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1. Introduction

We consider here a suitable non-sequential recursive pair substitution method (NSRPS)
which has been proposed by Jimenez-Montaño, Ebeling and others [6]. This method has
been studied and precisely defined by Grassberger as a tool for data compression and
entropy estimation [9]. He deduced some important properties of the method and used it
to estimate the entropy of written English. In particular the results found in [9] and the
conjectures made therein are the main motivation for this paper.

Data compression is one of the most interesting research fields in information theory
both from the applied and from the theoretical viewpoint. In particular, data compression
algorithms provide a powerful tool for measuring entropy and more generally for the
statistical characterization of a symbolic sequence. The use of such algorithms in physics
and related areas of research is widespread and gives relevant results.
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Among the applications we mention the identification of the subsequences codifying
the genes and their specific functions in DNA sequences [4, 10, 11]; authorship attribution
and other linguistic applications (see e.g. [5] and references therein); checking the
effectiveness of random numbers generators [12]; the modern approach to time series
analysis based on the theory of dynamical systems and information theory (see for
instance [1, 7, 8, 13]).

We recall also that the problem of entropy estimation for sequences with long range
correlations has a long history in physics (see e.g. [14]) and the algorithm studied in this
paper was proposed with this aim.

The first algorithms for data compression (Shannon–Fano, Huffman; see for
example [2, 15]) were based on the suitable coding of single characters, or of strings
of a fixed and small number of characters. A great improvement in the field of data
compression has been given by the dictionary-based compression methods LZ77 [17], LZ78
[18] and LZW [16] in which variable-length strings are suitably encoded. In particular in
LZ78 a sequence is encoded as a list of phrases. Initially the phrases coincide with the
characters and then any new phrase is obtained sequentially by adding a character to one
of the existing phrases. The NSRPS method we are going to study here, even if different
in many respects from these dictionary methods, has some similarity with LZ78 and in
particular with a variation of LZ78 which has been recently proposed [3].

The NSRPS method works in the following way. Let us consider a sequence s0 built
with the characters of a finite alphabet A = {a0, . . . , am−1}. For any given i, j let nij be
the number of non-overlapping occurrences of the string aiaj in s0, and let i0, j0 be the
pair (or one of the pairs) for which nij is maximum. Now let us define a new sequence
s1 obtained from s0 by replacing any occurrence of the pair ai0aj0 with a new symbol am.
The new sequence is shorter than the previous one and its alphabet has one character
more. Then starting from s1 we define a new sequence s2 with the same procedure, etc.
We call a single step of NSRPS a ‘pair substitution’ (the one for example that transforms
s0 into s1).

For clarity let us consider two specific examples when the initial sequence is binary.
First let us consider the case in which

s0 = 0010101010001001010101110101 . . .

and we replace 01 with the new character 2. We obtain

s1 = 02222002022221122 . . . .

As said above, the sequence s1 is shorter then s0. In particular, denoting as |s| the length
of a generic sequence s, we have

|s1| = |s0| − #{01 ⊆ s0},
where #{01 ⊆ s0} is the number of times we find 01 in the string s0. Dividing by |s0|,

|s1|
|s0| = 1 − #{01 ⊆ s0}

|s0| .

We always work with sequences extracted using an ergodic measure μ. Then taking the
limit as |s0| → ∞ we get, for almost all sequences s0, that

1

Z
:= lim

|s0|→∞

|s1|
|s0| = 1 − μ(01). (1.1)
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Another important fact to note is that the transformation is invertible (see section 2),
and thus the amounts of information for the two sequences are the same (see section 3).
Therefore, if h(s) is the entropy per character of s,

h(s0) =
h(s1)

Z
.

The second example we consider is when the pair to be replaced is made up of two
equal characters. Let us consider the sequence

1001100100000011001000001000010001 . . .

and let us replace 00 with 2. We find the new sequence

12112122211212201221201 . . . .

The main difference from the case considered before is the fact that in this case we do
not replace with 2 all the pairs of consecutive 0 in s0. For instance 1001 → 121, but
10001 → 1201. It is easy to deduce that in this case (1.1) changes to

1

Z
= 1 − μ(00) + μ(000) − μ(0000) + μ(00000) − · · · . (1.2)

This example shows that under a NSRPS the probabilities of strings can behave in a
complicated way. In spite of this fact, the substitution process transforms a Markov
sequence into a Markov sequence, as proved by Grassberger in [9].

In general, if the starting sequence is not Markov it does not become Markov after
a finite number of transformations. Nevertheless it is reasonable to expect that the
sequences tends to become Markov as the number of transformations tends to infinity.
This is exactly what was conjectured in [9] and what we prove here.

More precisely the main facts we prove are the following.
In any pair substitution the conditional entropy h1 (i.e. the entropy of a character

conditioned to the previous character), suitably normalized, does not increase. If the
process is already Markov then it stays constant (in truth, there are other rare cases in
which h1 stays constant; see sections 5 and 8).

This is a general property of the pair transformations and holds true whatever the
substitution made. An immediate corollary of this fact is that Markov sequences are
transformed into Markov sequences.

As the number of transformations goes to ∞ and also the inverse of the average
shortening Z diverges, the (suitably normalized) conditional entropy h1 tends to the
entropy of the sequence. In this sense we prove that in the limit the process becomes
Markov. In particular this is the case if at any time we replace the pair of characters
which maximizes the number of non-overlapping occurrences. This condition is not strictly
necessary but, as we shall see in section 5, the result does not hold for all the sequences
of substitutions.

The paper is organized as follows. In section 2 we will fix notation and give some
preliminary results. In particular we will discuss how pair substitutions act on strings
and give a natural definition of a corresponding action on ergodic measures. In section 3
we will state results on how pair substitutions act on entropies. In section 4 we prove the
main result of the paper. In section 5 we discuss some examples. In section 6 we give
some concluding remarks. In sections 7, 8 we collect technical results on measure and
entropy transformations under the action of a pair substitution, respectively.
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2. How pair substitutions act on strings and measures

2.1. Strings

Given an alphabet A we denote as A∗ := ∪+∞
k=1A

k the set of finite words in the alphabet
A. Elements of A∗ are indicated with underlined lower case italic letters w, x, etc. The
same notation will be used also for infinite (elements of AN) and double infinite words
(elements of AZ). An element w has length |w| and, if |w| = k, it is also indicated with
wk

1 := w1 . . . wk := (w1, . . . , wk).
Let us consider x, y ∈ A (including x = y), α /∈ A, and A′ = A ∪ {α}. A pair

substitution is a map G = Gα
xy : A∗ → A′∗ which replaces ordinately the occurrence of xy

with α. More precisely Gw is defined by replacing in w the first occurrence from the left
of xy with α, and then repeating this procedure until the end of the string is reached.

We define also the map S = Sxy
α : A′∗ → A∗, which acts on the words z ∈ A′∗,

replacing any occurrence of the symbol α with the pair xy.
Notice that the map G is injective and not surjective, while the map S is surjective

and not injective. Notice also that S|G(A∗) = G−1, i.e.

S(G(w)) = w for any w ∈ A∗. (2.3)

We remark that these definitions work also in the case of infinite sequences w ∈ AN

and z ∈ A′N.
It is easy to see that the set of admissible words G(A∗) is a subset of A′∗ which

can be described through constraints on consecutive symbols: in the case xy → α, with
x �= y, G(A∗) consists of the strings of A′∗ in which the pair xy does not appear; in the
case xx → α, G(A∗) consists of the strings of A′∗ in which the pairs xx and xα do not
appear. An important fact is that after the application of more pair substitutions, the set
of admissible words remains described through constraints on consecutive symbols. This
follows from the fact that a pair substitution maps pair constraints into pair constraints,
as stated in the following theorem.

Theorem 2.1. Let {Va,b}a,b∈A be a matrix with 0–1 valued elements (the constraint matrix),
and let A∗

V be the subset of A∗ whose elements w verify

|w|−1∏

i=1

Vwi,wi+1
= 1,

(A∗
V is the set of admissible strings with respect to the pair constraints given by V ).
There exists a constraint matrix V ′ with index in A′ such that

G(A∗
V ) = A′∗

V ′ .

The proof follows from direct inspection. Here we only write V ′ in terms of V . Let
z, w ∈ A \ {x, y}: the values of the elements of V ′ are given by the following tables:

if x �= y x y w α
x Vx,x 0 Vx,w Vx,x

y Vy,x Vy,y Vy,w Vy,x

z Vz,x Vz,y Vz,w Vz,x

α Vy,x Vy,y Vy,w Vy,x

if x = y x w α
x 0 Vx,w 0
z Vz,x Vz,w Vz,x

α 1 Vx,w 1
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Note that these expressions hold if Vx,y = 1 and Vx,x = 1 respectively; otherwise, and
this is a non-interesting case, G(A∗

V ) = A∗
V .

2.2. Measures

We indicate with E(A) the set of ergodic stationary measures on AZ, the only measures
we are interested in. If μ ∈ E(A) we use the shorthand notation μ(w) to indicate the
value of the |w|-marginals of μ on the sequence w.

The maps Gα
xy and Sxy

α induce the maps G = Gα
xy : E(A) → E(A′) and S = Sxy

α :

E(A′) → E(A) in the following natural sense. Let μ ∈ E(A) and w ∈ AN be a frequency
typical sequence with respect to μ, and let ν ∈ E(A′) and z ∈ A′N be a frequency typical
sequence with respect to ν. The sequence Gw is typical for an ergodic measure that we
call Gμ and the sequence Sz is typical for an ergodic measure that we call Sν.

More precisely, denoting the number of occurrences of a subword s in r as � {s ⊆ r} :=∑|r|−|s|+1
i=1 1I(r

i+|s|−1
i = s), where 1I is the characteristic function, we have:

Theorem 2.2. Let s ∈ A′∗; then

Gμ(s) := lim
n→+∞

�{s ⊆ G(wn
1 )}

|G(wn
1 )| (2.4)

exists and is constant μ-almost everywhere in w, and moreover {Gμ(s)}s∈A′∗ are the

marginals of an ergodic measure on A′Z.
In an analogous way, let r ∈ A∗; then

Sν(r) := lim
n→+∞

�{r ⊆ S(zn
1 )}

|S(zn
1 )| (2.5)

exists and is constant ν-almost everywhere in z, and moreover {Sν(r)}r∈A∗ are the

marginals of an ergodic measure on AZ. It holds that

Sxy
α Gα

xyμ = μ. (2.6)

In section 7 we give the proof of the theorem and of the following propositions (which
we use for the main theorem in section 4); moreover from (2.4) and (2.5) we write the
explicit expressions for Gμ and Sν in terms of μ and ν respectively.

Proposition 2.1. Let Zμ
xy be the inverse of the mean shortening, with respect to μ, of a

string under the action of Gα
xy and let W = W ν

α be the mean lengthening, with respect to
ν, of a string under the action of Sxy

α .

If x �= y Zμ
xy := lim

n→+∞

n

|G(wn
1 )| =

1

1 − μ(xy)
(μ a.e. in w). (2.7)

Zμ
xx := lim

n→+∞

n

|G(wn
1 )| =

1

1 −
∑+∞

k=2(−1)kμ(xk)
(μ a.e. in w), (2.8)

where xk is the sequence of k times x.

W ν
α := lim

n→+∞

|S(zn
1 )|

n
= 1 + ν(α) (ν a.e. in z). (2.9)
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Moreover

W
Gα

xyμ
α = Zμ

xy. (2.10)

Proposition 2.2. Let r ∈ A∗; the value of Sν(r) depends only on the values of ν(s) with
|s| ≤ |r|.

We remark that this assertion is false for Gμ, and, in the case of x = y,
Gμ(s) can involve the probabilities of infinitely many strings of increasing lengths (see
equations (7.33)).

Proposition 2.3 (Invertibility of Sν). If ν ∈ E(A′) respects the pair constraints given by
G, i.e. for z ∈ A′∗

ν(z) = 0 if z /∈ G(A∗),

then

ν = GSν.

3. How pair substitutions act on the entropy per symbol

Given μ ∈ E(A), n ≥ 1, and indicating as log the base 2 logarithm function,

Hn(μ) := −
∑

|z|=n μ(z) log μ(z) is the n-block entropy,

hn(μ) := Hn+1(μ) − Hn(μ) is the n-conditional entropy,
h(μ) := limn→+∞(Hn(μ)/n) = limn→+∞ hn(μ) is the entropy of μ.

We have

h(μ) ≤ · · · ≤ hj(μ) ≤ hj−1(μ) ≤ · · · ≤ h1(μ) ≤ H1(μ). (3.11)

Denoting as μ(z|w) := μ(w z)/μ(w) the conditional probabilities, we say that μ is a k-
Markov measure if for any n > k, w ∈ An and a ∈ A, μ(a|wn

1 ) = μ(a|wn
n−k+1). In this

case h(μ) = hj(μ) ∀j ≥ k. We remark that h(μ) = hk(μ) implies that μ is a k-Markov
measure.

We collect here some results on how entropies transform under the action of G. Proofs
are postponed to the technical section 8.

We will use the shorthand Z = Zμ
xy, and sometimes Zμ = Zμ

xy when we need to stress
the reference measure.

Theorem 3.1.

h(Gμ) = Zh(μ). (3.12)

In fact the amount of information of the string w is the same as that of the string
G(w).

Theorem 3.2.

h1(Gμ) ≤ Zh1(μ). (3.13)

Moreover, if μ is a 1-Markov measure, Gμ is a 1-Markov measure.

doi:10.1088/1742-5468/2006/09/P09011 7
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Let us note here that the second assertion is a consequence of the first: if μ is a
1-Markov measure,

h(Gμ) ≤ h1(Gμ) ≤ Zh1(μ) = Zh(μ) = h(Gμ). (3.14)

Then h1(Gμ) = h(Gμ); this implies that Gμ is a 1-Markov measure.
This theorem can also be generalized.

Theorem 3.3.

hk(Gμ) ≤ Zhk(μ), (3.15)

and G maps k-Markov measures to k-Markov measures.

4. The main result

Theorem 3.2 asserts, roughly speaking, that the amount of information of G(w), which
is equal to that of w, is more concentrated on the pairs of symbols with respect to the
case of the original string w. This fact suggests that a sequence of pair substitutions can
transfer all the information in the distributions of the pairs of symbols. To formalize this
assertion, let us define recursively:

the alphabets A
N

= A
N−1

∪ {α
N
} where α

N
/∈ A

N−1
, with A0 = A;

the maps G
N

= G
α

N
x

N
y

N
: A∗

N−1
→ A∗

N
, where x

N
, y

N
∈ A

N−1
;

the corresponding maps G
N

= Gα
N

x
N

y
N

, S
N

= S
x

N
y

N
α

N
, S

N
= Sx

N
y

N
α

N
;

the measures μ
N

= G
N
μ

N−1
, with μ0 = μ;

the normalization Z
N

= Z
μ

N−1
x

N
y

N
;

the composed maps

G
N

= G
N
◦ · · · ◦ G1, G

N
= G

N
◦ · · · ◦ G1,

S
N

= S1 ◦ · · · ◦ S
N
, S

N
= S1 ◦ · · · ◦ SN

;

the corresponding normalization Z
N

= Z
N
Z

N−1
· · ·Z1 (when we need to specify the

initial measure we will use the symbol Z
μ

N
).

In [9] the author chose at any step the pair of symbols with the maximum of the
frequency of non-overlapping occurrences. This fact ensures the divergence of Z

N
as we

will prove using theorem 3.2.

Theorem 4.1. If at any step N the pair x
N
y

N
is the pair of maximum frequency of non-

overlapping occurrences between the pairs of symbols of A
N−1

, then

lim
N→+∞

Z
N

= +∞. (4.16)

In this case the hypothesis of the following (main) theorem is satisfied.

Theorem 4.2. If

lim
N→+∞

Z
N

= +∞ (4.17)
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then

h(μ) = lim
N→+∞

h1(μN
)

Z
N

. (4.18)

Proof of theorem 4.1

Let p
N

the maximum of probability μ
N−1

on the pair of symbols of A
N−1

. From the
definition of Z

N
it follows that

Z
N
≥ Z

N−1

(
1 +

p
N

2

)
,

(the factor 2 appears for the case of replacement of two equal symbols). We can estimate
p

N
with

p
N
≥ 2−H2(μN−1

),

where H2(μN−1
) = −

∑
a,b∈A

N−1
μ

N−1
(ab) log μ

N−1
(ab) is the two-block entropy. Using

theorem 3.2 and that H1(μN−1
) ≤ log(N − 1 + |A|), with |A| the cardinality of A:

H2(μN−1
) = h1(μN−1

) + H1(μN−1
) ≤ Z

N−1
h1(μ) + log(N − 1 + |A|).

Then

Z
N

Z
N−1

≥ 1 +
2−Z

N−1
h1(μ)

2(N − 1 + |A|) .

The sequence Z
N

is increasing; by contradiction, if Z
N

tends to a constant, from the
previous equation Z

N
/Z

N−1
≥ 1 + c/(N − 1), but this implies Z

N
→ +∞.

Remark. This proof is also valid in the more general case where we choose x
N
y

N
in such

a way that

μ
N−1

(x
N
y

N
) ≥ cp

N
,

where c is a constant independent of N .

Proof of theorem 4.2

For the composition S
N

it holds that

S
N
(sn

1 ) = S
N
(s1) . . . S

N
(sn),

where S
N
(si) are words in the original alphabet A. Consider r ∈ A∗, |r| = k and s a

typical string for μ
N
.

μ(r) = lim
n→∞

�
{
r ⊆ S

N
(sn

1 )
}

|S
N
(sn

1 )|
= lim

n→∞

�
{
r ⊆ S

N
(s1) . . . S

N
(sn)

}

|S
N
(sn

1)|
.

Notice that

�
{
r ⊆ S

N
(s1) . . . S

N
(sn)

}
=

∑

g∈A
N

�
{
r ⊆ S

N
(g)

}
� {g ⊆ sn

1}

+

k∑

p=2

∑

g1,...,gp∈A
N

�
{
r � S

N
(g1) . . . S

N
(gp)

}
� {g1 . . . gp ⊆ sn

1} (4.19)
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where �
{
r � S

N
(g1) . . . S

N
(gp)

}
is the number of occurrences of r in the string

S
N
(g1) . . . S

N
(gp) which start in S

N
(g1) and end in S

N
(gp). We obtain

μ(r) = lim
n→∞

n

|S
N
(sn

1 )|

⎛

⎝
∑

g∈A
N

�
{
r ⊆ S

N
(g)

} � {g ⊆ sn
1}

n

+
k∑

p=2

∑

g1,...,gp∈A
N

�
{
r � S

N
(g1) . . . S

N
(gp)

} � {g1 . . . gp ⊆ sn
1}

n

⎞

⎠

=
1

Z
N

⎛

⎝
∑

g∈A
N

�
{
r ⊆ S

N
(g)

}
μ

N
(g)

+

k∑

p=2

∑

g1,...,gp∈A
N

�
{
r � S

N
(g1) . . . S

N
(gp)

}
μ

N
(g1 . . . gp)

⎞

⎠ . (4.20)

Let P be the projection operator that maps a measure μ to its 1-Markov
approximation Pμ and define πj

N = S
j+1

. . .S
N
Pμ

N
. In particular we have π0

N
= S

N
Pμ

N

and π
N

N
= Pμ

N
. It holds that

π
N

N
= G

N
π0

N
. (4.21)

In fact the measures π
N

N
and μ

N
coincide on the pairs of symbols; then π

N

N
(w) = 0 if

w /∈ G
N
(A∗), as follows from theorem 2.1. From the fact that G

N
(A∗) ⊆ G

N
(A∗

N−1
), we

can apply proposition 2.3, obtaining

π
N

N
= G

N
π

N−1

N
. (4.22)

Now, also π
N−1

N
and μ

N−1
coincide on the pairs of symbols (see proposition 2.2); then we

can iterate the procedure and obtain equation (4.21). Note that

Z
π0

N

N
=

N∏

j=1

(1 + πj
N
(αj)) =

N∏

j=1

(1 + μj(αj)) = Z
μ

N
, (4.23)

and in fact πj
N

and μj coincide on the pairs of symbols on Aj . Therefore for any k and
any r of length k,

|π0
N
(r) − μ(r)| ≤ 1

Z
N

k∑

p=3

∑

g1,...gp∈A
N

(μ
N

+ π
N
)(g1 . . . gp)�

{
r � S

N
(g1) . . . S

N
(gp)

}

≤ 2
k2

Z
N

(4.24)

which tends to 0 when N → +∞. This implies that

lim
N→+∞

hk(π
0
N
) = hk(μ).

In conclusion, for any k

h(μ) =
h(μ

N
)

Z
N

≤ h1(μN
)

Z
N

=
h(π

N

N
)

Z
N

= h(π0
N
) ≤ hk(π

0
N
).
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We stress that the third step of the previous chain follows from the definition π
N

N
= Pμ

N

and that the fourth step follows from (4.21) and (4.23).

Taking the limits N → +∞ and k → +∞,

h(μ) = lim
N→+∞

h1(μN
)

Z
N

.

5. Some examples

We consider here a given sequence of pair replacements which is not obtained with the
procedure of the minimization of the length of the new strings, as prescribed in the NSRPS
method.

The initial alphabet is A = {0, 1}. The first pair replacement is 10 → 2, the second
20 → 3; in general the Nth replacement is N0 → N + 1. Notice that the infinite
composition of these replacements corresponds to the coding procedure that replaces
maximal blocks of k consecutive zeros, and the one that precedes them, with the new
symbol k + 1.

If the initial measure gives positive probability to the pair 11, then the normalization
cannot diverge; namely for an initial (typical) string of length L, after the transformations
there remain at most μ(11)L symbols.

Let us note that only the first replacement involves the symbol 1, then it is easy to
do the following computations:

μ
N
(1|1) = μ1(1|1) =

μ(11) − μ(110)

μ(1) − μ(10)
= μ(1|11),

μ
N
(1|11) = μ1(1|11) =

μ(111) − μ(1110)

μ(11) − μ(110)
= μ(1|111).

If for the initial measure μ(1|111) �= μ(1|11), then μ
N
(1|11) �= μ

N
(1|1) for any N and

h1(μN
)/Z

N
cannot converge to h(μ) (the limiting process cannot be a 1-Markov process).

On the other hand we can consider as initial measure a finite mean renewal process,
that is a stationary process for which the distances between consecutive ones are i.i.d.
random variables with distribution {pk}k≥1 and E0 =

∑∞
j=1 jpj < ∞. The entropy of

such a process is

h(μ) =
−

∑∞
k=1 pk log pk

E0
.

An explicit computation of the marginals of μ
N

is not difficult. It follows that

Z
N

= Z
μ

N−1

N0 =
E

N−1

EN , Z
N

=
E0

E1

E1

E2
. . .

E
N−1

EN =
E0

EN ,

where E
N

=
∑∞

j=1 jp
N

j and

p
N

j =

{
p1 + · · ·+ pN+1 j = 1

pN+j j > 1.
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Note that if we consider the measures μ
N

as measures in the alphabet N, then μ
N

weakly converges to the product measure with marginals {pk}k≥1. From this (or by direct
computation) we can derive

lim
N→∞

h1(μN
)

Z
N

= lim
N→∞

H1(μN
)

Z
N

= h(μ).

Let us stress that in this case the process becomes independent; then also H1(μN
)/Z

N

converges to the entropy. This fact is a consequence of the very particular choice of the
initial measure. If the distances between consecutive 1s are not distributed independently,
but, for instance, with a two-step Markov process, then h1(μN

)/Z
N

and H1(μN
)/Z

N
do

not converge to the entropy.

6. Concluding remarks

The main result proved here says that under the action of the NSRPS procedure any
ergodic process becomes asymptotically Markov, i.e. h1(μN

)/Z
N
→ h. A natural question

is that of when the process becomes even independent, i.e. H1(μN
)/Z

N
→ h, as for the

very specific example discussed in section 5. In our opinion this is a non-trivial question,
presumably depending on the behaviour of the number of forbidden sequences in the
iterated measures.

The results of this paper imply also the fact that a NSRPS algorithm can be used
to estimate the entropy of an ergodic source starting from a sequence of sufficiently large
length, say L. This is done iterating N(L) pair replacements with N(L) diverging with L
sufficiently slow, and then computing the conditional entropy h1 of the empirical measure
of the resulting sequence. An interesting question is that of how fast N(L) can diverge
with L.

Analogously it is possible to define an asymptotically optimal compression algorithm
based on NSRPS: iterating a suitable number of times the pair replacement procedure we
end up with an approximatively Markov sequence; this sequence can be compressed by
an algorithm which takes into account only the pair correlations (for instance a suitable
arithmetic coder). As before, if the number of substitutions diverges with L sufficiently
slowly, then the compression rate converges to h.

In practice, given a sequence of length L, it is not so obvious how to decide in an
efficient way what is the optimal number of substitutions to make. This point is discussed
a little in [9] and we do not enter into this matter.

7. Technical results on measure transformations

7.1. Proof of theorem 2.2

We do not give a formal proof of the theorem, just a sketch of it (more details are in the
analogous proof for proposition 2.1, in the next subsection). The fact that the limits are
almost surely constants can be deduced from the strong law of large numbers. This fact
implies the ergodicity of Gμ and Sν (see theorem I.4.2 on p. 44 of [15]). The compatibility
conditions for the families of marginals are easily checked. Formula (2.6) is a consequence
of (2.3).
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7.2. Proof of proposition 2.1

In the case x �= y, we have

|G(wn
1 )| = n − � {xy ⊆ wn

1}
so that

n

|G(wn
1 )| =

1

1 − �{xy⊆wn
1}

n

and the result (2.7) follows from the strong law of large numbers.
In the case x = y we have that

|G(wn
1 )| = n −

n∑

k=2

�
{
∗xk∗ ⊆ wn

1

} [
k

2

]

where [ ] is the integer part and �
{
∗xk∗ ⊆ wn

1

}
is the number of blocks of exact length

k of consecutive x contained in wn
1 (∗ represents a possible occurrence of a generic letter

different from x). It holds that

�
{
∗xk∗ ⊆ wn

1

}
= �

{
xk ⊆ wn

1

}
− 2�

{
xk+1 ⊆ wn

1

}
+ �

{
xk+2 ⊆ wn

1

}
.

Now we have

n

|G(wn
1 )| =

1

1 −
∑n

k=2(−1)k

(
�{xk⊆wn

1}
n

)

that converges to the right-hand side of (2.8) for any ergodic measure μ different from the
measure concentrated on the sequence of all x (in this case clearly Z = 2).

Formula (2.9) follows from

S(zn
1 ) = n + � {α ⊆ zn

1 }
and the strong law of large numbers.

Formula (2.10) can be deduced from (2.3).

7.3. Sν in terms of ν

We consider the substitution α → xy. We have that

W = lim
n→+∞

|S(zn
1 )|

n
= lim

n→+∞

∑

|z|=n

ν(z)
|S(z)|

n
,

and it holds that

Sν(r) := lim
n→+∞

�{r ⊆ S(zn
1 )}

|S(zn
1 )| = lim

n→+∞

�{r ⊆ S(zn
1 )}

Wn

= lim
n→+∞

1

Wn

∑

|z|=n

ν(z)�{r ⊆ S(zn
1 )}. (7.25)
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Suppose now that |r| = k and consider, for n ≥ k,

Dn =
∑

|z|=n

ν(z)�{r ⊆ S(z)} −
∑

|z|=n−1

ν(z)�{r ⊆ S(z)}

=
∑

|z|=n

ν(z)1I
(
r = S(z)k

1

)
+

∑

|z|=n−1

ν(αz)1I
(
r = yS(z)k−1

1

)
. (7.26)

We can rewrite these terms as
∑

|z|=n

ν(z)1I
(
r = S(z)k

1

)
=

∑

s:S(s)=r

(
ν(s) + ν(s

|s|−1
1 α)1I (rk = x)

)

∑

|z|=n−1

ν(αz)1I
(
r = yS(z)k−1

1

)
=

∑

s:S(s)=r

(
ν(αs

|s|
2 ) + ν(αs

|s|−1
2 α)1I(rk = x)

)
1I(r1 = y).

(7.27)

Hence Dn is constant for n ≥ k and

lim
n→+∞

1

W

∑

|z|=n

ν(z)�{r ⊆ S(zn
1 )} =

1

W
Dk. (7.28)

Collecting (7.25)–(7.28) we obtain the expression for Sν:

Sν(r) =
1

W

∑

s: S(s)=r

(
ν(s) + ν(s

|s|−1
1 α)1I (rk = x)

+ ν(αs
|s|
2 )1I(r1 = y) + ν(αs

|s|−1
2 α)1I(r1 = y)1I(rk = x)

)
. (7.29)

7.4. Gμ in terms of μ

The map S inverts G; then in order to find the expression for Gμ we can invert the
expression for SGμ = μ. Let ν be Gμ. The sum on s in equation (7.29) reduces to
s = G(r), namely ν(s) = 0 if s /∈ G(A∗). This reduction makes equation (7.29) explicitly
invertible, but we have to distinguish the two cases x �= y and x = y.

Case x �= y. Let r ∈ A∗ and let z, w ∈ A be such that z �= x and w �= y. From (7.29) we
obtain

Wμ(wrz) = ν(G(wrz))

Wμ(wrx) = ν(G(wr)x) + ν(G(wr)α)

Wμ(yrz) = ν(yG(rz)) + ν(αG(rz))

Wμ(yrx) = ν(yG(r)x) + ν(αG(r)x) + ν(yG(r)α) + ν(αG(r)α).

(7.30)

Let now s = G(r) with |s| = n and |r| = k. The expression for ν(s) = Gμ(s) can be
calculated from the previous equations, yielding

s1 �= y, sn �= x : ν(s) = Wμ(r)

s1 = y, sn �= x : ν(s) = W (μ(r) − μ(xyrk
2))

s1 �= y, sn = x : ν(s) = W (μ(r) − μ(rk−1
1 xy)

s1 = y, sn = x : ν(s) = W (μ(r) + μ(xyrk−1
2 xy) − μ(xyrk

2) − μ(rk−1
1 xy)).

(7.31)
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Now we can calculate Z = W (see equations (2.10)) in terms of μ:

Z = 1 + ν(α) = 1 + Zμ(xy) =
1

1 − μ(xy)
.

We remark that equations (7.31) can be synthesized in

Gμ(s) = Z
∑

a,b∈A: asb∈G(A∗)

μ(asb). (7.32)

Case x = y. Proceeding as above we obtain again the explicit expressions for ν(s) but
they are more complicated. As before let s ∈ G(A∗), |s| = n > 0, G(r) = s, |r| = k. Let
s1, sn �= x. Denoting as ap the string of p times the symbol a, the strings in G(A∗) are of
the type

αpxπs αqxσ and αpxπ, with p, q ≥ 0 and π, σ = 0, 1.

The expression for Gμ = ν in terms of μ is given by

ν(s αq) = Zμ(r x2q) for q ≥ 0

ν(s αqx) = Z(μ(r x2q+1) − μ(r x2q+2))) for q ≥ 0

ν(αp) = Z
∑+∞

j=0(−1)jμ(x2p+j)) for p > 1

ν(αpx) = Z(μ(x2p+1) − 2
∑+∞

j=2(−1)jμ(x2p+j)) for p > 1

ν(αpxπs αq) = Z
∑+∞

j=0(−1)jμ(x2p+π+jr x2q) for p + π ≥ 1, q ≥ 0

ν(αpxπs αqx) = Z
∑+∞

j=0(−1)j ·
(μ(x2p+π+jr x2q+1) − μ(x2p+π+jr x2q+2)) for p + π ≥ 1, q ≥ 0.

(7.33)

Now we can calculate Z in terms of μ:

Z = 1 + ν(α) = 1 + Z

+∞∑

j=0

(−1)jμ(x2+j) =
1

1 −
∑+∞

j=2(−1)jμ(xj)
.

7.5. Proof of proposition 2.2

This proposition is a consequence of equation (7.29) in section 7.3, namely |s| ≤ r if
S(s) = r.

7.6. Proof of proposition 2.3

This proposition is a consequence of the fact that the explicit expression (7.29) for μ = Sν
in terms of ν can be inverted (in a unique way) if ν respects the pair constraints given by
G, as follows from equations (7.30)–(7.33) in section 7.4. The expression for ν in terms of
μ is exactly Gμ; then ν = Gμ = GSν.
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8. Technical results on entropy transformations

8.1. Proof of theorem 3.1

The result follows from the fact that G is a faithful code and S is a faithful code when
restricted to the support of Gμ. We call C := {Cn}n∈N

a sequence of universal codes in
the alphabet A and C ′ := {C ′

n}n∈N
a sequence of universal codes in the alphabet A′ (see

theorems II.1.1 and II.1.2 on p. 122 of [15]).
We have that C ′ ◦ G is a sequence of faithful codes in A. From this we deduce that

on a set of μ measure 1,

h(Gμ) = lim
n→∞

C ′
|G(wn

1 )|(G(wn
1 ))

|G(wn
1 )| = lim

n→∞

n

|G(wn
1 )|

C ′
|G(wn

1 )| ◦ G(wn
1 )

n
≥ Zh(μ).

Likewise we have that C ◦S is a sequence of faithful codes in A′. From this we deduce
that on a set of μ measure 1,

h(μ) = lim
n→∞

Cn(wn
1 )

n
= lim

n→∞

|G(wn
1 )|

n

Cn ◦ S(G(wn
1 ))

|G(wn
1 )| ≥ h(Gμ)

Z
.

8.2. Proof of theorems 3.2 and 3.3

We proceed, splitting the action of G (and then of G) into three parts, introducing two
new characters b1, b2 /∈ A.

Given a string, we operate as follows:

Step 1: We replace, starting form the left, any occurrence of xy with xb1. This
operation defines a map R : A∗ → A∗

R, where AR = A ∪ {b1}. We call R the
corresponding map for the measures, defined in the same spirit as theorem 2.2.

Step 2: We replace any occurrence of xb1 with b2b1. This operation defines a map
L : A∗

R :→ A∗
L, where AL = AR ∪ {b2}. We call L the corresponding map for the

measures.

Step 3: We replace any occurrence of b2b1 with α. This operation, in general, defines
a map C : A∗

L :→ A∗
C , where AC = AL ∪ {α}. We call C the corresponding map for

the measures.

From these definitions,

C(L(R(w))) = G(w), and then CLRμ = Gμ.

With this splitting we separate the effects of the shortening of the strings (step 3) from
the effect of the partial replacements of characters (steps 1, 2).

Lemma 8.1.

h1(Rμ) ≤ h1(μ) (8.34)

(the proof is in section 8.3).
The same assertion holds for LRμ. Namely we can define L also considering the

substitutions starting from the right, namely x �= b1. In this way L(w) = (R′(wr))r,
where wr = (w1 . . . wk)

r = wk . . . w1 and R′ is the replacement, from the left, of b1x with
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b1b2. The map R′ acts in the same way as R; then lemma 8.1 holds for the corresponding
map for the measures R′, and then also for L. In this way we prove that

h1(LRμ) ≤ h1(μ).

The third step preserves h1 up to the normalization, as stated in the following lemma
(proved in section 8.4).

Lemma 8.2. If ρ ∈ E(AL) verifies

ρ(b2w) = ρ(zb1) = 0 for w �= b1, z �= b2, (8.35)

then

h1(Cρ) = Wh1(ρ), (8.36)

where

W =
1

1 − ρ(b2b1)
= 1 + Cρ(α). (8.37)

We achieve the proof of theorem (3.13) observing that the measure ρ = LRμ verifies
the constraints (8.35); then h1(Gμ) ≤ Wh1(μ), where W = Z because W = 1 + Cρ(α) =
1 + Gμ(α) = W Gμ

α = Zμ
xy (see equation (2.10)).

We conclude this section by remarking that lemma 8.1 holds also for hk, and that for
hk we have the following analogue of lemma 8.2, proved in section 8.5.

Lemma 8.3. Under the hypotheses of lemma 8.2

hk(Cρ) ≤ Whk(ρ).

From these facts there follows theorem 3.3.

8.3. Proof of lemma 8.1

Let ξ = Rμ. The measure μ can be expressed in terms of ξ as follows:

μ(w) =
∑

z: R(z)=w

ξ(z).

We use this formula to express the probabilities of the symbols and of the pairs of symbols.

Case x �= y. Let p be in A;

μ(y) = ξ(y) + ξ(b1), μ(p) = ξ(p) for p �= y,
μ(yp) = ξ(yp) + ξ(b1p), μ(pq) = ξ(pq) for p �= x, p �= y,
μ(xy) = ξ(xb1), μ(xp) = ξ(xp) for p �= y.

By direct calculation,

h1(μ) − h1(ξ) = −
∑

p∈A

(ξ(yp) + ξ(b1p)) log
ξ(yp) + ξ(b1p)

ξ(y) + ξ(b1)

+
∑

p∈A

(
ξ(yp) log

ξ(yp)

ξ(y)
+ ξ(b1p) log

ξ(b1p)

ξ(b1)

)
. (8.38)
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We prove the lemma showing that
(

ξ(yp) log
ξ(yp)

ξ(y)
+ ξ(b1p) log

ξ(b1p)

ξ(b1)

)
≥ (ξ(yp) + ξ(b1p)) log

ξ(yp) + ξ(b1p)

ξ(y) + ξ(b1)
.

Dividing by ξ(yp)+ξ(b1p) and setting β = ξ(y)/(ξ(y) + ξ(b1)), γ = ξ(yp)/(ξ(yp) + ξ(b1p)),
this inequality can be rewritten as

γ log
β

γ
+ (1 − γ) log

1 − β

1 − γ
≤ 0,

which is always verified.

Case x = y. Let p ∈ A, p �= x;

μ(x) = ξ(x) + ξ(b1), μ(p) = ξ(p),
μ(xx) = ξ(xb1) + ξ(b1x), μ(xp) = ξ(xp) + ξ(b1p),
μ(pq) = ξ(pq) for q ∈ A, μ(px) = ξ(px).

The difference between the 1-conditional entropies is

h1(μ) − h1(ξ) = −
∑

p∈A, p 	=x

(ξ(xp) + ξ(b1p)) log
ξ(xp) + ξ(b1p)

ξ(x) + ξ(b1)

− (ξ(xb1) + ξ(b1x)) log
ξ(xb1) + ξ(b1x)

ξ(x) + ξ(b1)

+
∑

p∈A, p 	=x

(
ξ(xp) log

ξ(xp)

ξ(x)
+ ξ(b1p) log

ξ(b1p)

ξ(b1)

)

+ ξ(xb1) log
ξ(xb1)

ξ(x)
+ ξ(b1x) log

ξ(b1x)

ξ(b1)
. (8.39)

We prove that this difference is positive with the same argument as we used for the case
x �= y.

Finally, we remark that in the same way we can prove that hk(ξ) ≤ hk(μ).

8.4. Proof of lemma 8.2

Let ν = Cρ and W = 1 + ν(α). It is easy to write ρ in terms of ν. Let p, q �= b1, b2. The
probabilities of the symbols and of the pairs of symbols are given by

Wρ(b1) = Wρ(b2) = ν(α) Wρ(p) = ν(p)
Wρ(pb1) = Wρ(b2q) = 0 Wρ(pq) = ν(pq)
Wρ(pb2) = ν(pα) Wρ(b1q) = ν(αq)
Wρ(b2b1) = ν(α) Wρ(b1b2) = ν(αα).

By explicit calculation,

H1(ρ) = −
∑

p∈AC\α

ν(p)

W
log

ν(p)

W
− 2

ν(α)

W
log

ν(α)

W
=

H1(ν)

W
+

log W

W
− ν(α)

W
log

ν(α)

W
,

H2(ρ) = −
∑

p,q∈AC

ν(pq)

W
log

ν(pq)

W
− ν(α)

W
log

ν(α)

W
=

H2(ν)

W
+

log W

W
− ν(α)

W
log

ν(α)

W
.
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Then

h1(ρ) = H2(ρ) − H1(ρ) =
h1(ν)

W
.

8.5. Proof of lemma 8.3

We need some definitions. Let w = wl
1. We can identify w with the cylindrical subset

Kw ⊆ AZ defined as follows:

Kw =
{
x ∈ AZ : x−l = w1, x−l+1 = w2, . . . , x−1 = wl

}
.

Let P ⊆ A∗ be a finite set. We say that P is a partition if

{Kw}w∈P is a partition of AZ, i.e.

⎧
⎨

⎩

(1) Kw ∩ Kz = ∅ if w �= z,

(2)
⋃

w∈P

Kw = AZ.

Condition (1) says that any string of P is not a suffix for other strings of P . If only
condition (1) is verified, we say that P is a semi-partition. It is easy to show that any
semi-partition can be completed to obtain a partition. Moreover, if the minimum of the
length of the strings in P is l, we can complete P using strings of length greater than or
equal to l.

If P is a partition, we can define the P -conditional entropy as

hP (μ) = −
∑

w∈P, a∈A

μ(wa) log
μ(wa)

μ(w)
.

If P and Q are two partitions we say that P is finer than Q if any string of P ends with
a string of Q. If P is finer than Q,

hP (μ) ≤ hQ(μ). (8.40)

(The proof is at the end of this section.)
Note that

P = {s ∈ A∗
L| |C(s)| = k},

is a semi-partition, and that, from direct calculation,

hk(ν) = WhP (ρ)

where we remember that ν = Cρ. In particular we have used that, if s ∈ A∗
L,

ρ(sb2) = ρ(sb2b1) and if the last symbol of s differs from b2, then ρ(sb1) = 0.
Finally let P be a completion of P .

hk(ν) = WhP (ρ) ≤ WhP (ρ).

The length of the strings in P is greater than or equal to k and we construct P so that the
same holds for P . Therefore, Ak

L is a partition less fine than P . Invoking equation (8.40)
we conclude that

hk(ν) ≤ WhAk
L
(ρ) = Whk(ρ).
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Proof of equation (8.40)

Let w ∈ Q and Xw ⊆ P be the subset of the strings which end with w. From this
definition,

P =
⋃

w∈Q

Xw, μ(w) =
∑

r∈Xw

μ(r).

The function Φ(x) = x log x is convex; then if λi ≥ 0 and
∑

λi = 1, Φ(
∑

λixi) ≤∑
λixi log xi. Now

−hQ(μ) =
∑

w∈Q

μ(w)
∑

a∈A

μ(a|w) log μ(a|w),

and

μ(a|w) =
μ(wa)

μ(w)
=

∑

r∈Xw

μ(ra)

μ(w)
=

∑

r∈Xw

μ(ra)

μ(r)

μ(r)

μ(w)
.

Writing xa
r = μ(ra)/μ(r) and λr = μ(r)/μ(w), and noting that

∑
r∈Xw

λr = 1, we obtain

−hQ(μ) =
∑

w∈Q

∑

a∈A

μ(w)Φ

⎛

⎝
∑

r∈Xw

λrx
a
r

⎞

⎠

≤
∑

w∈Q

∑

r∈Xw

∑

a∈A

μ(w)
μ(r)

μ(w)
μ(a| r) log μ(a| r)

=
∑

r∈P

∑

a∈A

μ(r)μ(a| r) log μ(a| r) = −hP (μ). (8.41)
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