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SNS: Microscopic description

Lattice: Ay
Configuration of particles: n € {0, 1}*~ or n € NA¥

n¢(2) = number of particles at z € Ay at time ¢
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SNS: Microscopic description

e Stochastic Markovian dynamics

e r(n,n') = rate of jump from configuration n to
configuration n’

e 1)/ = local perturbation of 5

e 1y (n) = invariant measure of the process, probability
measure on the state space

() 2, r(mn') = 22, kv ()r(n',n)

uy = MICROSCOPIC description of the SNS
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SINS: Macroscopic description

e 1) = 7n(n) Empirical measure (positive measure on [0, 1])

TN (M) = § Daeny N(@)0a

0, = delta measure (Dirac) at z € [0, 1]; since x € Ay we have
r=y,1€N. Given f:[0,1] = R

fany = 3 n()f(a)

[071] Z‘GAN

X = delta measure
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SINS: Macroscopic description

When 7 is distributed according to uy and N is large
LAW OF LARGE NUMBERS
N — p(x)dx
This means

fdmn — f(@)p(x) dx
[0,1] [0,1]

p(x) = typical density profile of the SNS
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SINS: Macroscopic description

When 7 is distributed according to puy and N is large, a
refinement of the law of large numbers

LARGE DEVIATIONS

IP)(TFN(W) ~ p(m)dx) ~ e~ NV ()

V' = Large deviations rate function
V' = MACROSCOPIC DESCRIPTION OF THE SNS

V' contains less information than py but is easier to compute
and is independent from microscopic details of the dynamics
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Example: Equilibrium SEP

e Equilibrium: C;, =Cr=C; A, =Ar=A
e Microscopic state: product of Bernoulli measures of

parameter p = %

pn () = Tlpen, 2" (1 —p)' 7"
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Example: Equilibrium SEP

MACROSCOPIC DESCRIPTION

IP’(WN(n) ~ p(a:)d:n) = Z pn (1)

{n,:mn (n)~p(z)dz}

_ Z e—N(f[o,l] dm (n) log %—log(l—po

{n,;: w5 (n)~p(x)dx}

Using the combinatorial estimate

(n,: mv(n) ~ plx dx}) ~ =N [y p()10g p(x)+(1—p(x)) log(1-p(2)) dz

fo z)log 2 )—i-(l— ())log((lp(‘(’;))dx
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Average number of particles

1 L
N )= /[0 )

satisfies LDP

1 : ~NJ
P (N;n(l) ~ y) ~ ¢ M)

BY CONTRACTION

J(y) —1nf{p [ o) da=y) V(p)
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Relative entropy

Relative entropy of the probability measure ,u?v with respect to
1
HN

2
H (1 | ) = 5, 153 () log 2405

H > 0, not symmetric!!
Density of relative entropy

h=Tim oo % H (1 [1h)
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tn () = aeny 1@ (1 — p)t=7@)  product of Bernoulli
measures of parameter p

13 (n) = Tleny p(2)"@ (1= p(x))' 7", slowly varying
product of Bernoulli measures associated to the density profile
p(x)

Riemann sums, convergence when N — +o00 to V(p)
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From microscopic to MACROSCOPIC

e Driving parameters (), F)

e )\ — rates of injection and annihilation at the boundary
e F —> external field driving the particles on the bulk

o u?‘\}E = corresponding invariant measure

e p)r = corresponding typical density profile

V),e(p) = corresponding LD rate function

Ao, E
V>\1,E1 (/))\2 E2) = limy 40 NI_I(:U«N27 2

>\1,E1>

Davide Gabrielli



From microscopic to MACROSCOPIC

e This relation between relative entropy and LD rate
function can be easily verified for the boundary driven Zero
Range Process

e It is true also for boundary driven SEP; proof based on
matrix representation of pn

e In general the computation of V' through relative entropy is
difficult

e An alternative powerful approach to compute V is the
dynamic variational one of the Macroscopic Fluctuation
Theory
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Boundary driven TASEP: a microscopic view
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Boundary driven TASEP: a microscopic view

e Duchi E., Schaeffer G A combinatorial approach to
jumping particles, J. Comb. Theory A (2005)
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Boundary driven TASEP: a microscopic view

e 1) —> configuration of particles above

¢ = configuration of particles below

(n,&) = full configuration of particles

Stochastic Markov dynamics for (7, £)

Observing just 7 = still Markov and boundary driven
TASEP

vn(n,&) = invariant measure for the joint dynamics, it
has a combinatorial representation

un(n) = Zg vn(n,€)
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Boundary driven TASEP: a microscopic view

Complete configurations

E(x) =) (n(y) + &) — Ne—1

y<z

(n,€) is a complete configuration if
0
0

vy is concentrated on complete configurations
(777 é-) Complete - Nl (777 5)7 N2 (777 (g)

VN(na §) = ﬁANl(n’é)CNz(n,f)

Special case A = C' = 1 = vy uniform measure on complete
configurations
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Boundary driven TASEP: a macroscopic view

Joint Large deviations

P((rx(n). 7 (6)) ~ (pla). f(x))) = NI

Contraction principle

P(mn(n) ~ p(a)) = V)

V(p) = inf; G(p, /)
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Boundary driven TASEP: a macroscopic view

Complete density profiles

£@) = [ o)+ f0) dy ==
The pair (p, f) is a complete density profile if

{ E(x)>0
£(1) =0

When C = A = 1 since vy is uniform on complete
configurations a classic simple computation gives

(5.1 = [ [iy(ota) +1

if (p, f) is complete; here

1—
hp(ar) = alog + (1 —a)log (1 @)
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Boundary driven TASEP: a macroscopic view

V= int [ [t + g (1] ao

To be compared with B. Derrida, J.L. Lebowitz, E.R. Speer
Exact large deviation functional of a stationary open driven

diffusive system: the asymmetric exclusion process J. Stat.
Phys. (2003)

1
2

1
V(o) = s [ {o@)loglote)(1 - )
+ (1= p(a))log (1 = p(x))f (x)] | dz +log4

where f(0) =1, f(1) =0 and f is monotone
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Boundary driven TASEP: a macroscopic view

Both variational problems have the same minimizer
x
fole) = CB( [ (1= pto) o)

Vip) =G(p. fp)

See Bahadoran C. A quasi-potential for conservation laws with
boundary conditions arXiv:1010.3624 for a dynamic variational
approach, using MFT
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2-class TASEP

@ = first class

@ = second class
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The invariant measure

first class

= second class

0. Angel
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Collapsing particles

(71, 7ir) Zm ) <Y ir(e) = (m.nr) =C[ (i, i) ]

Flux across bond (z,z + 1)
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Collapsing measures

(p1.p1)) /Sl dpr < /Sl dpr = (p1,pr) =C[(p1,p1))]
Definition

f(a,b] dpr = f(a,b] dpy + J(a) — J(b)

where

J(x) := sup [ dpr — / dﬁ2]
v [yl (v,2] 4
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Collapsing measures
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Large deviations

LD for the (71, 7r) variables

V(1) = [ o (50)+ by ()] d

LD for the SNS (not convex!)

V(pr,pr) = V(p1, pr)

inf
{(ﬁl »ﬁT) :C[(ﬁl’ﬁT)]:(pl)pT)}

_ /S N (1) + oy (pr))] d

On any (a,b) where p; = pr

/am p(y)dy = CE U: p1 (y)dy]
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