STATIONARY NON EQULIBRIUM STATES FROM A MICROSCOPIC AND A MACROSCOPIC POINT OF VIEW

Davide Gabrielli

University of L'Aquila

1 July 2014

GGI Firenze

References

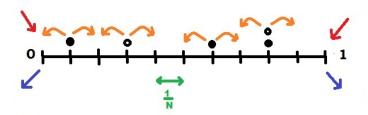
- L. Bertini; A. De Sole; D. G.; G. Jona-Lasinio; C. Landim Stochastic interacting particle systems out of equilibrium J. Stat. Mech. (2007)
- D. G. From combinatorics to large deviations for the invariant measures of some multiclass particle systems Markov Processes Relat. (2008)
- L. Bertini; D. G.; G. Jona-Lasinio; C. Landim Thermodynamic transformations of nonequilibrium states J. Stat. Phys. (2012)

SNS: Microscopic description

Lattice: Λ_N

Configuration of particles: $\eta \in \{0,1\}^{\Lambda_N}$ or $\eta \in \mathbb{N}^{\Lambda_N}$

 $\eta_t(x)$ = number of particles at $x \in \Lambda_N$ at time t



SNS: Microscopic description

- Stochastic Markovian dynamics
- $r(\eta, \eta')$ = rate of jump from configuration η to configuration η'
- $\eta' = \text{local perturbation of } \eta$
- $\mu_N(\eta)$ = invariant measure of the process, probability measure on the state space

$$\mu_N(\eta) \sum_{\eta'} r(\eta, \eta') = \sum_{\eta'} \mu_N(\eta') r(\eta', \eta)$$

 $\mu_N \Longrightarrow \text{MICROSCOPIC description of the SNS}$

SNS: Macroscopic description

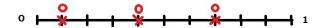
• $\eta \Longrightarrow \pi_N(\eta)$ Empirical measure (positive measure on [0,1])

$$\pi_N(\eta) = \frac{1}{N} \sum_{x \in \Lambda_N} \eta(x) \delta_x$$

 $\frac{\delta_x}{\delta_x}$ = delta measure (Dirac) at $x \in [0, 1]$; since $x \in \Lambda_N$ we have $x = \frac{i}{N}, i \in \mathbb{N}$. Given $f : [0, 1] \to \mathbb{R}$

$$\int_{[0,1]} f d\pi_N = \frac{1}{N} \sum_{x \in \Lambda_N} \eta(x) f(x)$$

× = delta measure



SNS: Macroscopic description

When η is distributed according to μ_N and N is large

LAW OF LARGE NUMBERS

$$\pi_N \to \bar{\rho}(x) dx$$

This means

$$\int_{[0,1]} f d\pi_N \to \int_{[0,1]} f(x) \bar{\rho}(x) \, dx$$

 $\bar{\rho}(x)$ = typical density profile of the SNS

SNS: Macroscopic description

When η is distributed according to μ_N and N is large, a refinement of the law of large numbers

LARGE DEVIATIONS

$$\mathbb{P}\Big(\pi_N(\eta) \sim \rho(x)dx\Big) \simeq e^{-NV(\rho)}$$

V = Large deviations rate function

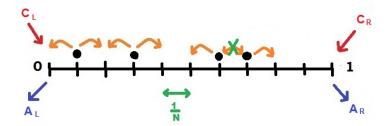
$V \Longrightarrow \text{MACROSCOPIC DESCRIPTION OF THE SNS}$

V contains less information than μ_N but is easier to compute and is independent from microscopic details of the dynamics

Example: Equilibrium SEP

- Equilibrium: $C_L = C_R = C$; $A_L = A_R = A$
- Microscopic state: product of Bernoulli measures of parameter $p = \frac{C}{A+C}$

$$\mu_N(\eta) = \prod_{x \in \Lambda_N} p^{\eta(x)} (1-p)^{1-\eta(x)}$$



Example: Equilibrium SEP

MACROSCOPIC DESCRIPTION

$$\mathbb{P}\Big(\pi_N(\eta) \sim \rho(x)dx\Big) = \sum_{\{\eta,: \pi_N(\eta) \sim \rho(x)dx\}} \mu_N(\eta)$$
$$= \sum_{\{\eta,: \pi_N(\eta) \sim \rho(x)dx\}} e^{-N\Big(\int_{[0,1]} d\pi_N(\eta) \log \frac{1-p}{p} - \log(1-p)\Big)}$$

Using the combinatorial estimate

$$\left| \{ \eta, : \pi_N(\eta) \sim \rho(x) dx \} \right| \simeq e^{-N \int_0^1 \rho(x) \log \rho(x) + (1 - \rho(x)) \log(1 - \rho(x)) dx}$$

$$V(\rho) = \int_0^1 \rho(x) \log \frac{\rho(x)}{p} + (1 - \rho(x)) \log \frac{(1 - \rho(x))}{(1 - p)} dx$$

Contraction

Average number of particles

$$\frac{1}{N} \sum_{i} \eta(i) = \int_{[0.1]} d\pi_N(\eta)$$

satisfies LDP

$$\mathbb{P}\left(\frac{1}{N}\sum_{i}\eta(i)\sim y\right)\simeq e^{-NJ(y)}$$

BY CONTRACTION

$$J(y) = \inf_{\left\{\rho: \int_0^1 \rho(x) \, dx = y\right\}} V(\rho)$$

Relative entropy

Relative entropy of the probability measure μ_N^2 with respect to μ_N^1

 $H \geq 0$, not symmetric!!

Density of relative entropy

$$h = \lim_{N \to +\infty} \frac{1}{N} H\left(\mu_N^2 \middle| \mu_N^1\right)$$

An example

 $\mu_N^1(\eta) = \prod_{x \in \Lambda_N} p^{\eta(x)} \left(1-p\right)^{1-\eta(x)},$ product of Bernoulli measures of parameter p $\mu_N^2(\eta) = \prod_{x \in \Lambda_N} \rho(x)^{\eta(x)} \left(1-\rho(x)\right)^{1-\eta(x)}, \text{ slowly varying product of Bernoulli measures associated to the density profile } \rho(x)$

$$\begin{split} &\frac{1}{N} H \Big(\mu_N^2 \Big| \mu_N^1 \Big) \\ &= \sum_{\eta} \mu_N^2(\eta) \left(\frac{1}{N} \sum_{x \in \Lambda_N} \eta(x) \log \frac{\rho(x)}{p} + (1 - \eta(x)) \log \frac{(1 - \rho(x))}{(1 - p)} \right) \\ &= \frac{1}{N} \sum_{x \in \Lambda_N} \rho(x) \log \frac{\rho(x)}{p} + (1 - \rho(x)) \log \frac{(1 - \rho(x))}{(1 - p)} \end{split}$$

Riemann sums, convergence when $N \to +\infty$ to $V(\rho)$

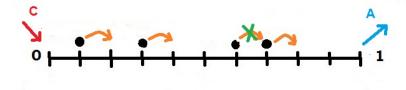
From microscopic to MACROSCOPIC

- Driving parameters (λ, E)
- $\lambda \Longrightarrow$ rates of injection and annihilation at the boundary
- $E \Longrightarrow$ external field driving the particles on the bulk
- $\mu_N^{\lambda,E} \Longrightarrow$ corresponding invariant measure
- $\bar{\rho}_{\lambda,E} \Longrightarrow$ corresponding typical density profile
- $V_{\lambda,E}(\rho) \Longrightarrow$ corresponding LD rate function

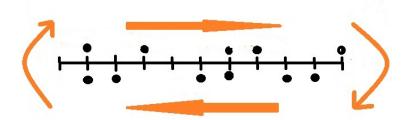
$$V_{\lambda_1, E_1}(\bar{\rho}_{\lambda_2, E_2}) = \lim_{N \to +\infty} \frac{1}{N} H\left(\mu_N^{\lambda_2, E_2} \middle| \mu_N^{\lambda_1, E_1}\right)$$

From microscopic to MACROSCOPIC

- This relation between relative entropy and LD rate function can be easily verified for the boundary driven Zero Range Process
- It is true also for boundary driven SEP; proof based on matrix representation of μ_N
- In general the computation of V through relative entropy is difficult
- An alternative powerful approach to compute V is the dynamic variational one of the Macroscopic Fluctuation Theory



• Duchi E., Schaeffer G A combinatorial approach to jumping particles, J. Comb. Theory A (2005)



- $\eta \Longrightarrow$ configuration of particles above
- $\xi \Longrightarrow$ configuration of particles below
- $(\eta, \xi) \Longrightarrow$ full configuration of particles
- Stochastic Markov dynamics for (η, ξ)
- Observing just $\eta \Longrightarrow$ still Markov and boundary driven TASEP
- $\nu_N(\eta, \xi) \Longrightarrow$ invariant measure for the joint dynamics, it has a combinatorial representation

$$\mu_N(\eta) = \sum_{\xi} \nu_N(\eta, \xi)$$

Complete configurations

$$E(x) = \sum_{y \le x} (\eta(y) + \xi(y)) - Nx - 1$$

 (η, ξ) is a complete configuration if

$$\begin{cases} E(x) \ge 0 \\ E(1) = 0 \end{cases}$$

 ν_N is concentrated on complete configurations (η, ξ) complete $\Longrightarrow N_1(\eta, \xi), N_2(\eta, \xi)$

$$\nu_N(\eta,\xi) = \frac{1}{Z_N} A^{N_1(\eta,\xi)} C^{N_2(\eta,\xi)}$$

Special case $A=C=1\Longrightarrow \nu_N$ uniform measure on complete configurations

Joint Large deviations

$$\mathbb{P}\Big(\left(\pi_N(\eta),\pi_N(\xi)\right)\sim (\rho(x),f(x))\Big)\simeq e^{-N\mathcal{G}(\rho,f)}$$

Contraction principle

$$\mathbb{P}\Big(\pi_N(\eta) \sim \rho(x)\Big) \simeq e^{-NV(\rho)}$$

$$V(\rho) = \inf_f \mathcal{G}(\rho, f)$$

Complete density profiles

$$\mathcal{E}(x) = \int_0^x (\rho(y) + f(y)) \, dy - x$$

The pair (ρ, f) is a complete density profile if

$$\begin{cases} \mathcal{E}(x) \ge 0\\ \mathcal{E}(1) = 0 \end{cases}$$

When C = A = 1 since ν_N is uniform on complete configurations a classic simple computation gives

$$\mathcal{G}(\rho, f) = \int_0^1 \left[h_{\frac{1}{2}}(\rho(x)) + h_{\frac{1}{2}}(f(x)) \right] dx$$

if (ρ, f) is complete; here

$$h_p(\alpha) = \alpha \log \frac{\alpha}{p} + (1 - \alpha) \log \frac{(1 - \alpha)}{1 - p}$$

$$V(\rho) = \inf_{f: (\rho, f) \in \mathcal{C}} \int_0^1 \left[h_{\frac{1}{2}}(\rho(x)) + h_{\frac{1}{2}}(f(x)) \right] dx$$

To be compared with B. Derrida, J.L. Lebowitz, E.R. Speer Exact large deviation functional of a stationary open driven diffusive system: the asymmetric exclusion process J. Stat. Phys. (2003)

$$V(\rho) = \sup_{f} \int_{0}^{1} \left\{ \rho(x) \log \left[\rho(x) (1 - f(x)) \right] + (1 - \rho(x)) \log \left[(1 - \rho(x)) f(x) \right] \right\} dx + \log 4$$

where f(0) = 1, f(1) = 0 and f is monotone

Both variational problems have the same minimizer

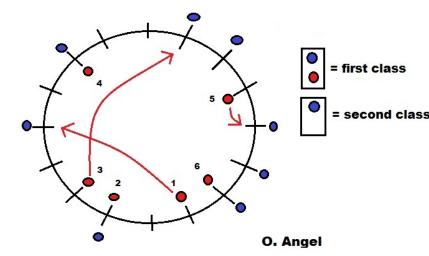
$$f_{\rho}(x) = CE\left(\int_{0}^{x} (1 - \rho(y)) dy\right)$$
$$V(\rho) = \mathcal{G}(\rho, f_{\rho})$$

See Bahadoran C. A quasi-potential for conservation laws with boundary conditions arXiv:1010.3624 for a dynamic variational approach, using MFT

2-class TASEP



The invariant measure



Collapsing particles

$$(\tilde{\eta}_1, \tilde{\eta}_T) : \sum_{x} \tilde{\eta}_1(x) \le \sum_{x} \tilde{\eta}_T(x) \implies (\eta_1, \eta_T) = \mathcal{C}[(\tilde{\eta}_1, \tilde{\eta}_T))]$$

Flux across bond (x, x + 1)

$$J(x) = \sup_{y} \left[\sum_{z \in [y,x]} \tilde{\eta}_1(z) - \tilde{\eta}_T(z) \right]_{+}$$

Collapsing measures

$$(\tilde{\rho}_1, \tilde{\rho}_T)): \int_{\mathbb{S}^1} d\tilde{\rho}_1 \le \int_{\mathbb{S}^1} d\tilde{\rho}_T \implies (\rho_1, \rho_T) = \mathcal{C}[(\tilde{\rho}_1, \tilde{\rho}_T))]$$

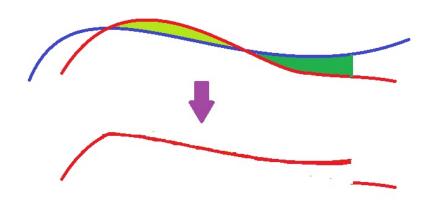
Definition

$$\int_{(a,b]} d\rho_1 = \int_{(a,b]} d\tilde{\rho}_1 + J(a) - J(b)$$

where

$$J(x) := \sup_{y} \left[\int_{(y,x]} d\tilde{\rho}_1 - \int_{(y,x]} d\tilde{\rho}_2 \right]_{+}$$

Collapsing measures



Large deviations

LD for the $(\tilde{\eta}_1, \tilde{\eta}_T)$ variables

$$\tilde{V}(\tilde{\rho}_{1},\tilde{\rho}_{T})=\int_{\mathbb{S}^{1}}\left[h_{m_{1}}\left(\tilde{\rho}_{1}\right)+h_{m_{2}}\left(\tilde{\rho}_{T}\right)\right)\right]\,d\,x$$

LD for the SNS (not convex!)

$$V(\rho_1, \rho_T) = \inf_{\{(\tilde{\rho}_1, \tilde{\rho}_T) : \mathcal{C}[(\tilde{\rho}_1, \tilde{\rho}_T)] = (\rho_1, \rho_T)\}} \tilde{V}(\tilde{\rho}_1, \tilde{\rho}_T)$$
$$= \int_{\mathbb{S}^1} \left[h_{m_1} \left(\hat{\rho}_1 \right) + h_{m_2} \left(\rho_T \right) \right) \right] dx$$

On any (a, b) where $\rho_1 = \rho_T$

$$\int_{a}^{x} \hat{\rho}_{1}(y)dy = CE \left[\int_{a}^{x} \rho_{1}(y)dy \right]$$

