large deviation dynamical rate functional.

Consider an initial configuration η whose empirical measure approximates, as N
diverges, ρ̂(0) and let P

N
η be the law of the microscopic process starting from such an

initial condition. The dynamical large deviation principle for the empirical density states
that

P
N
η (πN ≈ ρ̂) ∼ exp{−NdI[0,T ](ρ̂)}, (3.11)

where the rate functional I[0,T ] is

I[0,T ](ρ̂) = 1
2

∫ T

0

dt 〈∇H, χ(ρ̂)∇H〉 (3.12)

in which 〈, 〉 denotes integration in the space variables and ∇H ≡ ∇H(t, u) is the extra
gradient external field needed to produce the fluctuation ρ̂, namely such that

∂tρ̂ = ∇ · [1
2
D(ρ̂)∇ρ̂ − χ(ρ̂)(E + ∇H)]. (3.13)
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The interpretation of (3.12) is straightforward; since χ is the mobility, I[0,T ](ρ̂) is the
work done by the external field ∇H to produce the fluctuation ρ̂ in the time interval
[0, T ].

3.2. Thermodynamic functionals and Hamilton–Jacobi equation

Consider the following physical situation. The system is macroscopically in the stationary
profile ρ̄ ≡ ρ̄(u), u ∈ Λ (a stationary solution to (3.9)) at t = −∞, but at t = 0 we find
it in the state ρ. We want to determine the most probable trajectory followed in the
spontaneous creation of this fluctuation. According to (3.11) this trajectory is the one
that minimizes I among all trajectories ρ̂(t) connecting ρ̄ to ρ in the time interval [−∞, 0].
We thus define the so-called quasi-potential as

V (ρ) = inf
ρ̂:ρ̂(−∞)=ρ̄

ρ̂(0)=ρ

I[−∞,0](ρ̂). (3.14)

As shown in [3, 5], the functional V solves the Hamilton–Jacobi equation

1

2

〈
∇δV

δρ
, χ(ρ)∇δV

δρ

〉
+

〈
δV

δρ
,∇ ·

[
1

2
D(ρ)∇ρ − χ(ρ)E

]〉
= 0, (3.15)

note that there is no uniqueness of solutions, e.g. V = 0 is always a solution. In [3] is
discussed the appropriate selection criterion, that is V is the maximal solution to (3.15).

If the system is in equilibrium then the quasi-potential V coincides with the
variation of the equilibrium free energy associated with the profile ρ. The latter can
be characterized, by the Einstein fluctuation formula, as the rate of the asymptotic
probability of observing a given density profile in the equilibrium measure. Namely, if
μN is the invariant measure of the generator LN , then

μN(πN ≈ ρ) ∼ exp{−NdV (ρ)}. (3.16)

This relation holds also for non-equilibrium systems, see [3, 16], and, in this sense,
the solution to the variational problem (3.14) is the appropriate generalization of the
free energy for non-equilibrium systems. Finally, as discussed in [3], for generic non-
equilibrium models the quasi-potential V is a non-local functional of ρ. Notable exceptions
are the zero-range model and the case, discussed in section 3.4, of systems with weak
external field and periodic boundary conditions. We next recall some results on the
quasi-potential for specific lattice gases.

Zero-range process. We consider the zero-range process as introduced in section 2.2 either
in the torus or in a bounded domain with a weak external field E. Recalling (2.19)
and (2.20), we define the function Φ : R+ → R+ as the activity corresponding to the
density α, i.e. such that

α =
1

Z(Φ(α))

∞∑

k=0

k
Φ(α)k

g(k)!
, (3.17)

where Z(ϕ) is defined in (2.20). In other words α �→ Φ(α) is the inverse of the function
ϕ �→ R(ϕ) defined by

R(ϕ) = ϕ
Z ′(ϕ)

Z(ϕ)
. (3.18)
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As shown in [2, 3, 17, 39], the hydrodynamic equation for the zero-range process is
then (3.9) with D = Φ′ and χ = Φ. In the case of independent random walks, i.e. g(k) = k,
Φ is the identity so that D = 1 and χ(ρ) = ρ.

Since for the zero-range process, as discussed in section 2.2, the invariant measure
is always a product measure, the quasi-potential V is a local functional. Its form can
be computed directly from the invariant measure by requiring that (3.16) holds. On the
other hand, it is also possible to solve explicitly the Hamilton–Jacobi equation (3.15). As
shown in [2, 3] we get

V (ρ) =

∫

Λ

du
[
ρ(u) log

Φ(ρ(u))

ϕ̄(u)
− log

Z(Φ(ρ(u)))

Z(ϕ̄(u))

]
, (3.19)

where ϕ̄(u) = Φ(ρ̄(u)) is the stationary activity profile, ρ̄ being the stationary solution
to (3.9), i.e. the stationary density profile. Equivalently ϕ̄ solves

1
2
Δϕ̄ −∇ · (ϕ̄E) = 0 u ∈ Λ

ϕ̄(u) = exp{λ0(u)} u ∈ ∂Λ
(3.20)

which, recalling (2.9), is just the continuous limit of (2.18).

Boundary-driven symmetric exclusion process. We consider here the one-dimensional
symmetric exclusion process as introduced in section 2.3 with Λ = (0, 1). Let ρ0 and
ρ1 be the boundary densities. As shown in [3, 26, 27], the hydrodynamic equation is (3.9)
with D = 1 and χ(ρ) = ρ(1−ρ). For this model, if ρ0 �= ρ1 the quasi-potential is non-local,
which is the signature of macroscopic long range correlations. The quasi-potential cannot
be written in a closed form, but can be obtained by solving a one-dimensional boundary
value problem. This has been proven in [19, 20] by combinatorial methods and in [3, 4] by
the dynamical/variational approach presented here. The result is the following:

V (ρ) = sup
f

∫ 1

0

du

[
ρ log

ρ

f
+ (1 − ρ) log

1 − ρ

1 − f
+ log

f ′

ρ1 − ρ0

]
, (3.21)

where the supremum is carried out over all strictly monotone smooth functions f satisfying
the boundary conditions f(0) = ρ0, f(1) = ρ1. It has also been shown that there exists a
unique maximizer for the variational problem (3.21) which is the unique strictly monotone
solution to the nonlinear boundary value problem

f(1 − f)
f ′′

(f ′)2
+ f = ρ

f(0) = ρ0, f(1) = ρ1

(3.22)

in which ρ = ρ(u) is the prescribed fluctuation. Knowing that (3.21) is the answer,
the proof amounts to some lengthy but straightforward computations in showing that it
solves the Hamilton–Jacobi equation (3.15), see [4] for the details. From (3.21), since V
is expressed as the supremum of convex functionals we get ‘for free’ that V is a convex
functional. However, as shown below, this convexity property does not hold in general.

Variational formulae like (3.21) are typical in statistical mechanics, but here the
interpretation of it is rather unclear. Firstly it appears strange that we need to maximize
and not to minimize, secondly the meaning of the test function f is not apparent.
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For the second issue we mention that a dynamical interpretation of f in terms of the
hydrodynamics of the time-reversed process is discussed in [3]. For the first issue we shall
show that it is connected with the convexity properties of the mobility χ.

We mention that an expression similar to (3.21) has also been obtained for the
boundary-driven weakly asymmetric exclusion process in [25]. Also the Hamilton–Jacobi
approach can be applied successfully, see [11].

Boundary-driven KMP process. We consider here the KMP process introduced in
section 2.4. The hydrodynamic equation is (3.9) with D = 1 and χ(ρ) = ρ2. Note that
here ρ is the energy density and not the particle density as for lattice gases. Similarly to
the boundary-driven symmetric exclusion process, as shown in [12], the quasi-potential
can be obtained by solving a one-dimensional boundary value problem. The result is the
following:

V (ρ) = inf
f
G(ρ, f), (3.23)

where

G(ρ, f) =

∫ 1

0

du

[
ρ

f
− 1 − log

ρ

f
− log

f ′

T1 − T0

]
, (3.24)

and the infimum is carried out over all strictly monotone smooth functions f satisfying
the boundary conditions f(0) = T0, f(1) = T1. It has also been shown that there exists a
unique minimizer for the variational problem (3.23) which is the unique strictly monotone
solution to the nonlinear boundary value problem

f 2 f ′′

(f ′)2
− f = −ρ

f(0) = T0, f(1) = T1

(3.25)

in which ρ = ρ(u) is the prescribed fluctuation. As for the boundary-driven symmetric
exclusion process, knowing that (3.23) is the answer, the proof amounts to some
lengthy but straightforward computations in showing that it solves the Hamilton–Jacobi
equation (3.15). Unlike the boundary-driven symmetric exclusion process, the quasi-
potential for the KMP process is not convex.

A possible interpretation of (3.23) is the following. The local functional G(ρ, f) can
be thought of as a joint rate functional for both the energy density ρ and the function
f , which we can interpreted as a temperature profile. Then the minimization procedure
of (3.23) corresponds to the application of a contraction principle. We therefore search
for the best hidden temperature profile f associated to the energy density profile ρ. This
is the inspiring idea behind the following toy model for the invariant measure.

We will show that the functional V in (3.23) is the large deviations rate functional of
a measure on R

ΛN
+ which is ‘simple’ enough to be described explicitly and ‘rich’ enough to

produce such a non-local rate functional. Recall that in section 2.4 we have obtained an
explicit representation of the invariant measure of the KMP process with a single oscillator
as a convex combination of exponential distributions.

We assume T0 ≤ T1 and let t1, . . . , tN−1 be independent uniform random variables on
the interval [T0, T1]. Denote t[1] ≤ t[2] ≤ · · · ≤ t[N−1] be order statistics of t1, . . . , tN−1,
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i.e. t[1] is the smallest among the ti, t[2] the second smallest and so on. Denote by �N ,
the distribution of the random vector t[1], . . . , t[N−1]; note that �N is a probability on

[T0, T1]
N−1. We then define νN as the probability measure on R

ΛN
+ whose density w.r.t. the

Lebesgue measure dξ =
∏

x∈ΛN
dξx is given by

dνN

dξ
=

∫
�N (dt1, . . . , dtN−1)

∏

x∈ΛN

1

tx
exp{−ξx/tx}. (3.26)

That is, νN is a mixture of the exponential Gibbs distribution with temperature profile
T (x/N) = tx. The measure νN is not the invariant measure of the KMP process; if we
compare (3.26) for a single oscillator, N = 2, with the exact expression in (2.32) we see
that we replaced the arcsine distribution in [T0, T1] with the uniform one. As N diverges,
the measure νN is, however, a good approximation of the true invariant measure in the
sense that it leads the rate function in (3.23). In particular it has the correct asymptotic
form of the two-point correlations.

To prove the above statement, let us consider the probability measure ν̃N on the space
R

ΛN
+ × [T0, T1]

ΛN given by

ν̃N (dξ, dt) = �N (dt)
∏

x∈ΛN

1

tx
exp{−ξx/tx} dξx (3.27)

so that νN in (3.26) is obtained as the first marginal of ν̃N , i.e. integrating on the second
variable t. Recalling the definition (3.6) of the empirical density πN , we likewise define
the empirical temperature profile τN by requiring that for each smooth function G on
Λ〈τN , G〉 = (1/N)

∑
x∈ΛN

G(x/N)tx. Given a smooth function ρ : Λ → R+ and a smooth
strictly increasing function f : Λ → [T0, T1] such that f(0) = T0 and f(1) = T1, we claim
that

ν̃N (πN ≈ ρ, τN ≈ f) ∼ exp{−NG(ρ, f)}, (3.28)

where G was defined in (3.24). To obtain this result, we first observe that if e1, . . . , eN are
N independent exponential random variables with parameter T , then

P

(
1

N

N∑

i=1

ei ≈ α

)
∼ exp{−N [α/T − 1 − log(α/T )]}.

We also recall, see, for example, [28, I.6], that the random variables Δ1 := t[1] −T0, Δ2 :=
t[2]− t[1], . . . , ΔN := T1− t[N−1] are distributed according to the product of N exponentials
conditioned on Δ1 + · · · + ΔN = T1 − T0. We then get

�N (τN ≈ f) ∼ exp

{
−N

∫ 1

0

du

[
− log

f ′(u)

T1 − T0

]}
.

Since, conditionally on the random variables t[x], x ∈ ΛN , the distribution of ξ is the
product of exponentials, (3.28) follows. Finally, from (3.28), by maximizing over the
possible values of f , we easily get that

νN (πN ≈ ρ) ∼ exp
{
−N inf

f
G(ρ, f)

}
. (3.29)
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3.3. Macroscopic correlation functions

In sections 2.3 and 2.4 we found exact formulae for the two-point correlation functions
CN(x, y) = μN(ηx; ηy) of the invariant measure μN , both for the one-dimensional
boundary-driven symmetric exclusion process, see (2.27), and for the boundary-driven
KMP process, see (2.38). For both models we found that, out of equilibrium, they admit
long range correlations of order 1/N . More precisely we have

CN(x, y) =
1

N
C

(
x

N
,

y

N

)
+ O

(
1

N2

)
,

with

C(u, v) = C(v, u) = −(ρ1 − ρ0)
2u(1 − v), 0 ≤ u < v ≤ 1 (3.30)

for the boundary-driven symmetric exclusion process and

C(u, v) = C(v, u) = +(T1 − T0)
2u(1 − v), 0 ≤ u < v ≤ 1 (3.31)

for the boundary-driven KMP process. Notice that the above functions (3.30) and (3.31)
only differ by a sign. Moreover the off-diagonal part of the above covariance is proportional
to the Green function of the Laplacian on the interval [0, 1] with Dirichlet boundary
conditions

Δ−1(u, v) = Δ−1(v, u) = −u(1 − v), 0 ≤ u ≤ v ≤ 1, (3.32)

namely the solution to the problem ∂2
u Δ−1(u, v) = δ(u− v), 0 ≤ u, v ≤ 1, with boundary

condition Δ−1(u, v) = 0 if either u or v is 0 or 1.
In this section we will derive the above results from a purely macroscopic point of view.

More precisely, we consider a one-dimensional boundary-driven system with Λ = (0, 1) and
no external field and we assume that the transport coefficients in (3.9) are of the following
form. The diffusion coefficient is constant, we set D(ρ) = 1 and χ(ρ) is quadratic so that
χ′′ is constant. We show that such models have positive, resp. negative, correlations if
χ′′ ≥ 0, resp. χ′′ ≤ 0.

Recall that the quasi-potential V (ρ) solves the Hamilton–Jacobi equation (3.15),
which in this context is〈

∇δV

δρ
, χ(ρ)∇δV

δρ
−∇ρ

〉
= 0. (3.33)

The functional V assumes its minimum at ρ̄, the stationary solution to (3.9), which in this
case is a linear function. The correlation function C(u, v), which measures the covariance
of the density fluctuations with respect to the invariant measure, is then obtained in the
quadratic approximation of V , i.e.

V (ρ) = 1
2
〈(ρ − ρ̄), C−1(ρ − ρ̄)〉 + O((ρ − ρ̄)3), (3.34)

where C−1 denotes the inverse operator of C. We can therefore get an equation for C(u, v)
by expanding the Hamilton–Jacobi equation (3.33) up to second order in (ρ − ρ̄).

It is convenient to introduce the ‘pressure’ G(h), see [3], defined as the Legendre
transform of the quasi-potential V (ρ),

G(h) = sup
ρ
{〈h, ρ〉 − V (ρ)}.
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Here h = h(u) can be interpreted as a chemical potential profile. By Legendre duality,
equation (3.33) can be rewritten as the following Hamilton–Jacobi equation for the
pressure,

〈
∇h, χ

(
δG

δh

)
∇h −∇δG

δh

〉
= 0 (3.35)

for any h which satisfies the boundary conditions h(0) = h(1) = 0. Moreover the
expansion (3.34) gets translated into the following expansion for G,

G(h) = 〈h, ρ̄〉 + 1
2
〈h, Ch〉 + O(h3). (3.36)

Hence the macroscopic correlation function C can be obtained by expanding
equation (3.35) up to second order in h.

From equation (3.36) we have

δG

δh(u)
= ρ̄(u) + (Ch)(u) + O(h2). (3.37)

If we thus plug (3.37) into (3.35) and neglect the terms of order h3 we get

〈∇h, χ(ρ̄)∇h −∇Ch〉 = 0 (3.38)

for all chemical potential profiles h such that h(0) = h(1) = 0. To derive the above
equation we used the fact that ρ̄ is linear. The macroscopic correlation function C can
then be determined as the solution to equation (3.38) satisfying the boundary condition
C(u, v) = 0 if u �= v and either u or v is 0 or 1. This condition is due to the fact that the
values of the density at the boundary is fixed by the reservoirs.

We next define the non-equilibrium contribution to the covariance as the function B
such that

C(u, v) = χ(ρ̄(u))δ(u − v) + B(u, v), u, v ∈ Λ. (3.39)

Note that, since D = 1, χ(ρ̄(u)) is the local equilibrium variance. By plugging (3.39)
into (3.38), we get that B solves

(∂2
u + ∂2

v)B(u, v) = −(∇ρ̄)2χ′′δ(u − v) (3.40)

together with the boundary condition B(u, v) = 0 if either u or v is 0 or 1. The above
equation can also be derived within the fluctuating hydrodynamic theory, see [48]. Hence

B(u, v) = −1
2
(∇ρ̄)2χ′′Δ−1(u, v)

which, by (3.32) and recalling that χ(ρ) = ρ(1−ρ) for the exclusion process and χ(ρ) = ρ2

for the KMP process, agrees with (3.30) and (3.31).
In [10] we derive the equation satisfied by the off-diagonal covariance B for arbitrary

dimension, D, χ, and external field E. This equation allows us to establish, for a class of
models, whether the correlations are positive or negative.
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3.4. Weakly asymmetric models with periodic boundary conditions

We consider here a lattice gas with periodic boundary conditions, namely Λ is the d-
dimensional torus, and constant weak external field E. As discussed in section 2.5, from
a microscopic point of view, if the model is gradient then the invariant measure does not
depend on the external field E. As we show here, from a macroscopic point of view, any
system behaves as gradient models.

The precise statement is the following. Consider the variational problem (3.14)
defining the quasi-potential V in the present setting of periodic boundary conditions
and constant external field E. Then V does not depend on E and therefore coincides
with the solution to (3.14) with E = 0, namely with the free energy associated with the
microscopic Hamiltonian H.

We suppose given the transport coefficients D and χ in (3.12)–(3.13) so that the
Einstein relationship D(ρ) = R(ρ)−1χ(ρ) holds; recall that, while D and χ are matrices,
the compressibility R is a scalar. In the case of periodic boundary conditions and constant
field E there is a one-parameter family of stationary solutions to (3.9) which are simply
the constant functions ρ̄(u) = m, m ∈ R+. Given m ∈ R+ we define

fm(ρ) =

∫ ρ

m

dr

∫ r

m

dr′
1

R(r′)

which is a strictly convex function with minimum at ρ = m. We claim that the solution
of the variational problem (3.14) with ρ̄ = m is the functional

Fm(ρ) =

∫

Λ

du fm(ρ(u)) (3.41)

for any value of the external field E.
If E = 0, by using the Einstein relation D(ρ) = f ′′

m(ρ)χ(ρ), it is easy to check that
Fm solves the Hamilton–Jacobi (3.15). If E is a constant, since the boundary conditions
are periodic, we have that〈

δFm

δρ
,∇ · χ(ρ)E

〉
= 0,

hence Fm solves the Hamilton–Jacobi (3.15) for any (constant) external field E. It
is also not difficult to check that Fm is the maximal solution to the Hamilton–Jacobi
equation (3.15) so that the claim is proven.

3.5. Glauber + Kawasaki

We consider here the macroscopic behaviour of the Glauber + Kawasaki process
introduced in section 2.6. The empirical density is defined as in (3.6). We emphasize
that in this model the empirical density is not locally conserved due to the reaction terms
in the microscopic dynamic (2.48). Accordingly, the hydrodynamic equation is given by
the reaction–diffusion equation

∂tρ = 1
2
Δρ + b(ρ) − d(ρ), (3.42)

where the reaction terms b and d, which are polynomials in ρ, are determined by the rates
cx(η) in (2.48) as follows [18, 35]:

b(ρ) = νρ(c0(η)(1 − η0)), d(ρ) = νρ(c0(η)η0), (3.43)
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where νρ is the Bernoulli measure with density ρ. In particular, in the reversible case
where the rates cx(η) are as in (2.52), b(ρ) and d(ρ) have the form

b(ρ) = A1(1 − ρ)ϕ(ρ), d(ρ) = A2ρϕ(ρ), (3.44)

where ϕ(ρ) is the expected value of h(η) in (2.52) with respect to νρ and A1, A2 ≥ 0.
We consider this system only with periodic boundary conditions. The equilibrium profile
thus corresponds to a constant density ρ̄ which solves b(ρ) = d(ρ) and gives an absolute
minimum of the potential U , defined by U ′(ρ) = −[b(ρ) − d(ρ)].

The associated large deviation asymptotics is in the same form as in (3.11), but here
the rate functional I[0,T ] is not simply quadratic in the external field. Indeed, in [35] it is
proven that it is given by

I[0,T ](ρ̂) =

∫ T

0

dt {1
2
〈∇H, ρ̂(1 − ρ̂)∇H〉

+ 〈b(ρ̂), (1 − eH + HeH)〉 + 〈d(ρ̂), (1 − e−H − He−H)〉}, (3.45)

where the external potential H is connected to the fluctuation ρ̂ by

∂tρ̂ = 1
2
Δρ̂ −∇ · (ρ̂(1 − ρ̂)∇H) + b(ρ̂)eH − d(ρ̂)e−H . (3.46)

As in section 3.2 we analyse the variational problem (3.14). The associated Hamilton–
Jacobi equation [1] is

H

(
ρ,

δV

δρ

)
= 0, (3.47)

where the ‘Hamiltonian’ H is not anymore quadratic in the momenta and it is given by

H(ρ, H) = 1
2
〈H, Δρ〉 + 1

2
〈∇H, ρ(1 − ρ)∇H〉 − 〈b(ρ), 1 − eH〉 − 〈d(ρ), 1 − e−H〉. (3.48)

If b and d are as in (3.44) it is easy to find the solution V of (3.47) [32]. Let
ρ̄ = A1/(A1 + A2), the unique root of b(ρ) − d(ρ) = 0, then

V (ρ) =

∫ 1

0

du

[
ρ log

ρ

ρ̄
+ (1 − ρ) log

1 − ρ

1 − ρ̄

]
. (3.49)

If the reaction rates cx(η) are of the form (2.52), then the invariant measure is Bernoulli
and (3.49) follows. On the other hand, as shown in [32], there are choices of the reaction
rates such that (2.52) fails but (3.44) holds. In this case (3.49) still holds and we may
say that reversibility is restored at the macroscopic level or that time-reversal invariance
is violated ‘weakly’ by the microscopic dynamics.

Correlation functions. In section 3.3 we studied long range correlations for some boundary-
driven (hence non-equilibrium) conservative models. Here we consider equilibrium states
for the Glauber + Kawasaki dynamics, which is non-conservative, and we study their
macroscopic correlation functions. In particular we show that, if the microscopic dynamics
violates time-reversal invariance ‘strongly’, that is (3.44) does not hold, long range
correlations do appear [1].

Recall that, in order for the system to be reversible, the rates cx(η) of the Glauber
dynamics should be of the form (2.52). Their relationship with the coefficients b(ρ) and
d(ρ) in (3.42) is given in (3.43).
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Equation (3.47) is a very complicated functional derivative equation which, as in
section 3.3, can be solved by successive approximations by formal power series expansion
in ρ − ρ̄. Here ρ̄ is a constant stationary solution of (3.42), i.e. a root of b(ρ) − d(ρ) = 0.

Let C be the correlation function. It gives the second-order approximation of the
quasi-potential as in (3.34). Proceeding as in section 3.3, see [1] for further details, we get
that C solves

1
2
∂2

uC(u, v) − (d1 − b1)C(u, v) − 1
2
ρ̄(1 − ρ̄)∂2

uδ(u − v) + b0δ(u − v) = 0, (3.50)

where

b1 = b′(ρ̄), d1 = d′(ρ̄), b0 = b(ρ̄) = d(ρ̄) = d0.

Notice that, if (3.44) holds, we get

γ := b0 − ρ̄(1 − ρ̄)(d1 − b1) = 0 (3.51)

and in this case, recalling (3.49), we of course have C(u, v) = ρ̄(1− ρ̄) δ(u−v). Conversely,
a solution of the form C(u, v) = αδ(u− v), for some α ≥ 0, exists only if (3.51) holds and
therefore α = ρ̄(1 − ρ̄).

The above considerations imply that long range correlations do appear when-
ever (3.51) fails. In this case we say that irreversibility persists at the macroscopic level.
As in section 3.3, we introduce the off-diagonal covariance B such that

C(u, v) = ρ̄(1 − ρ̄)δ(u − v) + B(u, v)

and we get that B solves

−1
2
∂2

uB(u, v) + (d1 − b1)B(u, v) = γδ(u − v), (3.52)

where γ is defined in (3.51). Note that d1−b1, being the second derivative of the potential
calculated in a minimum, is positive. Let R = (d1 − b1 − (1/2) Δ)−1 be the resolvent of
the Laplacian on the torus. Then the solution of (3.52) is

B(u, v) = γR(u, v). (3.53)

Since R(u, v) ≥ 0, we conclude that the correlation B(u, v) has the same sign as γ.
While γ = 0 corresponds to the macroscopically reversible situation, in general γ may

have either sign. For instance, given α ∈ (−1, 1), take the flip rates given by

c0(η) = η0

(
1 − α

η−1 + η1

2

)
+ (1 − η0)

(
1 + α

η−1 + η1

2

)

for α > 0 the presence of surrounding particles enhances the birth rate and suppresses
the death rate. We thus expect that the two-point correlation to be positive for α > 0
and negative for α < 0. We have γ = α(1 − α)(2 − α)−2 which shows that this is indeed
the case.

In [18] it is shown that fluctuations from the hydrodynamical equation with standard
Gaussian normalization converge, as N → ∞, to an Ornstein–Uhlenbeck process. The
stationary correlations of this process agree, as they should, with (3.53).
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3.6. Boundary-driven asymmetric exclusion process

We start from the representation of the invariant measure for the boundary-driven totally
asymmetric exclusion process obtained in [23] and illustrated in section 2.7. We call
πN the empirical measure associated with the configuration η, γN the empirical measure
associated with ξ and G(ρ, f) the joint rate functional

νN

(
πN ≈ ρ, γN ≈ f

)
∼ e−NG(ρ,f), (3.54)

where νN is the measure (2.56). From formula (2.57), using the contraction principle of
large deviations, we obtain directly

μN(πN ≈ ρ) ∼ e−NV (ρ), (3.55)

where

V (ρ) = inf
f
G(ρ, f). (3.56)

This argument suggests a different representation, from the one obtained in [21], for the
non-local rate functional V (ρ). In particular, while in [21] V (ρ) is obtained either as an
infimum or a supremum, depending on the values of the chemical potentials λ0 and λ1,
here we write V (ρ) always as an infimum.

We construct explicitly this new representation in the special case λ0 = λ1 = 0. In this
case the measure νN is uniform on the set of complete configurations, defined by (2.55),
and the joint rate functional G is easily obtained as a restriction of the one associated to
the uniform measure over all configurations (η, ξ) ∈ XΛN × XΛN . We define the set of
complete profiles

C :=

{
(ρ, f) :

∫ u

0

dv [ρ(v) + f(v)] ≥ u, u ∈ [0, 1];

∫ 1

0

dv [ρ(v) + f(v)] = 1

}
.

Remember that ρ and f are density profiles for configurations of particles satisfying an
exclusion rule so that they take values in [0, 1]. Then in the special case λ0 = λ1 = 0 we
have

G(ρ, f) =

⎧
⎨

⎩

∫ 1

0

du[h(ρ) + h(f)] if (ρ, f) ∈ C

+∞ otherwise,

(3.57)

where h(x) = x log(2x) + (1 − x) log[2(1 − x)]. Note that we do not need to add a
normalization constant due to the fact that the constant profiles

(
1
2
, 1

2

)
belong to C and

G
(

1
2
, 1

2

)
= 0. Using (3.56) we obtain the following variational representation for the

quasi-potential V ,

V (ρ) = inf
{f :(ρ,f)∈C}

∫ 1

0

du[h(ρ) + h(f)], (3.58)

that has to be compared with the one in [21]

V (ρ) = sup
{f :f(0)=1,f(1)=0}

∫ 1

0

du {ρ log[ρ(1 − f)] + (1 − ρ) log[(1 − ρ)f ] + log 4}, (3.59)

where the supremum is over monotone functions.
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In [21] it is shown that the supremum in (3.59) is obtained when f = F ′
ρ and

Fρ(u) = CE

(∫ u

0

dv [1 − ρ(v)]

)
,

where CE means concave envelope. We will show next that F ′
ρ is also the minimizer of

the problem (3.58). This is equivalent to proving that

inf
{F :(ρ,F ′)∈C}

∫ 1

0

du h(F ′(u)) =

∫ 1

0

du h(F ′
ρ(u)). (3.60)

Note that F ′ has to be a density profile so that F is increasing. Moreover F is defined
up to an additive constant so we can choose F (0) = 0. The condition (ρ, F ′) ∈ C is easily
seen as

F (0) = 0, F (u) ≥
∫ u

0

dv[1 − ρ(v)] ∀u ∈ [0, 1], F (1) =

∫ 1

0

dv [1 − ρ(v)]. (3.61)

It is clear that, if F satisfies condition (3.61), then also CE(F ) satisfies (3.61); or,
equivalently, if (ρ, F ′) ∈ C then also (ρ, CE(F )′) ∈ C. Moreover the following elementary
inequality holds due to the convexity of h:

∫ b

a

du h(F ′(u)) ≥ (b − a)h

(
F (b) − F (a)

b − a

)
(3.62)

which immediately implies
∫ 1

0

du h(F ′(u)) ≥
∫ 1

0

du h([CE(F )]′(u)).

We thus conclude that we can restrict the infimum (3.60) over the set of concave functions
F satisfying conditions (3.61). Still a direct application of (3.62) imposes that the
minimizer has to be the smallest among them, that is Fρ.

Using the above result we can finally prove the equivalence between the two different
representations (3.58) and (3.59) of V (ρ). In order to prove it we just have to show that,
for any density profile ρ,
∫ 1

0

du{ρ log(1 − F ′
ρ) + (1 − ρ) log F ′

ρ} =

∫ 1

0

du {(1 − F ′
ρ) log(1 − F ′

ρ) + F ′
ρ log F ′

ρ}. (3.63)

The contributions on both sides in (3.63) from the domain of integration where F ′
ρ = 1−ρ

are clearly equal. Consider now a maximal interval [a, b] where F ′
ρ �= 1 − ρ. Then on this

interval we have

F ′
ρ(u) =

1

b − a

∫ b

a

dv [1 − ρ(v)], u ∈ [a, b].

From this fact, an easy computation shows that also the contributions on both sides
of (3.63) from the integrations over [a, b] are equal.
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