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MICROSCOPIC REVERSIBILITY
AND THERMODYNAMIC FLUCTUATIONS

1. INrnooucrloN

Fundamental contributions to the theory of irreversible processes were the

derivation of the reciprocal relations for transport coefficients in states devi-

ating only slightly from equilibrium and the calculation of the most probable

trajectory creating a fluctuation near equilibrium. The first result was obtained

by Onsager in 1931 [1] and the second one by Onsager and Machlup [2] in 1953.

The calculation of the most probable trajectory relies on the reciprocal rela-

tions which in turn are a consequence of microscopic reversibility. It turns out

that the trajectory in question is just the time reversal of the most probable

trajectory describingrelaxation to equilibrium of a fluctuation. The latter is a

solution to the hydrodynamical equations.

In this paper we discuss the following question: is microscopic reversibility

a necessary condition for the validity of the above results? The answer to

this question is far from obvious because in going from the microscopic to the

macroscopic scale a lot of information is lost and irreversibilities at a small scale

may be erased when taking macroscopic averages. We will show that this is in

fact the case by exhibiting microscopically non reversible stochastic dynamics

which nonetheless fluctuate foilowing the same time- reversal rule of Onsager-

Machlup. Actually our results are not restricted to situations near equilibrium

and the problem can be discussed rigorously for arbitrary fluctuations.
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The models we shall discuss belong to the category of interacting particle
systems and have been analysed in detail in l3l and l ]. In particular in the
last reference we already made a connection with the Onsager-Machlup theory
by showing that the regression to equilibrium of any fluctuation (even far from
equilibrium) takes place with highest probability along a trajectory of the hy-
drodynamic equation. The models consist in a superposition of an accelerated
symmetric Kawasaki process and a Glauber spin flip process.

The structure of the paper is as follows. In section 2 we describe the models
and summarize the results of [4] needed for our purpose.

In section 3 we discuss under what conditions our dynamics becomes re-
versible with respect to the invariant measure, which will be a Bernoulli product
measure.

In section 4 we give conditions sufficient to insure the validity of Onsager-
Machlup time-reversal relation and show that they can be satisfied by irre-
versible dynamics. It also turns out that if the fluctuations are homogeneous
in space any dynamics in the ciass considered satisfies Onsager-Machlup.

In the present paper we do not supply all the proofs which will be given in
an more extended forthioming publication.

2. DpscruprroN oF THE MoDELS

The systems considered consist of particles moving on the sites of a lattice.
There are two basic dynamical processes:

i) a particle can move to a neighbouring site if this is empty

ii) a particle can disappear or be created in a site according to whether this
is occupied or empty.

The first process is clearly conservative while the second is not.
Mathematically we consider a family of Markov processes whose state space

is Xry : {0 ,1}" * , whele I[ is an integer and Z y denotes the set of integers mod-
rrlo l/. We shall denote with 4 a point in the state space, that is a confi.guration
of the system. This is therefore given by a function a(i) defined on each site
and taking the values 0 or 1. For each l[ the dynamics is defined by the action
of the generator Ly of the Markov process on functions f (q)
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( 3 )  n i ( ; \ - ! n U )  i r  i * i ,' ' \ r r -  
l t - n ( r )  i f  j : i ,

The coefficients c(2,4) depend on the values of .ry(j)with 7 within a fixed distance-B from the site z. They are translation invariaií ,f."i'" )fr,'rl : c(nrt)where('n'ù(j) : rr& + j)' Let us consider now the unit intervar 5 : [0,1) withperiodic condition at_-the boundary and a function 7 defined on 5 and takingvalues in f0, 1]. Let ul the probability measure on the state space óf the systemobtained by assigning a Bernouili distribution to each site, taking the productover all sites and defined by

(4) 
"{ {,t(k) - 1} : 
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The main object of our study is the empirical density pfl:
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where uo is the Bernourh product distribution with 7(z) : p. Typicarty B(p)and D(p) are polynomials in the variable p.
The equ'ibrium state corresponds to a density p6 which is the sorutionof the equation B(p) : D(p) that gives an absorute minimum of the potentiarv (p) : Io [p(p,) _ B (p,)]dp,.
The above resurt is a raw of rarge numbers that shows that the empiricardensity in the rimit of rarge // behaves deterministicarìy according to equa_tion (6)' we can now ask what is the probab'ity that ou, system forows atrajectory different from the solution of (6) when", i, r"* but not infinite.This probabilitv is exponentially smail in rr' and can be estimated using themethods of the theory of rarge deviations introduced for the systems of interestin f5J and developed in f3, 4J. The main idea consists in introducing a modi_fied system for which the trajectory of interest (fluctuation) is typicar beine a
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solution of the corresponding hydrodynamic equation, and then comparing the

two evoiutions.
For this purpose we consider the Markov process defined by the generator

. H  ? /  \  1 1 J z  \ - '  / : \ / 1  / : \ \t ' f t , r f  ?ù :  2  L  q@Q-q( iDeHa ' * ) -H( r ' ^ ) l f  ho ' j )  -  f  h ) l
(9)  t t - i t : t

+ ) - -c(2,?) [ (1  -  n |Dena'* t  * r t ( t )e-H( t '#) l [ ÍUf l  -  f  ( rù l
L

with c, ,lk,i , \i as previously defined -and .É1 can be interpreted as an external

field.
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We remark that while equation (6) is of gradient type, equation (10) does not

and this is due to the asymmetry of the exchange dynamics.

Given a function p(r,t) twice differentiable with respect to r and once with

respect to ú this equation determines uniquely the field I/. The probability that

the originai system follows a trajectory different from a solution of (6) can now

be expressed in terms of the field ff and the polynomials B and D. We introduce

the large deviation functional

The deterministic equation satisfied by the empirical density

t10) [  
u,o :  

àu\o-a,(p(t-  ùa"H)+B(p)eH -  D(p)"

I  p (0 ,  )  :? ( ' )

I(p) ::  f" [ '  d,td,rpl(r - p,)(o*H,) '
" torrl"l,

(11) * 
J, J, 

d.tdrB(p)(7 - eH' + HteH,)

rto r l
+ I  I  atar D(pr)( l -  e-H'  -  Hp-H'1

J O  J o

Let G be a set of trajectories in the interval 10, ts]. The large fluctuation estimate

asserts that

(12)

where

(13)

The symboi - has to be interpreted as asymptotic equality of the logarithms.

From the equations (12), (13), one sees that to find the most probabie trajectory
that creates a certain state 7(r) one has to find the p(r,ú) that minimizes /(p)
in the set G of all trajectories that connect the equilibrium state to 1@).
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3. RBvpRsrBrLITy

Reversibilíty means that a principle of detailed balance holds for the mì_
croscopic dynamics. Mathematically this is expressed by the self_adjointness of
the generator of the process with respect to the scalar product defined by the
measure.

A reversible measure for a process .with generator of the fbrm (1) exists
only if we impose some restrictions on the functio's c. The condition of re_
versibiiity is

(  14\ l ^  f  f , \  l r  ' \

\ 9 t L N J  ) p :  \ L N 9 , I  ) p

rot
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for all functions f ,g onX1,.. In our case this csndition reads
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that with some algebra, using the periodic boundary cond.ition, can be trasfor-
med into

f L{s{ùritoJn')(t (,ù - t (,ro,n*'))+
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since this equality must hold for every g and, f , this condition is equivalent to

( 1 ' 7 ì '

for every r7 and z. The first condition imposes that the measure p be of the
form

{ u@ - p\t i i+t)  -  o
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N/ -  \p ' l n ) :  p (  )  n 0 )\ :_ . /

that is to say p must assign an equar weight to configurations with the same
number of 1. The second cond.ition, with a pr of this type, is a restriction for
the functions c. The most general form oî c(i,rr) that satisfies this conclition is:

(1 e) c(i. r) : 
"r(1 

- q(x))h(t, rù + c2,10)h(i, ît)
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with c1 and. cz arbitrary positive constant afLd h('i,4) a function that does not

dependonthevar iab le t l ( i , )a }d ,suchtha th( i ,n ) :h ( ro rù .Forprocessesof th is
type it is possible to compute expllcitly the unique reversible measure that is

a Bernoulli measure with parameter p : #u. we emphasize that periodic

boundary cond.itions are crucial for the validity of (19) with a nontrivial h.

4. Tutr, MTNIMA or 1(p)

Let us consider a fluctuation that can be connected to the equilibrium

density by a trajectory solution of the hydrodynamicai equation (6). Then from

the form of I(p) it is obvious that such a fluctuation reiaxes most likely following

this trajectory. In fact the corresponding I/ is zero which implies I : 0. we

want to investigate now the trajectory that creates the non-equilibrium state

7(r) with highest probability, that is to say the trajectory p(r,l) with the

boundary conditions

IS

CO

(2'

(20)

(21)

that minimizes the functional 1, with ps the equilibrium state.

We consider polynomials B and D of the form

lim p(r,t) : po
f + - c o

p(r ,o)  :7( r )

B ( p ) : c 1 A ( p ) ( 7 - p )

D(p) : czA(p)p

(22)

(23)
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where p(r,t) is the

equiiibrium . p* (r,t)
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(25)

(2

+'l.
Lt t

va

\ .

TI
q r

(2

(3

It)

af

OI

with c1 and c2 arbitrary positive constant and A(p) a generic strictly positive

polynomial. Note that the potential that generates the polynomial part of

the hydrodynamic equation with B and D of this tlpe is always a single weli

potential with only one stable equilibrium point.

In this case it is possible to prove (see Appendix) that the unique solution

of our variational problem is the function p*(*,ú) defined by

p* (*, t )  :  p(r ,  - t )

solution of the hydrodynamic equation which relaxes to

is therefore a soiution of the hydrodynamic equation with

1 ^
} t p 1 - i d i o * n ( p ) - e ( p )

Equation Q$ rs the Onsager-Machlup time-reversal relation.

All reversible processes generate hydrodynamic equations with coefficient

B(p) and D(p) ofthe form (22) and (23), so for all these systems (24) hoids. It
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is most interesting that (24) can hord for irreversible models too; namely if we
consider processes with functions c of the form

{26) c(i, r) : 
".t 

(I - rt Q,D h 1 (t, rù + c2r7 (i) h2 (i, 7t)

withh2 different from à1, we obtain airreversible process, but if we choose à,
in such a way that

(27) E",(hz(rù): E",(húrù)

the polynomials B and D that we obtain are of the requested form for the
validity of (2Q.. An illuminating example is: -

(28) c(, i , ,q) : . , (1 -  , tQDnU,+ r)r1Q- 1) + c2r1|)r t( i  + r)q( i  + 2) .

The microscopic irreversibility of this model is evident, but the polynomials B
and D are of the wanted form (22), (Zl):

(2s)

(30)

If we consider only spatially homogeneous fluctuations v/e can solve explic-
ity the equation (10) for the field .F/

(31) /F7ae6n6
2ab)

and we obtain an expression of the functional I in terms of the trajectories p
only:

B(p)  :  q (1-  p )p2

D(p) : 
"rpt 

.

p +
f f :  log

î /
I(p) : 

J ?r, + D(p) - r[p' + +a1p7o1p1+

* i l o g f f i \ o , i {

One can show quite generally that for a fluctuation which can be connected
to equiiibrium by a solution of (6) the minimizing trajectory satisfies (z+) (p
depends now only on ú) for all polynomiars B and D. Therefore in this case
any dynamics reversible or irreversible satisfies the time-reversal relation of
onsager-Machlup. A similar argument applies also to the case in which the
fi.uctuation cannot be directly connected to equiiibrium by a solution of (6).
This can happen for example if the potential has rocar minima.
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5. COI.ICI.UDING REMARKS

The models we have considered are rather special and the periodic bound-
ary conditions play a crucial roie for the validity of our argument. It is necessary
to study to what extent the resuit can be generalized. However an important
principle has beea demonstrated: microscopic reversibility is not a necessary
condition for the validity of certain macroscopic reversibility properties.
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ApppNorx:

Mtururzarron on /(p)

The basic point is that for polynomiais of the form (22), (23), it is possible
to write explicitely the fie1d ff that generates the so-lutions of equation (25):

T

(.

T
S(

f A l ' \

For this reason it is possibie to obtain on the solutions of (25) an expression of
the functional I in terms of the trajectory p(r,t) oniy. Using (25), integrating
by parts and remembering the periodic boundary condition, we obtain the
EXDICSSiON:

11: log -,":P- ,- q \ r - P * )

fip*tog(fr{61"0"
7o  77

J-- J,(A2)

The value of this functional can be immediatly caiculated and depends only on
the values oî p*(r,t) at t: 0 and ú : -oo:

(
r(P) : \

(A3)
+

n l

I
Jo

t L

I
Jo

lr ' ,. {r,t)Log p.

I  t t : o

o- @,t))d,r jl,__

p" (r,t)tos(lr)ar

(7 -  p*(r , t ))  log(1

V/e now compare the value of the functional on a generic trajectory that con-
nects the equilibrium state to tlie state 7(r) with the value of the functional on
the solution of (25) connecting,the same states. Define

:

*.==--

( A4\ t ( p ) - r ( p - ) = L ( p )
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r t J  r 1  t t
L(p) :  I  |  (  uof t  -  ò@,H)r* c1(1 -  p)ab)Q _ 

" ' ,  + HeH)+
J _ x J o  \ z  . '

+ c2pA(p)(r  -  e-H -  n"-H) -  a,e ns( i t \ ) )a,0,

To obtain this expression we have used (A3). using equation (10) and integrat_
ing by parts we obtain finally the expression

p o  r r  / tA(p): J *J, (ir, - ò(a,n - ffi1'*
*  c 1 ( 1  -  p ) a b ) ( t  -  

" '  *  H e H  -  e H  t o g  
f f i 1 .

+ c2pA(p)(t - 
"-, 

- He-H * e-H ̂r;#a))o-n,

(48)

A(p) : * l__ fo' oro, p(r - p)(o,F)2+

* l:* fo' ata*"r{t - p)A(p)(r - 
", + re\+

* 
l:* fo' 

o, o, 
", 

pA(p)(t - e-F' - Fe F)

This functional is obviously positive and zero only if F is zero.

:;.;;:.1::i;n4*

r i
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(46)

The final step consists in introducing a new field F

\ ^ r , l F:  l og  (  , " r ' o  , \  -  u
rc1\r _ p) /

This field is constructed in such a way that the vaiue F : 0 generat es a p(r,t)
solution of (25). The functional A(p) in terms of -F becomes
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