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Nonequilibrium stationary states of thermodynamic systems dissipate a positive amount of energy per

unit of time. If we consider transformations of such states that are realized by letting the driving depend on

time, the amount of energy dissipated in an unbounded time window then becomes infinite. Following the

general proposal by Oono and Paniconi and using results of the macroscopic fluctuation theory, we give a

natural definition of a renormalized work performed along any given transformation. We then show that

the renormalized work satisfies a Clausius inequality and prove that equality is achieved for very slow

transformations, that is, in the quasistatic limit. We finally connect the renormalized work to the

quasipotential of the macroscopic fluctuation theory, which gives the probability of fluctuations in the

stationary nonequilibrium ensemble.
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A main goal of nonequilibrium thermodynamics is to
construct analogues of thermodynamic potentials for non-
equilibrium stationary states. These potentials should
describe the typical macroscopic behavior of the system
as well as the asymptotic probability of fluctuations. As it
has been shown in Ref. [1], this program can be imple-
mented without the explicit knowledge of the stationary
ensemble and requires as input the macroscopic dynamical
behavior of systems that can be characterized by the trans-
port coefficients. This theory, now known as macroscopic
fluctuation theory, is based on an extension of Einstein
equilibrium fluctuation theory to stationary nonequilibrium
states combined with a dynamical point of view. It has been
very powerful in studying concrete microscopic models but
can be used also as a phenomenological theory. It has led to
several new interesting predictions [2–7].

From a thermodynamic viewpoint, the analysis of trans-
formations from one state to another one is most relevant.
This issue has been addressed by several authors in different
contexts. For instance, following the basic papers [8–10],
the case of Hamiltonian systems with finitely many degrees
of freedom has recently been discussed in Refs. [11,12],
while the case of Langevin dynamics is considered in
Ref. [13].

We here consider thermodynamic transformations for
driven diffusive systems in the framework of the macro-
scopic fluctuation theory. With respect to the authors men-
tioned above, the main difference is that we deal with
systems with infinitely many degrees of freedom, and the
spatial structure becomes relevant. For simplicity of nota-
tion, we restrict to the case of a single conservation law,
e.g., the conservation of mass. We thus consider an open

system in contact with boundary reservoirs, characterized
by their chemical potential �, and under the action of an
external field E. We denote by� � Rd the bounded region
occupied by the system, by x the macroscopic space coor-
dinates, and by t the macroscopic time. With respect to our
previous work [1,3,4], we here consider the case in which �
and E depend explicitly on the time t, driving the system
from a nonequilibrium state to another one. The macro-
scopic dynamics is given by the hydrodynamic equation
for the density that satisfies the following general assump-
tions based on the notion of local equilibrium. For sto-
chastic lattice gases, these assumptions can be proven
rigorously and the macroscopic transport coefficient can
be characterized in terms of the underlying microscopic
dynamics [14].
The macroscopic state is completely described by the

local density uðt; xÞ and the associated current jðt; xÞ. In the
sequel, we drop the dependence on the space coordinate x
from the notation. The macroscopic evolution is given by
the continuity equation

@tuðtÞ þ r � jðtÞ ¼ 0; (1)

together with the constitutive equation jðtÞ ¼ Jðt; uðtÞÞ
expressing the local current in function of the local density.
For driven diffusive systems, the constitutive equation
takes the form

Jðt; �Þ ¼ �Dð�Þr�þ �ð�ÞEðtÞ; (2)

where the diffusion coefficientDð�Þ and the mobility �ð�Þ
are positive matrices. In the case of time-independent
driving, the right hand side does not depend explicitly
on time, and we denote the current simply by Jð�Þ.
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The transport coefficients in Eq. (2) satisfy the local
Einstein relation Dð�Þ ¼ �ð�Þf00ð�Þ, where f is the equi-
librium free energy per unit of volume. The interaction
with the external reservoirs specifies the boundary condi-
tions for the evolution defined by Eqs. (1) and (2).
Recalling that �ðtÞ is the chemical potential of the reser-
voirs, this boundary condition reads f0ðuðt; xÞÞ ¼ �ðt; xÞ,
x 2 @�. We shall also assume that when � and E do not
depend on time, there is a unique and globally attractive
stationary solution for the flow defined by Eqs. (1) and (2)
that is denoted by �� ¼ ���;E. In particular, ���;E is the

typical density profile in the stationary nonequilibrium
state corresponding to time-independent chemical poten-
tial � and external field E.

We now fix time-dependent paths �ðtÞ of the chemical
potential andEðtÞ of the driving field. Given a density profile
�, we denote by ðuðtÞ; jðtÞÞ, t � 0, the solution of Eqs. (1)
and (2) with initial condition �. LetW½0;T� ¼ W½0;T�ð�; E; �Þ
be the energy exchanged between the system and the external
driving in the time interval [0, T], that is,

W½0;T� ¼
Z T

0
dt

�Z
�
dxjðtÞ �EðtÞ�

Z
@�

d��ðtÞjðtÞ � n̂
�
; (3)

where n̂ is the outer normal to @� and d� is the surface
measure on @�. The first term on the right hand side is the
energy provided by the external field, whereas the second
term is the energy provided by the reservoirs.

In view of the boundary conditions and the Einstein
relation, by using the divergence theorem in Eq. (3), we
deduce that

W½0;T� ¼FðuðTÞÞ�Fð�Þþ
Z T

0
dt
Z
�
dxjðtÞ ��ðuðtÞÞ�1jðtÞ;

(4)

where F is the equilibrium free-energy functional,

Fð�Þ ¼
Z
�
dxfð�ðxÞÞ: (5)

Consider two stationary states corresponding to (time-
independent) (�0, E0) and (�1, E1) and denote by ��0 ¼
���0;E0

and ��1 ¼ ���1;E1
the associated density profiles. Such

states can be either equilibrium or nonequilibrium states.
We can drive the system from the initial state ��0 at
time t ¼ 0 to the final state ��1 at time t ¼ þ1 by consid-
ering a time-dependent forcing [�ðtÞ, EðtÞ] satisfying
ð�ð0Þ; Eð0ÞÞ ¼ ð�0; E0Þ and ð�ðþ1Þ; Eðþ1ÞÞ ¼ ð�1; E1Þ.
As the second term on the right hand side of Eq. (4) is
positive, by letting W ¼ W½0;þ1Þ be the total energy

exchanged in the transformation, we deduce the Clausius
inequality

W � �F ¼ Fð ��1Þ � Fð ��0Þ: (6)

When the initial and final states are equilibrium states,
e.g., the external field E vanishes and the chemical
potential � is constant, the inequality (6) is a standard

formulation of the second law of thermodynamics.
Moreover, by considering a sequence of transformations
in which the variation of the driving becomes very slow, it
is not difficult to show that equality in Eq. (6) is achieved in
the quasistatic limit; we refer to Ref. [15] for the details.
On the other hand, for nonequilibrium states the inequality
(6) does not carry any information. Indeed, as nonequilib-
rium states support a nonvanishing current, in the limit
T ! þ1, the second term on the right hand side of Eq. (4)
becomes infinite so that the left hand side of Eq. (6) is
infinite while the right hand side is bounded. By interpret-
ing the ideas in Ref. [16], further developed in Refs. [10,17],
we next define a renormalized work for which a significant
Clausius inequality can also be obtained for nonequilibrium
stationary states.
To this aim, we recall the quasipotential, which is the

key notion of the macroscopic fluctuation theory. Consider
a system with time-independent driving and let [ûðtÞ, |̂ðtÞ],
t 2 ½T1; T2� be a pair density current satisfying the con-
tinuity equation @tûþr � |̂ ¼ 0. According to the basic
principles of the macroscopic fluctuation theory [1,3,4],
the probability of observing this path is given, up to a
prefactor, by expf�"�d�I½T1;T2�ðû; |̂Þg where " is the scal-

ing parameter, i.e., the ratio between the microscopic
length scale (say the typical intermolecular distance) and
the macroscopic one,� ¼ 1=�T (here T is the temperature
and � is Boltzmann’s constant), and the action functional I
has the form

I½T1;T2�ðû; |̂Þ ¼
1

4

Z T2

T1

dt
Z
�
dx½|̂ðtÞ � JðûðtÞÞ� � �ðûðtÞÞ�1

� ½|̂ðtÞ � JðûðtÞÞ�: (7)

In particular, if (û, |̂) solves Eqs. (1) and (2), then
I½T1;T2�ðû; |̂Þ ¼ 0. The above statement therefore implies

that the typical behavior of the system is described by
the hydrodynamic equations. The quasipotential is the
functional on the set of density profiles defined by the
variational problem

Vð�Þ ¼ inffIð�1;0�ðû; |̂Þ; ûð0Þ ¼ �g; (8)

where the infimum is carried out over all the trajectories
satisfying the prescribed boundary condition. Namely,
Vð�Þ is the minimal action to bring the system from the
typical density profile �� to the fluctuation �. The proba-
bility of a density profile � in the stationary nonequi-
librium ensemble is then given, up to a prefactor, by
expf�"�d�Vð�Þg. In particular, the minimizer of V is
the typical density profile ��. For equilibrium states it can
be shown [4] that V coincides, apart an affine transfor-
mation, with the free-energy functional (5). Moreover, as
shown in Ref. [1], the functional V solves the stationary
Hamilton-Jacobi equation

Z
�
dxr�V

��
� �ð�Þr�V

��
�

Z
�
dx

�V

��
r � Jð�Þ ¼ 0; (9)
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where �V=�� vanishes at the boundary @� and � satisfies
the boundary condition f0ð�ðxÞÞ ¼ �ðxÞ, x 2 @�.

In the case of time-independent driving, the current Jð�Þ
in Eq. (2) can be decomposed as Jð�Þ ¼ JSð�Þ þ JAð�Þ,
where JSð�Þ ¼ ��ð�Þr �V

�� and JAð�Þ ¼ Jð�Þ � JSð�Þ. In
view of the stationary Hamilton-Jacobi Eq. (9), the above
decomposition is orthogonal in the sense that for each
density profile �

Z
�
dxJSð�Þ � �ð�Þ�1JAð�Þ ¼ 0: (10)

We shall refer to JSð�Þ as the symmetric current and to
JAð�Þ as the antisymmetric current. This terminology
refers to symmetric and antisymmetric parts of the micro-
scopic dynamics [1,3]. We remark that JS is proportional to
the thermodynamic force and the above decomposition
depends on the external driving.

Since the quasipotential V is minimal in the stationary
profile, the above definitions imply that JSð ��Þ ¼ 0; namely,
the stationary current is purely antisymmetric. In particular,
JAð ��Þ is the typical current in the stationary nonequilibrium
ensemble associated, and it is therefore experimentally
accessible. In view of the general formula (4) for the total
work, the amount of energy per unit of time needed to
maintain the system in the stationary profile �� is

Z
�
dxJAð ��Þ � �ð ��Þ�1JAð ��Þ: (11)

We shall next consider time-dependent driving and
define a renormalized work by subtracting from the total
work the energy needed to maintain the system out of
equilibrium. We fix, therefore, T > 0, a density profile �,
and space-time-dependent chemical potentials �ðtÞ and
external field EðtÞ, t 2 ½0; T�. Let [uðtÞ, jðtÞ] be the corre-
sponding solution of Eqs. (1) and (2) with initial condition
�. Recalling Eq. (11), we define the renormalized work
Wren

½0;T� ¼ Wren
½0;T�ð�; E; �Þ performed by the reservoirs and

the external field in the time interval [0, T] as

Wren
½0;T� ¼ W½0;T�

�
Z T

0
dt

Z
�
dxJAðt; uðtÞÞ � �ðuðtÞÞ�1JAðt; uðtÞÞ:

(12)

In this formula,W½0;T� ¼ W½0;T�ð�; E; �Þ is given in Eq. (3),
Jðt; uÞ ¼ JSðt; uÞ þ JAðt; uÞ;

JSðt; uÞ ¼ ��ðuÞr�V�ðtÞ;EðtÞðuÞ
�u

in which u is a generic density profile, Jðt; uÞ is given by
Eq. (2), and V�ðtÞ;EðtÞ is the quasipotential relative to the

state [�ðtÞ, EðtÞ] with frozen t. Observe that the definition
of the renormalized work involves the antisymmetric cur-
rent JAðtÞ computed not at density profile ���ðtÞ;EðtÞ but at

the solution uðtÞ of the time-dependent hydrodynamic
equation. That is, at time t we subtract the power the
system would have dissipated if its actual state uðtÞ had
been the stationary profile corresponding to [�ðtÞ, EðtÞ].
This choice, which is certainly reasonable for slow trans-
formations, leads to a Clausius inequality. Indeed, by using
Eq. (4) and the orthogonality between the symmetric and
the antisymmetric part of the current,

Wren
½0;T�ð�;E;�Þ¼FðuðTÞÞ�Fð�Þ

þ
Z T

0
dt
Z
�
dxJSðt;uðtÞÞ��ðuðtÞÞ�1JSðt;uðtÞÞ:

Consider a density profile � and a space-time-dependent
chemical potential and external field [�ðtÞ, EðtÞ], t � 0,
converging to (�1, E1) as t ! þ1. Let ��1 ¼ ���1;E1

be the

stationary profile associated to (�1, E1) and [uðtÞ, jðtÞ],
t � 0, be the solution of Eqs. (1) and (2) with initial condi-
tion �. Since uðTÞ converges to ��1, the symmetric part of
the current, JSðuðTÞÞ, relaxes as T ! þ1 to JSð ��1Þ ¼ 0.
Under suitable assumptions on the transformation, the last
integral in the previous formula is convergent as T ! þ1.
By letting Wren ¼ limT!1Wren

½0;T�, we thus get

Wrenð�;E;�Þ¼Fð ��1Þ�Fð�Þ
þ
Z 1

0
dt
Z
�
dxJSðt;uðtÞÞ ��ðuðtÞÞ�1JSðt;uðtÞÞ;

(13)

where F is the equilibrium free-energy functional (6). In
particular,

Wrenð�; E; �Þ � Fð ��1Þ � Fð�Þ; (14)

which is a meaningful version of the Clausius inequality
for nonequilibrium states. Furthermore, by considering a
sequence of transformations [�ðtÞ, EðtÞ], which vary on a
time scale 1=�, we realize that the integrand on the second
term in the right hand side of Eq. (13) is of order �2 while
the integral essentially extends, due to the finite relaxation
time of the system, over an interval of order ��1.
Therefore, in quasistatic limit � ! 0 equality in Eq. (14)
is achieved. We refer to Ref. [15] for more details.
For special transformations, the integral in Eq. (13),

which represents the excess work over a quasistatic trans-
formation, can be related to the quasipotential. Consider at
time t ¼ 0 a stationary nonequilibrium profile ��0 corre-
sponding to some driving (�0, E0). The system is put in
contact with new reservoirs at chemical potential �1 and a
new external field E1. For t > 0, the system evolves
according to the hydrodynamic Eqs. (1) and (2) with initial
condition ��0, time-independent boundary condition �1,
and external field E1. In particular, as t ! þ1 the system
relaxes to ��1, the stationary density profile corresponding
to (�1, E1). A simple calculation shows that along such
a path
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Z 1

0
dt

Z
�
dxJSðt; uðtÞÞ � �ðuðtÞÞ�1JSðt; uðtÞÞ

¼ V�1;E1
ð ��0Þ � V�1;E1

ð ��1Þ ¼ V�1;E1
ð ��0Þ: (15)

The quasipotential V�1;E1
ð ��0Þ thus represents the excess

work, with respect to a quasistatic transformation, along
the path that solves Eqs. (1) and (2) with initial condition
��0 and time-independent driving (�1, E1).
To connect the above result with classical equilibrium

thermodynamics, consider an equilibrium state with van-
ishing external field and constant chemical potential �0 and
let ��0 be the corresponding homogeneous density, i.e.,
�0 ¼ f0ð ��0Þ. The system is put in contact with a new
environment with chemical potential �1. In this case,
recalling that f is the free energy per unit of volume and
that the temperature of the system is the same of the
environment, the availability per unit of volume is defined
(see Ref. [18] Ch. 7] pippard) by a ¼ fð ��0Þ � �1 ��0.
The function a, which depends on state of the system
and the environment, can be used to compute the maximal
useful work that can be extracted from the system in
the given environment. More precisely, by letting ��1 be
such that f0ð ��1Þ ¼ �1, then ��a ¼ fð ��0Þ � fð ��1Þ �
�1ð ��0 � ��1Þ � 0 is the maximal useful work per unit of
volume that can be extracted from the system in the given
environment. By computing the quasipotential for equilib-
rium states (see Ref. [4]), we get V�1;0ð ��0Þ ¼ �j�j�a.
Therefore, while a definition of thermodynamic potentials,
that is, functionals of the state of the system, does not
appear possible in nonequilibrium thermodynamics, the
quasipotential is the natural extension of the availability.

In terms of the underlying microscopic ensembles, as
discussed in Ref. [15], the quasipotential V�1;E1

ð ��0Þ can be

obtained by computing the relative entropy of the en-
semble associated to (�0, E0) with respect to the one
associated to (�1, E1). By consideration of a Markovian
model for such underlying dynamics, it is also possible to
give a microscopic definition of the exchanged work that
in the hydrodynamic scaling limit converges to Eq. (3).
The corresponding fluctuations can be deduced from those
of the empirical current [3].

The definition of renormalized work we have introduced
is natural and ensures, as we have discussed, both its
finiteness and the validity of a Clausius inequality. From
an operational point of view, the quasipotential, a generi-
cally nonlocal quantity, can be obtained from the measure-
ment of the density correlation functions. In fact, V is the
Legendre transform of the generating functional of density
correlation functions [1]. On the other hand, the identity
Wren ¼ �F, which is achieved for quasistatic transfor-
mations, requires the knowledge of the total current in
the intermediate stationary states that can be directly
measured.

One may ask whether there exist, with respect to Eq. (12),
alternative renormalizations of the total work. For instance,

in the recent work of Ref. [19], Maes and Netocny consid-
ered the topic of a renormalized Clausius inequality in the
context of a single Brownian particle in a time-dependent
environment. To compare the approach in Ref. [19] to
the present one, consider N independent diffusions in the
thermodynamic limit N ! 1. Each diffusion solves the

Langevin equation _X ¼ Eðt; XÞ þ ffiffiffi
2

p
_w, where E is a

time-dependent vector field and _w denotes white noise.
The corresponding stationary measure with E frozen at
time t is denoted by expf�vðt; xÞg. The scheme discussed
here can be now applied, the hydrodynamic equations are
given by Eqs. (1) and (2) with D ¼ 1 and �ð�Þ ¼ �. Our
renormalized work is given by Eq. (12) with JAðt; �Þ ¼
�½Eðt; xÞ þ rvðt; xÞ�. The renormalization introduced in
Ref. [19] is instead obtained by introducing a potential field
such that the corresponding stationary state has minimal
entropy production. Namely, they write E ¼ f�rU and
subtract from the energy exchanged the space-time integral
of jJ’t j2=� where J’t ¼ �ðf�r’Þ � r� and ’ ¼
’ðt; x;�Þ is chosen so that r � J’t ¼ 0. While the two
renormalization schemes are different, both satisfy the
Clausius inequality (14) with Fð�Þ ¼ R

dx� log�.
Observe that in this case of independent particles, our
renormalization is local whereas the dependence of J’t on
� is nonlocal. It is not clear to us how the approach in
Ref. [19] can be generalized to cover the case of interacting
particles in the hydrodynamic scaling limit.
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