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MICROSCOPIC REVERSIBILITY
AND THERMODYNAMIC FLUCTUATIONS

1. INTRODUCTION

Fundamental contributions to the theory of irreversible processes were the
derivation of the reciprocal relations for transport coefficients in states devi-
ating only slightly from equilibrium and the calculation of the most probable
trajectory creating a fluctuation near equilibrium. The first result was obtained
by Onsager in 1931 [1] and the second one by Onsager and Machlup [2] in 1953.
The calculation of the most probable trajectory relies on the reciprocal rela-
tions which in turn are a consequence of microscopic reversibility. It turns out
that the trajectory in question is just the time reversal of the most probable
trajectory describing relaxation to equilibrium of a fluctuation. The latter is a
solution to the hydrodynamical equations.

In this paper we discuss the following question: is microscopic reversibility
a necessary condition for the validity of the above results? The answer to
this question is far from obvious because in going from the microscopic to the
macroscopic scale a lot of information is lost and irreversibilities at a small scale
may be erased when taking macroscopic averages. We will show that this is in
fact the case by exhibiting microscopically non reversible stochastic dynamics
which nonetheless fluctuate following the same time- reversal rule of Onsager-
Machlup. Actually our results are not restricted to situations near equilibrium
and the problem can be discussed rigorously for arbitrary fluctuations.
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The models we shall discuss belong to the category of interacting particle
systems and have been analysed in detail in [3] and [4]. In particular in the
last reference we already made a connection with the Onsager-Machlup theory
by showing that the regression to equilibrium of any fluctuation (even far from
equilibrium) takes place with highest probability along a trajectory of the hy-
drodynamic equation. The models consist in a superposition of an accelerated
symmetric Kawasaki process and a Glauber spin flip process.

The structure of the paper is as follows. In section 2 we describe the models
and summarize the results of [4] needed for our purpose.

In section 3 we discuss under what conditions our dynamics becomes re-
versible with respect to the invariant measure, which will be a Bernoulli product
measure.

In section 4 we give conditions sufficient to insure the validity of Onsager-
Machlup time-reversal relation and show that they can be satisfied by irre-
versible dynamics. It also turns out that if the fluctuations are homogeneous
in space any dynamics in the class considered satisfies Onsager-Machlup.

In the present paper we do not supply all the proofs which will be given in
an more extended forthcoming publication.

2. DESCRIPTION OF THE MODELS

The systems considered consist of particles moving on the sites of a lattice.
There are two basic dynamical processes:

i

i) a particle can move to a neighbouring site if this is empty

ii) a particle can disappear or be created in a site according to whether this
is occupied or empty.
The first process is clearly conservative while the second is not.
Mathematically we consider a family of Markov processes whose state space
is Xy = {0,1}%v, where N is an integer and Zy denotes the set of integers mod-
1lo N. We shall denote with n a point in the state space, that is a configuration
of the system. This is therefore given by a function 7(i) defined on each site
and taking the values 0 or 1. For each N the dynamics is defined by the action
of the generator Ly of the Markov process on functions f(n)
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The coefficients ¢(i, ) depend on the values of 7(5) with j within a fixed distance
R from the site i. They are translation invariant that is c(i,m) = c(rsm) where
(em)(5) = n(k + j). Let us consider now the unit interval § — [0,1) with
periodic condition at the boundary and a function 7 defined on § and taking
values in [0,1]. Let Vf/v the probability measure on the state space of the system
obtained by assigning a Bernoulli distribution to each site, taking the product
over all sites and defined by

(4) v (k) =1} = 5(£).

The main object of our study is the empirical density ulV:

(5) W@ =5 ¥ nws(e-L).

k€Z N
If we denote by nyv the distribution law of the trajectories ul'(z) when the
initial measure is concentrated on g configuration such that 1 (z) — y(z) as
N — oo, it is possible to show that erv éonverges weakly as V goes to infinity
to the measure concentrated on the path p(t, z) that is the unique solution of

) { dgpc - = %5§p+ B(p) - D(p)
p(0,)) =~()

with

(7) B(p) = By, (c(n)(1 - 7(0)))

(8) D(p) = B, (c(n)n(0))

Where v, is the Bernoulli product distribution with ¥(z) = p. Typically B(p)
and D(p) are polynomials in the variable p.

The equilibrium state corresponds to a density p, which is the solution
of the equation B(p) = D(p) that gives an absolute minimum of the potential
V(p) = [*[D(¢) - B(p"))dp'.

The above result is a law of large numbers that shows that the empirical
density in the limit of large N behaves deterministically according to equa-
tion (6). We can now ask what is the probability that our system follows a
trajectory different from the solution of (6) when N is large but not infinite.
This probability is exponentially small in N and can be estimated using the
methods of the theory of large deviations introduced for the systems of interest
in [5] and developed in [3, 4]. The main idea consists in introducing a modi-
fied system for which the trajectory of interest (fluctuation) is typical being a




solution of the corresponding hydrodynamic equation, and then comparing the

two evolutions.
For this purpose we consider the Markov process defined by the generator

LA ) =20 3 a1 =n(@)eH R TR £(55) — f(o)
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with ¢, n®J, n® as previously defined and H can be interpreted as an external

field.
The deterministic equation satisfied by the empirical density is now

et { Bp = 502~ Bulp(L— p)0.H) + Blp)e" ~ D(p)e "
Al =)

We remark that while equation (6) is of gradient type, equation (10) does not

and this is due to the asymmetry of the exchange dynamics.

Given a function p(z,t) twice differentiable with respect to = and once with
respect to t this equation determines uniquely the field H. The probability that
the original system follows a trajectory different from a solution of (6) can now
be expressed in terms of the field H and the polynomials B and D. We introduce
the large deviation functional

1 to p1
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Let G be a set of trajectories in the interval [0, tp]. The large fluctuation estimate

asserts that

(12) QY () = N1
where
(13) I(G) = inf I(p)

The symbol ~ has to be interpreted as asymptotic equality of the logarithms.
From the equations (12), (13), one sees that to find the most probable trajectory
that creates a certain state v(z) one has to find the p(z,t) that minimizes I(p)
in the set G of all trajectories that connect the equilibrium state to v(z).
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3. REVERSIBILITY

Reversibility means that a principle of detailed balance holds for the mi-
croscopic dynamics. Mathematically this is expressed by the self-adjointness of
the generator of the process with respect to the scalar product defined by the

measure.
A reversible measure for a process with generator of the form (1) exists
only if we impose some restrictions on the functions c. The condition of re-

versibility is
(14) (9 Lnf)u = (Ing, ),

for all functions f,g on Xy. In our case this condition reads

> [o (3 065+ - )+
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(15)

that with some algebra, using the periodic boundary condition, can be trasfor-
med into

3 Z i\[2—39(77)f(77i’"“)(11(77) = p(n™* 1))+

(16)
+ 229 F) (el muln) — efi,n)u(n)) = 0

Since this equality must hold for every g and f, this condition is equivalent to

a7 { w(m) = p(n**+1) =0
c(i,mu(n) —c(i, n))u(n’) =0

for every n and 4. The first condition imposes that the measure 1 be of the
form

(18) wln) = u(ﬁn(i))

that is to say ; must assign an equal weight to configurations with the same
number of 1. The second condition, with a u of this type, is a restriction for
the functions ¢. The most general form of c(4,7) that satisfies this condition is:

(19) et n)=e (T — n(3))h(i,n) + con(i)h(i, n)
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with ¢; and ¢y arbitrary positive constant and h(4,7) a function that does not
depend on the variable n(z) and such that h(i,n) = h(rin). For processes of this
type it is possible to compute explicitly the unique reversible measure that is
a Bernoulli measure with parameter p = —%—. We emphasize that periodic

c1t+c2

boundary conditions are crucial for the validity of (19) with a nontrivial A.

4. THE MINIMA OF I(p)

Let us consider a fluctuation that can be connected to the equilibrium
density by a trajectory solution of the hydrodynamical equation (6). Then from
the form of I(p) it is obvious that such a fluctuation relaxes most likely following
this trajectory. In fact the corresponding H is zero which implies I = 0. We
want to investigate now the trajectory that creates the non-equilibrium state
~v(z) with highest probability, that is to say the trajectory p(z,t) with the
boundary conditions
(20) lim p(z,t) = po

(21) - ple0) =)

that minimizes the functional I, with pg the equilibrium state.
We consider polynomials B and D of the form

(22) B(p) = c1A(p)(1 - p)
(23) D(p) = c2A(p)p

with ¢; and ¢, arbitrary positive constant and A(p) a generic strictly positive
polynomial. Note that the potential that generates the polynomial part of
the hydrodynamic equation with B and D of this type is always a single well
potential with only one stable equilibrium point.

In this case it is possible to prove (see Appendix) that the unique solution
of our variational problem is the function p*(z,t) defined by

(24) p*(as,t) :p(ma_t)

where p(z,t) is the solution of the hydrodynamic equation which relaxes to
equilibrium. p*(z,t) is therefore a solution of the hydrodynamic equation with

inverted drift
1
(25) Bip = —502p + D(p) = B(p)

Equation (24) is the Onsager-Machlup time-reversal relation.
All reversible processes generate hydrodynamic equations with coefficient
B(p) and D(p) of the form (22) and (23), so for all these systems (24) holds. It
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is most interesting that (24) can hold for irreversible models too; namely if we
consider processes with functions ¢ of the form

(26) e(é,n) = ex(1 = n(8))ha (4, m) + con(i)ha(i, )

with Ay different from h;, we obtain a irreversible process, but if we choose A,
in such a way that

(27) E,,(h2(n)) = E,, (h1(n))

the polynomials B and D that we obtain are of the requested form for the
validity of (24). An illuminating example is:

(28) e(ém) = er(L = n(@D)n(i + V)i — 1) + can(i)n(i + 1)n(i + 2).

The microscopic irreversibility of this model is evident, but the polynomials B
and D are of the wanted form (22), (23):

(29) B(p) = e1(1 - p)p?
(30) D(p) = c2p°.

If we consider only spatially homogeneous fluctuations we can solve explic-
ity the equation (10) for the field H

P+ +/p* +4B(p)D(p)

+
2B(p)

(31) H=log

and we obtain an expression of the functional I in terms of the trajectories p

160)= [ (B69)+ Do)~ /7 + 4B ) D(o)+
(32) o+ VFTIBEIDG) )

+ plog 3B(p)

One can show quite generally that for a fluctuation which can be connected
to equilibrium by a solution of (6) the minimizing trajectory satisfies (24) (p
depends now only on t) for all polynomials B and D. Therefore in this case
any dynamics reversible or irreversible satisfies the time-reversal relation of
Onsager-Machlup. A similar argument applies also to the case in which the
fluctuation cannot be directly connected to equilibrium by a solution of (6).
This can happen for example if the potential has local minima.

only:
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5. CONCLUDING REMARKS

The models we have considered are rather special and the periodic bound-
ary conditions play a crucial role for the validity of our argument. It is necessary
to study to what extent the result can be generalized. However an important
principle has been demonstrated: microscopic reversibility is not a necessary
condition for the validity of certain macroscopic reversibility properties.
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APPENDIX:

MINIMIZATION OF I(p)

The basic point is that for polynomials of the form (22), (23), it is possible
to write explicitely the field A that generates the solutions of equation (25):

c2p”
all—p)
For this reason it is possible to obtain on the solutions of (25) an expression of

the functional I in terms of the trajectory p(z,t) only. Using (25), integrating
by parts and remembering the periodic boundary condition, we obtain the

(A1) H =log

expression:

Bl ’

* * 02,0
A2 = L :
(A2) I(p*) —/_ /o O¢p” log <cl(1 p*))dtd:r

The value of this functional can be immediatly calculated and depends only on
the values of p*(z,t) at t = 0 and t = —co:

Ip = 1 oz 1) Iog(ﬂ)dm + 1 p*(z,t)log p* (z,t)dz+
(A3) {/o €2 /0

t=0

+ [[a-pwoen *p*cr,t))dz}

t=—00

We now compare the value of the functional on a generic trajectory that con-
nects the equilibrium state to the state y(z) with the value of the functional on
the solution of (25) connecting the same states. Define

(Ad) I{p) = I(p") = A(p)
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Lipl= /O / (%/)(1 —p)(0:H)? + c1(1 - p)A(p)(1 — 7 + HeH)+
) —00 JO

(A5

: L0 el gpgaale 00 Voo
+ copA(p)(1 —e e ) —0Op 0‘(](0](1—/))) dx

"To obtain this expression we have used (A3). Using equation (10) and integrat-
ing by parts we obtain finally the expression

ap)= [ " (3010 (0.0 - .
Cop

S il B R
(A6) =l ] p)A(p)( e’ +He’ —e 10gq(1—p)>+
S H gl oy i OOp
—}—csz(p)<1 e He ™ +e 10O01<1_p))>da:dt.
The final step consists in introducing a new field F
C2p

F=log|—————)-H.

(A7) o8 (61(1 ity p)) =

This field is constructed in such a way that the value F = 0 generates a p(z,t)
solution of (25). The functional A(p) in terms of F becomes

A(p) = %/_ /01 dtdz p(1 — p) (8, F)*+
(A8) + /_O /01 didzei (1~ p)A(p)(1 — e + Fef')+

G
—f—/ / dtdzcy pA(p)(1 - e F — FeF)
—o0 JO

This functional is obviously positive and zero only if F is zero.
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