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Abstract 

We estimate analytically the critical coupling separating the weak and the strong coupling 
regime in 4D simplicial quantum gravity to be located at k~ tit '~ 1.3093. By carrying out a 
detailed geometrical analysis of the strong coupling phase we argue that the distribution of 
dynamical triangulations with singular vertices and singular edges, dominating in such a regime, 
is characterized by distinct subdominating peaks. The presence of such peaks generates volume- 
dependent pseudo-critical points: kocrit(N4 = 32000) ~ 1.25795, k~rit(N4 = 48000) --~ 1.26752, 
k~rit(N4 = 64000) '~ 1.27466, etc., which appear in good agreement with available Monte Carlo 
data. Under a certain scaling hypothesis we analytically characterize the (canonical) average 
value, cl (N4; k2) = (No) /N4,  and the susceptibility, c2(N4; k2) = ( (N 2) - (No)2) /N4,  associated 
with the vertex distribution of the 4D triangulations considered. Again, the resulting analytical 
expressions are found in quite a good agreement with their Monte Carlo counterparts. @ 1999 
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1. Introduction 
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In this article we shall characterize analytically the critical point separating the weak 
and the strong coupling regime in 4D-simplicial quantum gravity by locating it at 
k~ rit ~ 1.3093. The elementary techniques we develop here will allow us to get a 
rather detailed understanding of the geometry and the physics of the strong coupling 
phase of the theory. In particular we will show that the dynamics in such a phase is 
influenced by the presence of peaks in the distribution of singular triangulations. These 
latter are combinatorial manifolds characterized by the presence of vertices shared by 
a number of simplices diverging linearly with the volume of the triangulation, and 
possibly connected by a subsingular edge. The peaks in question are parameterized by 
the fraction of total volume which is allocated around such singular vertices. In order of 
decreasing entropic relevance, the peaks are found, according to a well-defined pattern, at 
k2 -~ 1.24465, k2 -~ 1.2744, k2 -~ 1.2938, k2 -~ 1.30746, k2 " 1.31762, k2 ~- 1.32545, 
etc.., asymptotically fading towards the weak coupling regime. By exploiting simple 
entropic arguments drawing from our recent work [ 1,2] and by making use of a certain 
scaling hypothesis, we show how such collection of subdominating sets of singular 
triangulations significantly affects the dynamics of the transition between weak and 
strong coupling. We hope that our work offers the possibility of making progress in 
understanding the nature of the transition, one of the major issues which controls the 
validity of dynamical triangulations as the basis of a regularization scheme for gravity. 
Before embarking on this analysis we offer some general motivation for such a study. 

1.1. The Model 

Let M be a closed n-dimensional (n ~> 2) manifold of given topology. Let Riem(M) 
and Diff(M) respectively denote the space of Riemannian metrics g on M, and the group 
of diffeomorphisms on M. In the continuum formulation of Euclidean quantum gravity 
one attempts to give meaning to a formal path integration over Diff(M) equivalence 
classes of metrics in Riem(M): 

Z ( A , G , M )  = /" Z)[g(M)]e -s~tA'c'z] , (1) 
, I  

Riem(M)/Diff(M) 

where Sg [ A, G, Z] is the Einstein-Hilbert action associated with the Riemannian mani- 
fold (M,g),  viz., 

f l fd'(v~R (2) Su[A,G,X] =A  d " ( x / g -  16¢r------G 
M M 

and D [ g(M) ] is some a priori distribution on Riem(M)/Diff(M) describing the strong 
coupling statistics (A ~ 0, G --~ co) of the set of Riemannian manifolds { (M, g)} con- 
sidered. We avoid here discussing well-known specific pathologies in dealing with (1) 
and about which the reader can find abundant literature, and simply recall that in the 
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dynamical triangulations approach to quantum gravity one attempts to give meaning 
to (1) by replacing the continuum Riemannian manifold (M, g) with a piecewise-linear 
(PL) manifold (still denoted by M) endowed with a triangulation Ta ~ M generated 
by gluing a (large) number of equilateral n-simplices ~r n. One approximates Rieman- 
nian structures by means of such triangulated manifolds by using a representative metric 
where each simplex o "n is a Euclidean equilateral simplex with sides of length a (typ- 
ically we set a = 1). This metric is locally Euclidean everywhere on the PL manifold 
except near the (n - 2) subsimplices o -n-2 (the bones) where the sum of the dihe- 
dral angles, O(o'n), of the incident o-n's is in excess (negative curvature) or in defect 
(positive curvature) with respect to the 2~r flatness constraint, the corresponding deficit 
angle r being defined by r = 2zr - ~'~,~,, 0(o-~). If K ~-2 denotes the (n - 2)-skeleton of 
T ---, M", then Mn\K n-2 is a flat Riemannian manifold, and any point in the interior 
of an r-simplex o "r has a neighborhood homeomorphic to B r x C(link(o -r) ), where B r 
denotes the ball in Nn and C(link(~r r))  is the cone over the link link(o -r) (the product 

link(o -r) x [0, 1] with link(o -r) x {1} identified to a point). Note that for dynamical 
triangulations the deficit angles are generated by the string of integers, the curvature 

"~ N,,- 2-- 1 assignments, {q(k)Jk---o providing the numbers of top-dimensional simplices incident 
on the N.-2 distinct bones, viz., r(i) = 2~T -- q(i) arccos(l /n) .  

By specializing to this setting the standard Regge calculus, the formal path integra- 
tion ( 1 ) is replaced on a dynamically triangulated PL manifold M (of fixed topology), 
by the (grand-canonical) partition function [ 3,2,4 ] 

Z[k.-2,  k.] = Z -C--rr e l  _-k,,U,,+k,,_~U,,_2, (3) 
TE'T(M) 

where kn-2 and kn are two (running) couplings, the former proportional to the inverse 
gravitational coupling 1/G, while the latter is a linear combination of 1/16~'G and of 
the cosmological constant A. The summation in (3) is extended to the set { T ( M ) }  of 
all distinct dynamical triangulations the PL manifold M can support, and it is weighted 
by the symmetry factor, Cr, of the triangulation: the order of the automorphism group 
of the graph associated with the triangulation T. Since symmetric triangulations are the 
exception rather then the rule, we shall assume Cr = I in the estimates of the partition 
functions below. Thus, in the following we will omit the symmetry factor when writing 
the partition function. 

One can introduce also the canonical partition function defined by 

W(kn-2)eff= Z ek"-2N"-2' (4) 
TEf" ( N,,) 

where the summation is extended over all distinct dynamical triangulations with given 
N. (i.e. at fixed volume) of a given PL manifold M. Finally, we shall consider the 
micro-canonical partition function 

W[Nn_2, b ( n , n -  2)] = Z 1, (5) 
TET" (N,,;N,,_2 ) 
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where the summation is extended over all distinct dynamical triangulations with given 
Nn and N,-2, i.e. at fixed volume and fixed average incidence 

b(n,  n - 2) = ½n(n + 1 ) ( N n / N , - 2 ) ,  (6) 

of a given PL manifold M. The micro-canonical partition function is simply the number 
of distinct dynamical triangulations with given volume (c< Nn) and fixed average curva- 
ture (~x b(n,  n - 2)) ,  of a given PL manifold M. In other words, W[Nn-2 ,  b(n,  n -  2)] 
is the entropy function for the given set of dynamical triangulations: it provides the dis- 
cretized counterpart of the a priori distribution D [ g ( M ) ]  describing the strong coupling 
statistics (k ,  --* O, kn-2 ~ 0) of the set of Riemannian manifolds {(M,g)}.  

Recently there have been a number of significant advances in 3- and 4-dimensional 
simplicial quantum gravity that fit together in a coherent whole; roughly speaking, these 
results are related to (i) a deeper understanding of the geometry of n ~> 3-dimensional 
dynamical triangulations; (ii) the study of simpler models mimicking quite accurately 
the critical structure of simplicial quantum gravity, and (iii) more refined computer 
simulations of the phase structure of the 4-dimensional theory. These results imply that 
both in dimension n = 3 and n = 4, simplicial quantum gravity has two geometrically 
distinct phases parameterized by the value of the inverse gravitational coupling kn-2. In 
the weak coupling phase (large values of kn-2) we have a dominance of PL manifolds 
which collapse to branched polymer structures with an Hausdorff dimension dr4 = 2 
and an entropy exponent (analogous to the string susceptibility of the 2-dimensional 
theory) y = 1/2. In this phase the theory has a well defined continuum limit which is 
independent of any fine tuning of the (inverse) gravitational constant kn-2. We are not 
really interested in this continuum limit, even if it exists. The situation is not unusual 
from the point of view of lattice theories. For instance in compact U(1) gauge theories 
one hits the trivial Coulomb phase for all fl >/30. In the strong coupling phase (small 
values of k , -2) ,  we have a dominance of crumpled manifolds: the typical configuration 
sampled by the computer simulations is that of a triangulation with a few vertices on 
which most of the top dimensional simplices are incident, such presence of singular 

vertices, typically connected by a subsingular edge, seems to be a signature of the 
strong coupling phase [5]. Note that the word singular vertex is used in DT theory 
with a meaning quite different from the accepted meaning adopted in PL geometry. 
What is actually meant is that a metric ball around any such a vertex, of radius equal 
to the given lattice spacing, has a volume that grows proportionally to the volume of 
the whole PL manifold. This behavior indicates that the Hausdorff dimension of the 
typical triangulation in the strong coupling phase is very large if not infinite. There 
is strong evidence that the transition between weak and strong coupling, marked by a 
critical value befit is of a first-order nature in the n = 3-dimensional case. In dimension '~n-2, 
n = 4, the original numerical simulations seemed to indicate a second-order nature of 
the transition, a result that invited positive speculations on the possibility that simplicial 
quantum gravity could indeed provide a reliable regularization of Euclidean quantum 
gravity. However, recent and more accurate analyses [6] of the Monte Carlo simulations 
seem rather to point toward a first-order nature of the transition. These results are not 
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definitive since the latent heat at the critical point is very small as compared to the 3D 
case, so that the question remains open whether any further increase in the sophistication 
of the simulations will definitively establish, within the limit of the reached accuracy, 
the nature of the transition. In any case, all recent numerical results [7] strongly 
indicates that the phase transition in 4-dimensional simplicial gravity is associated with 
the creation of singular geometries. These results have put to the fore the basic problems 
of theory, and in this sense important questions abound: What is the geometrical nature 
of the crumpled phase? What is the mechanism driving the transition from the polymer 
phase to the crumpled phase? Is there any geometrical intuition behind the first or 
higher order nature of the transition? Is it possible to take dynamical control over the 
occurrence of singular vertices and edges which otherwise would entropically dominate? 

Some of these questions can be systematically addressed by a detailed but other- 
wise elementary discussion of the geometry of dynamical triangulations along the lines 
of [1,2]. This geometrical viewpoint has turned out to be useful and interesting in 
terms of providing an analytical framework within which discuss simplicial quantum 
gravity while at the same time maintaining a strong contact with computer simulations. 
In this paper we discuss in detail how this approach can be further exploited to estimate 
analytically the value of k~ rit, and describing the geometrical properties of the strong 
coupling phase of the 4-dimensional theory. 

2. Large volume asymptotics of the partition functions 

For the convenience of the reader we recall in this section a few basic results of [ 1 ] 
that we are going to use later on. 

The discretized distribution W [ Nn-2 ,  b ( n ,  n -  2) ] is one of the objects of main interest 
in simplicial quantum gravity, and for n ~> 3 an exact evaluation of W [ N n - 2 ,  b ( n ,  n - 2 )  ] 
is an open and very difficult problem. However, since in (3) and (4) one is interested in 
the large volume limit, what really matters, as far as the criticality properties of (3) are 
concerned, is the asymptotic behavior of W[Nn-2, b ( n ,  n - 2) ] for large N,. This makes 
the analysis of W[ Nn-2, b ( n ,  n - 2 )  ] somewhat technically simpler, and according to [ 1 ] 
one can actually estimate its leading asymptotics with the relevant subleading corrections. 
If we consider an n-dimensional (n ~> 2) PL manifold M of given fundamental group 
• rl (M) ) ,  then the distribution W[ N~-2, b ( n ,  n - 2 )  ] of distinct dynamical triangulations, 
with given N,-2 bones and average curvature b = b ( n ,  n - 2), factorizes according to 

W [ N n - 2 ,  b ( n ,  n - 2)] = p~vU,,~2 (Card{TaCi)}curv), (7) 

c u r v  N,,  2 where PN,,_: is the number of possible distinct curvature assignments {q(ce)},~_. o for 
triangulations {Ta} with N,-2 bones and given average incidence b ( n ,  n - 2), viz., 

"1. N, ,  _ 2 N , , _  2 l N,, _ 2 
{q(ce)J,~--o ¢ {q('8)}#--o ¢ {q(Y)Jr=0 ¢ . . . .  (8) 

while (Card{T~ i) }cur~) is the average (with respect to the distinct curvature assignments) 
of the number of distinct triangulations sharing a common set of curvature assignments, 
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(for details, see Section 5.2, pp. 102 of Ref. [ 1 ] ). This factorization allows for a rather 
straightforward asymptotic analysis of W[N,_2, b(n, n -  2)],  and in the limit of large 
N, we get [1] (Theorem 6.4.2, pp. 131 with the expression (Card{TaO)}cur~) provided 
by Theorem 5.2.1, pp. 106) 

Wzr e(a,,b(n,n_2)+a,,_2)N,,_2 W[Nn_z,b(n,n - 2)] '~ 

¢ ( b - O +  l)l-2n I ( b - O +  l)b-O+' ] 
x -(g-~-ST (b_O)b_O 

×el-'n(b(n'n-2))NJ'i"u' ( b(n'n - 2) Nn-2 ) - n - C < +  -17 

N .  _ 2 

DI2 
Nn_2r(b)- ~ .  

(9) 

The notation here is the following. W,~ is a topology-dependent parameter of no im- 
portance for our present purposes (see Ref. [ 1 ] for its explicit expression), an-2 and 
a,, are two constants depending on the dimension n (for instance, for n = 4, an = 
- a r c c o s ( l / n )  In--a, an-2 = 0); 0 is the minimum incidence order over the bones (typ- 
ically 0 = 3); D-dim[Hom(rrl (M),  G)] is the topological dimension of the represen- 
tation variety parameterizing the set of distinct dynamical triangulations approximating 
locally homogeneous G-geometries, (G C SO(n)). Finally, re(b) >~ 0 and z(b) /> 0 
are two parameters depending on b(n, n - 2) which, together with nt~ > 1, characterize 
the subleading asymptotics of W[N,-2,  b(n, n - 2)]. In particular, note that 

el_m(b(n,n_2))N]/,,,, 1 {b (n ,n  - 2) ~ .~o/2 t "n~-17 ,v,-2) Nn-2 r'°) (1o) 

is the asymptotics associated with (Card{T(i)}curv). The remaining part of (9) is the 
leading exponential contribution coming from the large N n behavior of the distribution 
P~v~,~2 of the possible curvature assignments. This latter term provides the correct be- 
havior of the large volume limit of dynamically triangulated manifolds, an asymptotics 
that matches nicely with the existing Monte Carlo simulations (see, e.g., Ref. [ 1 ], 
Section 7.1, pp. 160). While the exponential asymptotics is basically under control, 
it must be stressed that some of the most delicate aspects of the theory are actually 
contained in (Card{T (/) }curv). Roughly speaking, the set of triangulations {T (° }cu~v can 
be rather directly interpreted as a finite-dimensional approximation of the moduli space 
of constant curvature metrics in smooth Riemannian geometry (the standard example 
being the parameterization of the moduli space of surfaces of genus >~ 2 with the set of 
inequivalent constant curvature (= - 1 )  metrics admitted by such surfaces; due to rigid- 
ity phenomena, such example is to be taken with care for n ~> 3). With this geometric 
interpretation in mind we can consider 

ln{Card{T(i)}curv) ..~ _ m(b(n,n  - 2) )Ntn/n" D 
__ +--~+r (n )  for N. ---~ c~ (11) 

in N n In N. 
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as the (formal) covering dimension of such a moduli space. Clearly, whenever m(b) > 0 

(and nH finite or O ( l n N , ) ) ,  such covering dimension is singular. This signals the fact 
that in the corresponding range of the parameter b, dynamical triangulations fail to 
approximate in the large volume limit any smooth Riemannian manifold. 

2.1. The critical incidence 

The parameters m(b), ~-(b), and nil, characterizing the covering dimension and the 
large volume asymptotics (10) are not yet explicitly provided by the analytical results 
of [ 1 ]. By exploiting geometrical arguments, one can only prove [ 1 ] (Theorem 5.2.1, 
pp. 106) an existence result to the effect that if n ~> 3, there is a critical value bo(n), 

of the average incidence b(n, n - 2), to which we can associate a critical value '~,-2t'cnt of 
the inverse gravitational coupling, such that 

m(b) = 0, (12) 

for b(n, n -  2) ~< b0(n); whereas 

m(b) > 0, (13) 

for bo(n) < b ( n , n - 2 ) .  In other words, for b < bo(n) the subleading asymptotics in (9) 
is at most polynomial, whereas for b > bo(n) this asymptotics becomes subexponential 
as N, goes to infinity, (note that in the 2-dimensional case (9) has always a subleading 
polynomial asymptotics). 

This change in the subleading asymptotics qualitatively accounts for the jump from 
the strong to the weak coupling phase observed in the real system during Monte Carlo 
simulations. However, the lack of an explicit expression for m(b) hampers a deeper 
analysis of the nature of this transition. In particular, one is interested in the way 
the parameter m ( b ( n , n -  2)) approaches 0 as b ( n , n -  2) ~ bo(n), since adequate 
knowledge in this direction would provide the order of the phase transition. It is clear that 
a first necessary step in order to discuss the properties of m(b(n,  n - 2)) is to provide 
a constructive geometrical characterization of the critical average incidence bo(n), and 
not just an existence result. 

As far as the other parameter T(n) is concerned, the situation is on more firm ground. 
r (n)  characterizes the subleading polynomial asymptotics in the weak coupling phase, 
and recently [ 8 ], an analysis of the geometry of dynamical triangulations in this phase 
has provided convincing analytical evidence that r (n)  - (2n + 3) /2  + 3 = 1/2. As 
expected, this corresponds to a dominance, in the weak coupling phase, of branched 
polymers structures. 

2.2. Canonical averages and the curvature susceptibility 

If we consider the weighted distribution W[N,-2 ,  b(n, n -  2)] exp[ kn-zNn-2], char- 
acterizing the canonical partition function (4), then it is straightforward to check that, 
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as N. ~ oo, this distribution is strongly peaked around triangulations with an average 
incidence b* (n, n -  2; k.-2) given by (see Ref. [1 ], Eq. (6.39), pp. 134) 

( A ( k n - 2 )  ) 
b * ( n , n - 2 ; k n - z ) = 3  k . a ~ -  1 , (14) 

where for notational convenience we have set 

A(k , -2)  "- e k'-2 + 1 + -~e k,,-2 + 1 - 1 

[27 k,, 2 / [27 k ] i /3 
+ l - V t - 2 - e " - 2 + l ) 2 - 1 _ l  - 1 .  (15) 

This remark allows us to compute, via a uniform Laplace estimation, the large volume 
asymptotics of the canonical partition function W(kn-z)eff = ~TE2-(N,,)ek"-2N"-~' A 
discussion of this asymptotics at the various orders is rather delicate and the reader can 
find the details in Ref. [ 1] (Ch. 6, Theorem 6.6.1). For our purposes it is sufficient to 
consider the leading order expression which can be readily obtained, starting from the 
micro-canonical partition function, by means of a standard saddle point evaluation, viz. 

W(Nn, kn-2)eff = Cn ( ( a ( k , - 2 )  + 2) ~ - "  Nrn(n)+D/2_n_lel_m(b*(n.n_2;k,,_2))N)/"n 1 
-U-._-77 ,s 

,° , ,.,,1(1+ xe [1½.~n+l ) A,k,,_2~+2 0(N•3/2)), (16) 

where c. is a scaling factor not depending on k2. 
As the inverse gravitational coupling k.-2 varies, the average curvature correspond- 

ingly changes according to (14). It follows that there is a well-defined critical value, 
kC~2, solution of the equation 

{ A(kn-2) ) (17) 
bo(n) = 3 \ a ( ~ - -  1 ' 

for which b * ( n , n -  2;kn-2) = bo(n), where bo(n) is the critical average incidence 
(see (12) and (13)). This t.cfit describes the transition between the strong coupling '~'n-2 

k crit ) associated with k cdt ) and the weak coupling phase (kn_2 > n-2 phase (k,-2 < n-2 
the two distinct subleading asymptotics regimes of (16). The explicit geometric char- 
acterization of bo(n) and the evaluation of the corresponding critical v a l u e  k~ rit in 
the 4-dimensional case are among the most important issues that we discuss in this 
paper. In order to compare the geometrical results we obtain with the data coming 
from recent Monte Carlo simulation it will be useful to have at hand the expres- 
sions of the free energy lnWeff(N4, k2) ,  of the (canonical) average of the number of 
bones (N2}  = O InWeff(N4, k2)/Ok2, and of the associated curvature-curvature cot-re- 
lator [{N~} - {N2} 2] = 02 In Weff(N4, kz)/Ok22. The large volume asymptotics of the 
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(canonical) free energy is readily obtained from (16); by setting n = 4 and discarding 

the unessential constant terms we get (in the saddle-point approximation used above) 

In W(N, k2)eff = 10N4 In 
A(k2) + 2 

m( k2)N l/n''. (18) 

The canonical average (N2) follows from differentiating (18) with respect to the inverse 

gravitational coupling k2, 

A1 (k2) N4 - Nl4/n" Om(k2) (19) 
{N2) = 10A(k2 ) + 2 tgk2 ' 

where we have set 

OA(k2) 
A1 (k2) - - -  

Ok2 

= 9ek2 1 +  V/(2-~]eh + 1) z -  1 e h + l  + V~'-2--e 2 + 1) - 1  

~ e  h + 1 
+ 1 - (-~-e h + 1) 2 - 

-t-9ek2 1-- V / ( ~ e k 2 + l ) 2  1 

(20) 

Note that for a 4-dimensional PL manifold M of Euler characteristic x ( M ) ,  we have 
No = -~ - N4 -F X. Thus, from (N2) we immediately get the expression for the first 
normalized cumulant of the distribution of the number of vertices of the triangulation, 

viz. 

cl(N4;k2) - (No) 5Al(k2) 1 - lql/nn-lOm(k2) (21) 
N4 - A(k2) + 2 "4  Ok2 

This is a typical quantity monitored in Monte Carlo simulation, and later on we will 
discuss how (21) actually compares with respect to existing numerical data. 

Finally, the curvature susceptibility 

<N~) - <N2) 2 1 0 2 In We~(N4, k2) 
N4 - N4 Ok22 (22) 

is explicitly computed as 

4c2(N4; k2)= (N2) - (N2)2 
N4 

= 10(A(k2) + 2)Az(k2) - Al(k2) 2 l/n,-lOZm(k2) 
(A(k2) + 2) 2 - N4 ~ ' (23) 

where ¢2(N4; k2) -" ( (N 2) - (No)2)/N4 is the second normalized cumulant of the dis- 
tribution of the number of vertices of the triangulation, and where we have set 
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0 2 A ( k 2 )  
A 2 ( k 2 )  - - -  - A l ( k 2 )  

Ok22 

243 ~2k2 r27 k2 T e 
I ( ~ek2 + 1)2 - 113/2 [ T  e 

243e2l:2 [2_~ 

[ (%!ek2 + 1) 2 - 113/2 ek~ 

(27 1 + 1-- (-~-e k2 + 1) 2 -  1 

/ 27 k )2 ] +I+V(Te2+I -1 
J 

-2/3  

-2/3 

-5/3 [ ~ e  k2 + 1 
27 ek2 

[27 k2 V/(y V/(~ek~ + 1) 2 - 1  k 
-~-e + 1 +  + 1 ) 2 - 1  1+ 

81 2k r27 ks 27 k - 
~ e  2[-~e  + 1 -  ( - ~ - e 2 + 1 ) 2 - 1  1 -  

i _ 

X/ (~ek2  + 1)2 _ 1 

(24) 

2.3. A scaling hypothesis 

Clearly the above expressions for cl (N4; k2) and c2(N4; k2) are useless if we do not 
specify how m(k2) depends on the inverse gravitational coupling k2. Since according 
to Theorem 5.2.1 of Ref. [1], m(k2) ~ 0 as b(k2) approaches a critical incidence 
bo(4) (henceforth denoted by bo) the simplest hypothesis we can make is that, for 
(b(k2) - bo) ---* 0 +, m(k2) scales to zero according to a power law given by 

l(, 
- ( 2 5 )  m(k2) = u b(k2) 

where 0 < ~ < 1 is a critical exponent to be determined (the factor 1/~, is inserted for 

later convenience). 
The expression (16) for the canonical partition function W[Nn-2, b(n, n - 2) ] is 

a large volume (N4) asymptotics evaluated at fixed volume. It contains a non-trivial 
subleading asymptotics governed by m(k2). The net effect of this subleading term is 
clearly visible in the expressions (21) and (23) of the two cumulants, and shows that 
in order to capture the behavior of Cl(N4;k2) and c2(N4;k2) as k2 ---+ k2 crit, (25) 
is not sufficient. It must be combined with a finite scaling hypothesis telling us how 
m(k2) scales with the volume N4, as b(k2) ~ b0. From the asymptotics (16), and the 
expression (21) for the first cumulant, it easily follows that the simplest, if not the most 
natural, hypothesis we can make is to assume that m(k2) scales asymptotically with the 
volume according to 

lim 1 1 v-I ! - 1  
u 4 ~  b ( k 2 )  /~0 • N4"H = 1, (26) 

( k2 _ /~r i t  ) ~ 0 - -  
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where according to Theorem 5.2.1 of Ref. [ 1] nn > 1. This implies that, when b(k2) 

bo, m( k2) scales as 

m(k2) " ~  N 4  )'(nlt-l)/nH(l-u). (27) 

Together with m ( k 2 ) N  l/n" ~ 0 as b(k2) ~ bo, (26) yields (1/nt4) < u < 1, a finite 
size scaling relation connecting the critical exponents u and nn. 

Introducing this ansatz in (21) and (23) we explicitly obtain 

c l ( N 4 ; k 2 )  - (No) 5Al(k2) 1 Al(ka) 1 (28) 
N4 - A(k2) + 2 3 A2(k2) 

and 

c2(N4; k2) = (N2) - (N0)2 
N4 

5 (A(k2) +2)Az(k2)  - Al(k2) 2 1 a z ( k z ) A ( k 2 )  - 2Al(k2) 
= 2 ( A ( k z )  + 2) 2 12 A3(k2) 

q-I~, - 11 az(k2) a(k2) - 1 1 -~ (29) 
3-6 a4(k2) 3 A-'~2-) bo " 

Note that in this latter expression the only undetermined parameters are the critical 
exponent u and the critical incidence b0. In the following paragraphs we provide an 

explicit geometric characterization of such b0. The only remaining unknown quantity 
is then p. Anticipating the conclusion of the paper, it turns out that it is possible the 
choose a value of u ( ~  0.94) which leads to quite a good agreement between (28), 
(29) and the available Monte Carlo data for the distributions of these two cumulants. 

3. The geometry of the strong coupling phase 

A PL manifold endowed with a dynamical triangulation is a particular example of an 
Alexandrov space, i.e. a finite dimensional, inner metric space with a lower curvature 
bound in distance-comparison sense (a brief introduction with the relevant references 
can be found in Ref. [ 1], Section 3.2). The natural topology specifying in which 
sense dynamical triangulations approximate Riemannian manifolds is associated with an 
Hausdorff-like distance introduced by Gromov [9], and which is a direct generalization 
of the classical Hausdorff distance between compact subsets of a metric space. The 
role of this topology stems from the fact there are many geometric constructions in 
dynamical triangulations theory that are close in Gromov-Hausdorff topology, but not in 
smooth Riemannian geometry. In Ref. [ 1] we proved that every Riemannian manifold 
(of bounded geometry) can be uniformly approximated in this topology by dynamical 
triangulations (see Ref. [ 1 ], Section 3.3, Theorem 3.3.1); the converse result, namely 
if every dynamical triangulation approximates, as the number of simplices goes to c~, 
an n-dimensional Riemannian manifold, is deeply tied to understanding the structure of 
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the thermodynamical behavior of the large volume limit of the set of possible dynamical 
triangulations. It is interesting to note that the geometry of the set of all possible dynam- 
ical triangulations of a manifold of given topology is a subject of which little is actually 
known, even in dimension two. Recently, in a remarkable paper [ 10], Thurston has shed 
some light in the two-dimensional case by showing that the space of triangulations (of 
positive curvature) has the rich geometric structure of a complex hyperbolic manifold. 

We do not need to reach, in this work, such a level of sophistication and in order to de- 
termine the critical average incidence, b0, we discuss mostly the kinematical properties 
of the space of all possible dynamical triangulations admitted by an n-dimensional PL 
manifold M of given topology. Let (M, Ta) be a dynamically triangulated manifold, then 
the f-vector of the triangulation is the string of integers (No(T~), N1 (T~) . . . . .  N~(T,,) ), 
where N i ( T a )  E N is the number of/-dimensional subsimplices o -i of T~. This vector is 
constrained by the Dehn-Sommerviile relations 

n 

Z ( -  1 )iNi( T) = x ( T ) ,  (30) 
i=o 

( / ÷  1)! 
( - - 1 ) i ( i -  2 k + 2 ) ! ( 2 k -  1)! Ni(T) =0, (31) 

i=2k-- 1 

if n is even, and 1 <<. k <~ n/2, whereas if n is odd 

n 

Z ( _ I ) i  ( i+  1)! 
(i - 2k + 1)!2k! Ni(T) = O, (32) 

i=2k 

with 1 ~< k ~< ( n  - 1)/2, and where x ( T )  is the Euler-Poincar6 characteristic of T. It 
1 is easily verified that the relations (30), (31), (32) leave ~ n -  1 (n even) or ½ ( n -  1) 

unknown quantities among the n ratios N1/No . . . . .  N~/No [11]. Thus, in dimension 
n = 2, 3, 4, the datum of Am, and of the number of bones Nn-2, fixes through the Dehn- 
Sommerville relations all the remaining Ni(T).  These extremely simple and perhaps 
even naive-sounding remarks turn out to be quite powerful in providing information on 
the global metrical properties of the underlying PL manifold. Not only, as is obvious, on 
the volume (cx Nn(Ta)), and on the average curvature (cx ln (n+l )Nn(Ta) /Nn_z(Ta) ) ,  
but, corroborated by a few more elementary facts, also on the genesis of singular vertices 
and edges. An elementary but geometrically significant result of this type is provided 
by the range of variation of the possible average incidence b(n, n - 2). One gets (see 

Ref. [ 1 ] (Lemma 2.1.1) ) 

Lemma 1. Let T~ ~ M n a triangulation of a closed n-dimensional PL manifold M, with 

2 ~< n ~< 4, then for N~ (T a) --~ c~, we get 
(i) F o r n = 2 :  

b(2 ,0)  = 6; (33) 
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(ii) for n = 3: 

9 ~<b(3 ,1)  ~<6; 

(iii) for n = 4: 

4 ~ < b ( 4 , 2 )  ~<5. 

361 

(34) 

(35) 

The 2-dimensional case as well as the upper bounds for n = 3 and n = 4 are 

well-known trivial consequences of  the Dehn-Sommerville relations. The lower bounds 

b(3,  1 ) ~> 9 /2  and b(4,  2) /> 4 are instead related to a rather sophisticated set of  results 

proved by Walkup [ 12] in the sixties concerning the proof of  some conjectures for 3-and 

4-dimensional PL manifolds (apparently, these results went unnoticed by researchers 

in simplicial quantum gravity). Walkup's theorems have important implications for 

understanding the geometry both of  the strong and of the weak coupling phase of  

simplicial gravity. In dimension n = 3, we have [ 12] 

Theorem 1. There exists a triangulation T --~ S 3 of  the 3-sphere S 3 with No vertices and 

N1 edges if and only if No >~ 5 and 

N o ( N o -  1) 
4N0 - 10 ~> Nj ~> (36) 

2 

Moreover T is a triangulation of  S 3 satisfying NI = 4N0 - 10 if and only if T is a 

stacked sphere, whereas T is a triangulation of S 3 satisfying Nl = No(No - 1 ) /2  if and 

only if T is a 2-neighborly triangulation, namely if every pair of  vertices is connected 

by an edge. 

A stacked sphere (Sn,T) is a triangulation T ~ S" of a sphere which can be 

constructed from the boundary 0o -n+l ~_ S n of  a simplex o -n+l by successive adding 

of  pyramids over some facets. More explicitly, the boundary complex of  any abstract 

(n + 1 )-simplex o -~+l is by definition a stacked sphere, and if T is a stacked sphere and 
o "n is any n-simplex of  T, then ~P is a stacked sphere if 7 ~ is any complex obtained by 

T by removing o -~ and adding the join of  the boundary ao "n with a new vertex distinct 

from the vertices of  T. Note also that a triangulated PL manifold is called k-neighborly 
if 

N0~ 
Nk-1 (T) - (37) 

k!(No - k)!  

We are referring explicitly to 3- and 4-spheres S n, because the majority of  Monte 

Carlo simulations have been carried out in these cases (for a recent discussion of 

more general topologies, see Ref. [ 13] ). However, it must be stressed that the above 
definitions, as well as Walkup's theorems, can be naturally extended (with suitable 
modifications [ 12]) to any n-dimensional PL manifolds M. Note in particular that 
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every triangulable 3-manifold M can be triangulated so that the closed star of some 
edge contains all the vertices and every pair of vertices is connected by an edge. 

In dimension n = 4 we have a somewhat weaker characterization of the possible set 
of triangulations: 

Theorem 2. If T ~ M is a triangulation of a closed connected 4-manifold, then 

N1 (T) /> 5No(T) - ~ x ( T ) ,  

and equality holds if and only if (M, T) is a stacked sphere. 

(38) 

Note that actually one has a stronger statement in the sense that equality in (38) holds 
if and only is all vertex links in the 4-manifold M are stacked 3-spheres. 

Contrary to what happens for 3-manifolds, 2-neighborly triangulations (i.e. trian- 
gulations where every pair of vertices is connected by an edge), are not generic for 
4-dimensional PL manifolds, and as matter of fact, the above theorem immediately 

implies [14] that for any such (M, T) 

No(T)(No(T) - 11) ~> - 1 5 x ( M ) ,  (39) 

where the equality implies that (M, T) is 2-neighborly. Thus, the equality is not possible 
for large and arbitrary values of No(T), but (depending on topology) [ 14] only in the 

cases No(T) =0,  N0=5 ,  N0=6 ,  o r N o =  l l m o d l 5 .  
Even if 2-neighborly triangulations are not generic, one can easily construct volumi- 

nous (i.e. with Na(T) arbitrarily large) triangulations of the 4-sphere where all vertices 
but two are connected by an edge. In order to realize such triangulations, consider a 2- 
neighborly triangulation T(3)  of the 3-sphere •3 with f-vector [ No (T(3 ) ) ,  N1 (T(3 ) ) ,  
N2(T(3) ), N3(T(3) ) ] .  If we take the Cone, C($3),  on such (S 3, T(3) ) ,  viz., the prod- 
uct S 3 × [0, a] with S 3 × {a} identified to a point, then we get a triangulation of a 

4-dimensional ball B 4 with f-vector given by 

f ( B  4) = (No(T(3) )  + 1, NI (T(3 ) )  + N0(T(3) ) ,  

N2(T(3))  + NI(T(3) ) ,N3(T(3) )  +N2(T(3 ) ) ,N3(T(3 ) ) ) .  (40) 

By gluing two copies of such a cone C (S 3) along their isometric boundary aC (S 3) 

S 3, we get a triangulation of the 4-sphere ~4 with f-vector 

f ( S  4) = (No(T(3) )  + 2, NI (T(3) )  + 2No(T(3) ), 

N2(T(3))  +2Nl (T (3 ) ) ,N3 (T (3 ) )  +2N2(T(3) ) ,2N3(T(3) ) ) .  (41) 

It is trivially checked that corresponding to such a triangulation we get 

N~ ( S  4) = N ° ( S 4 ) ( g ° ( s 4 )  - 1) _ 1, (42 )  
2 

where the - 1  accounts for the missing edge between the two cone vertices in C ($3) Us3 
C ($3). When applied to simplicial quantum gravity, the existence of such 2-neighborly 
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(or almost 2-neighborly) triangulations implies that there are dynamical triangulations 

of the n-sphere S n, n = 3, n = 4, where all vertices are singular. Corresponding to 

such configurations we have that b ( n , n -  2)1n=3 = 6, and b ( n , n  - 2 ) 1 . = 4  = 5. Thus, 
not surprisingly, for such triangulations the kinematical upper bound for the average 
incidence b(n ,  n - 2) is attained. However, it is important to stress that such extremely 
singular configurations do not saturate the set of possible configurations for which 

bmax(n, n - 2 )  is reached. From the Dehn-Sommerville relations one immediately gets 

N3 
b ( n ,  n - 2)In=3 = 6 '  - -  (43) 

N3 + N o  

and 

N4 
b ( n , n  - 2) In=4 = 10. 2N4 + 2N0 - 2x (T)  ' (44) 

which, together with the obvious relation NI <~ N o ( N o  - 1)/2, implies that in order to 

attain the upper kinematical bounds bmax(n, n -  2) In=3 = 6 and b m a x ( n , n -  2)In=4 = 5 it 
is sufficient that 

N o ( T )  = O[ N n ( T ) a ] ,  (45) 

with 1/2 ~< a < 1. Note that 2-neighborly or almost 2-neighborly triangulations corre- 

spond to ot = 1/2. 

3.1. S ingular  s tacked spheres 

It should be stressed that the presence of singular vertices can occur also for b(n ,  n - 

2) = b n ~ n ( n , n -  2), i.e. for stacked spheres. In other words, singular vertices are not  

k inematical ly  forbidden by the geometry of the triangulations. Their suppression or 
enhancement in the different phases of simplicial quantum gravity is rather related to 

the relative abundance, with respect to the totality of possible triangulations, of the 
number of distinct triangulations with singular vertices as b(n ,  n - 2) varies. In other 
words, it is an entropic phenomenon as clearly suggested by Catterall, Thorleifsson, 
Kogut and Renken [5]. For definiteness, we can describe a concrete construction of 
a singular stacked sphere. It amounts to gluing a 4-dimensional ball B 4 bounded by a 
stacked 3-sphere •3 with a cone over such an $3. 

Consider a 3-dimensional stacked sphere S 3. According to one of Walkup's theorems, 
such an ~3 is the boundary of a 4-dimensional ball B 4 with a tree-like structure and 
corresponds to a triangulation with f-vector 

f ( B  4) = (No(S3), N1 ($3), N2($3), N3(S 3 ) 4- N3 (B4), N4(B 4) ), (46) 

where Ni ( S 3 ), i = 0, 1,2, 3 is the f-vector of the boundary stacked sphere and N 3 (/~4) 
is the number of 0 .3 in the interior, B4, of B 4. Note that if we take the cone, C($3),  

over the boundary stacked sphere, we get another triangulation of the 4-dimensional ball, 
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Bs4ng, whose boundary is again isometric to the given S 3, but whose interior contains a 
(unique) singular vertex. The f-vector of such a triangulation is 

4 f(Bsing ) = ( 1 -'1- No(S3), NI (S 3) + No(S3), N2(S 3) Jr- N1 ($3), 

N3(S 3) q- N 2 ( S 3 ) , N 3 ( S 3 ) ) .  (47) 

Gluing these two triangulated balls B 4 to Bs4ng through their common boundary S 3, we 
get a triangulation of the 4-sphere ~4 ,.~ B4 [iS3 C (aB4) ,  with f-vector 

No=No(S 3) + 1 ,  

Nj =N1(S 3) + No(S3), 

N2 =N2(S 3) + NI(S3), 

N3 = N3(S 3) + N3(/~4) + N2($3), 

N4 =N4(B 4) -}- N3($3). (48) 

Since ~3 is a stacked sphere, we have 4N3(S 3) = 3NI(S 3) which, together with 
N2(S 3) = 2N3($3), implies 

N2 = ~QN3(S3). (49) 

From 2N3 = 5N4 and the Euler relation for the 4-dimensional ball B 4 (with x ( B  4) = 1) 
we immediately get N4 (B 4) = 1 N3 ( S 3) - 2, which implies 

N4 = 4N3($3) 
2 (50) 
3 

Thus, for N3(S 3) -~ c~ we get a voluminous triangulation (N4 --~ oo) of S 4 with 

average incidence 

b ( n , n  - 2)1n=4 = 10. N4 = ~ N3(S3) 3 e 
N2 = ~QN3(S 3) --~N3----~oo 4, (51) 

which shows that ~4 ~ B 4 los3 C ( 0 B  4) is a stacked sphere with a singular vertex 
(the apex of the cone C ( a B 4 ) ) .  An even simpler construction suffices to prove an 
analogous result in the 3-dimensional case. As mentioned in the introductory remarks, 
stacked spheres are relevant in providing the geometrical rationale for the prevalence of 
branched polymer structures in the weak coupling phase of simplicial quantum gravity. 
As a matter of fact [ 8 ], it is their tree-like structure that accounts for the k i n e m a t i c a l  

possibility of polymerization• However, the existence of stacked spheres with singular 
vertices, shows that the dynamical onset of polymerization is not just a consequence 
of the geometry of triangulated manifolds as b ( n ,  n - 2) ~ bn~n(n, n - 2). On the 
kinematical side we may have, in the configuration space, extremal cases such as the 
2-neighborly triangulations occurring for b ( n ,  n - 2) --~ bmax(n,  n - 2) or the singular 
stacked spheres for b ( n ,  n - 2 )  --* bmin(n,  n -  2). Monte Carlo simulations do confirm 
that such configurations are not generic• Near bmax(n, n - 2) we generically sample 
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singular triangulations with just a few singular vertices [5]. Similarly, as b ( n , n  - 

2) ~ broin (n, n - 2) the dominant configurations sampled correspond to stacked spheres 

without singular vertices. The mechanism for understanding the dynamical prevalence 
of such configurations over the other configurations which are kinematically possible is 

simply related to the fact that, with respect to the counting measure, distinct dynamical 

triangulations are not equally probable as a function of the average incidence b(n, n - 2 ) .  
In order to discuss this point we need to exploit a few elementary facts related to the 
geometry of the ergodic moves used in simplicial quantum gravity. 

3.2. Ergodic  moves  and  the onset  o f  crit icality 

The (k , / )  moves [15] in 3 and 4 dimensions are a well-known set of elementary 

surgery operations (related to the Pachner moves [ 16] ) which allow us to construct all 

triangulations of a PL manifolds starting from a given triangulation. Roughly speaking, 

the generic (k, l) move consists in cutting out a subcomplex made up of k-dimensional 
simplices o -k and replacing it with a complex of/-dimensional simplices o -t with the 

same boundary. Note that k + l = n + 2. We are interested in discussing how a finite 

set of such moves generate the f-vector of voluminous triangulations of the n-sphere 
S n (n = 3,4)  starting from the standard f-vector of the simplex ao -n+l '~ S n. For 

n = 3, the relevant moves are the (1 ,4)  move (barycentric subdivision), the (2 ,3)  

move (triangle to link exchange) and their inverses. For n = 4, since the f l ip  move 
(3, 3) does not alter the distribution of the number N i ( T )  of simplices, the f-vector 

of the sphere is generated by the moves (1 ,5)  (barycentric subdivision) and (2 ,4)  
(two-four exchange) and their inverses. Following Ref. [8] (with a slight change in 

notation), we denote by Pk,l(n)  the number of moves of type ( k , l )  in dimension n, 

and introduce the balance variables (n = 3): xl -" (PI,4 - e4,1), x2 - (P2,3 - P3,2); and 
(n = 4): Yl - (PI,5 -P5,1 ), Y2 - (P2,4 -P4.2).  In terms of such quantities we can easily 
characterize the string of integers (Ni}, i = 0 . . . . .  n, which are possible  f-vectors of 

triangulated S n. 
For n = 3, we get for f ( S  3) = (No(S3), NI ($3), N2($3), N3(S 3) ) 

No(S 3) =5 + Xl, 

N l (S  3) = 10 + 4xl + x2, 

N2(S 3) = I0 + 6Xl + 2x2, 

N3(S 3) =5 + 3xl + x2, (52) 

whereas for 

No(S 4) 
NI(S 4) 

Nz(S 4) 
N3(S 4) 

n = 4 we have for f ( S  4) = ( N o ( S 4 ) ,  N1 ($4), N z ( S 4 ) ,  N3($4 ) ,  N 4 ( S  4) ) 

= 6 + y l ,  

= 15 + 5 y l  +Y2, 

= 2 0 +  10yl +4y2,  

= 15 + 10yl + 5y2, 
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N4(S 4) =6  + 4y~ +2y2. (53) 

Note that not all f ( S  ~) obtained in this way are actual f-vectors of triangulated S". This 
is a consequence of the fact that the above relations between the {Ni} and the variables 
Pk,t(n) are equivalent to the Dehn-Sommerville constraints. And these latter are known 
to be necessary but not sufficient conditions in characterizing the possible f-vectors of 
a triangulated manifold (sufficient conditions have been conjectured by Stanley [ 17], 
see Ref. [ 1 ] for a brief discussion of this point). 

Walkup's theorems imply the following kinematical bounds on the variables xi, Yi 

( i =  1,2): 

xj/>0, 
Yl ~>0, 

(both from the obvious condition No(S  n) >>. n + 2); 

(54) 

x2/>0, 

Y2/> 0, (55) 

(the former from Nl (S  3) /> 4No(S 3) - 10; the latter from NI(S 4) ~> 5No(S  4) - 

~x(S4), with x(S 4) = 2); 

Xl 2 + x l  --2X2>/0, 

Y~ + Yl - 2y2 >~ 0, (56) 

(both from NI(S" )  <~ N o ( S " ) ( N o ( S  n) - 1)/2) .  Finally, one can express the average 

incidence b(n,  n - 2) as a function of xi and yi, so as to obtain 

b ( n , n -  2) 1n=3 = 6.  5 + 3Xl +x2  (57) 
10 + 4xl + x2 

and 

6 + 4yl + 2y2 (58) 
b ( n , n - 2 ) [ , - _ 4 =  10. 2 0 +  10yl +4y2" 

It is also interesting to discuss in terms of the variables xi and Yi, the average incidence 
of the top-dimensional simplices o -n on the vertices o "° of the triangulations considered. 

A straightforward computation provides 

1 )N. 
Q ( n )  - ~oo ~ q(tr°) = (n + 1 , (59) 

{oo} No 

yielding 

Q(n)ln=3 = 4 . 5  + 3xl + x2 (60) 
5 + x l  

and 
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6 + 4yl + 2y2 
Q(n)ln=4 = 5.  (61) 

6 + y l  

As expected, Q(n) is not bounded above: when the move (2,3)  (for n = 3), or (2 ,4)  
(for n = 4) dominates, i.e. near the bmax(n,n - 2) kinematical boundary, Q(n) ---+ c~ 
as N, ~ c~. One may wonder if this unboundedness is related to the unboundedness 
of the Einstein-Hilbert action, the answer is most likely no. It is certainly reasonable 
to put restrictions on Q(n) in the search of a continuum limit of the theory, and this 
may change the phase structure of the theory. But if it does, it is just an illustration of 
the fact that this particular part of the phase diagram has no relevance for a genuine 
continuum limit. There should be a reasonable universality. This is nicely illustrated 
in 2D dynamical triangulation theory where any restriction (except the strict flatness 

constraint q(i)  = 6) leads to 2D gravity. 
The above elementary remarks are a trivial restatement of the well known fact that 

the moves (1,4)  and (1,5)  (the barycentric subdivision) drive the system into the 
elongated phase, whereas the moves (2, 3) and (2, 4) drive to the crumpled phase. The 
crumpling transition occur as soon as singular vertices are statistically enhanced by the 
presence of enough (2, 4) moves with respect to (1,5)  (for n = 3 this enhancement is 
generated by the dominance of (2, 3) moves with respect to (1,4)  moves). 

3.3. The genesis of singular vertices: Ss 4 

In order to characterize the onset of crumpling we describe the f-vector of the generic 
triangulation of S n in a way that clearly shows the mechanism of formation of singular 
vertices. Such a description is obtained by gluing a triangulated ball B n to the cone over 
its boundary 3B n ~- S n-1. Thus, by referring to the 4-dimensional case for definiteness, 
we consider •4 v -~ B 4 Us3 C ( a B  4) (sv for singular vertex). Note that any triangulation 
of ~4 can be factorized in this way (since C ( a B  4) and aB 4 are the star and the link of 
a vertex, respectively), and we have 

N4 = N4(B 4) + N4(C(aB4)) .  (62) 

The triangulation is singular as soon as we have 

N4(B 4) ~x N4(C(OB4)) ,  (63) 

namely when the cone C (OB 4) contains a number of top-dimensional simplices growing 
linearly with the volume of the whole manifold. 

It is easily checked that the f-vector of S4s "~ B 4 1.3s3 C ( O B  4) is given by 

No= No(S 3) ÷ 1 ÷ No(/~4), 

Nl = N I ( S  3) ÷ No(S 3) + N1(/~4), 

N2 = N2(S 3) + Nj (S 3) + N2(j~4), 

N 3 = N3(S 3) ÷ N2(S 3) -{- N3(B4), 

N4 =N3(S 3) + N4(B4), (64) 
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where Ni(S 3) denotes the f-vector of the boundary 0(B 4) "~ S 3 of the triangulated ball 
B 4, and Ni(/) 4) is the f-vector of the interior of B 4. The Dehn-Sommerville relations 
for S 4 and for S 3 constrain Ni(/) 4) and Nk(S 3) according to 

NO(/) 4) - N1 (/)4) 4- N2(/)4) _ N3(B4) + N4(B 4) = l, 

2Nl (B 4) -3N2( / )  4) + 4N3 (/) 4) - 5 N 4 ( B  4) + N0(S 3) =0, 

2N3(B 4) 4- N3(S 3) = 5N4(/)4). (65) 

The average incidence b(4, 2) of such triangulated $4 can be easily computed in 
terms of the f-vectors Ni(/) 4) and Nk(S 3) according to 

b(4, 2) = 10 4b(3' 1 )N3(S 3) 4- 2b(3, 1) [ N0(/) 4) - N1 (/)4) + N2(/)4) ] _ 2b(3, 1 ) 
[6b(3, 1) + 18] N3(S 3) 4- 3b(3, 1)N2(/) 4) 

(66) 

where b(3, 1 ) - 6 [ N3 ( S 3 )/N! ( S 3 ) ] is the average incidence of aB 4 ~ S 3. The presence 

of a singular vertex corresponds to 

N4(/)4)-- - O( 1 ), (67) 
N3(S 3 ) 

and it is easily verified that under such condition b(4, 2) is an increasing function 
of b(3, 1 ). This remark implies that singular triangulations with the smallest possible 
b(4, 2) are to be found corresponding to b(3, 1) = b(3, 1)min = 9/2. 

We have already seen an example of such a triangulation in the previous section, one 
for which the lowest kinematically possible incidence, b(2, 4) = 4, is attained. However, 
such examples are not generic. They correspond to assuming Y2 = 0 (or more generally, 
they still occur if one interprets the right-hand side as Y2 = O(1) ), and the singular 
vertex is not stable under (1,5) moves. Eventually by performing enough barycentric 
subdivisions the initial singular vertex is smoothed out. Explicitly, assume that we start 
our chain of barycentric subdivisions on an a Ss 4 ~ B 4 (.is 3 C (aB 4) with a given value 
of N4, say N4(0). Denote by S4v(0) this initial triangulation. Note that at this initial 

step 

N4(B4(0)) = IN4(C(aB4(O)) ) (68) 

(see the previous section). If we carry out a (1,5) move on each 4-simplex of $4,(0), 
we get a triangulation of ~4 still of the form Sav ~- B 4 Us3 C(aB4), which we denote 
say (1). For such triangulation we have 

Na(C(aB4(1) ) ) = 4 .  Na(C(aB4(O) ) ), (69) 

N4(B4(1))  = 5 .  N4(B4(0))  4- N4(C(cgB4(O))) .  (70) 

Now proceed by induction, noticing that if at each step we carry out a barycentric 
subdivision of each 4-simplex of the Ss 4 generated at the previous step, we still get a 
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4-sphere, Ssv(k),4 triangulated according to Ss 4 "~ B 4 Us3 C(OB4) ,  and such that, at the 

kth step, 

N4(C(OB4(k))) = 4  k- N4(C(OB4(O))), (71) 
k--I 

N4(B4(k))=5k. N4(B4(O)) + N 4 ( C ( a B 4 ( O ) ) ) Z 5 i - I  .4  k-l.  (72) 
i=1 

Thus, as k grows (corresponding to Yl 
dominates over N4 (C ( an  4 (k) ) ) : 

N4(B4(k)) >>y,~+o~ N4(C(OB4(k))), 

+c~, y2 = O(1)) ,  N4(B4(k) largely 

(73) 

and the resulting triangulation of ~4 is no longer singular. In this sense, the dominance of 
the (1 ,5)  move naturally yields regular stacked sphere and thus for branched polymers. 
Discarding these particular examples of unstable triangulated spheres with a singular 
vertex, we can easily characterize the smallest b(4, 2) corresponding to generic singular 
triangulations, namely triangulations generated in the large volume limit as yl ~ c~ and 
y2 --~ c~, and whose singular vertices are stable under the action of the (k, l) moves 
(at a fixed ratio yl/y2). Let us start by noticing that corresponding to b(3, 1) = 9/2, 

the expression (66) for the average incidence reduces to 

6N1 (S 3) + 4[N0(/~ 4) - Nl (•4) + N2(/~4) ] 
b(4, 2) = 10. 15N1 (S 3) + 6N2(/~ 4) ' (74) 

where, in the numerator, we have discarded terms which are o( 1 ), thus irrelevant in the 
large volume limit. Since S 3 is stacked, the integers N3(S 3) and N1 (S 3) are related by 
4N3(S 3) = 3NI (S  3) - 10, which implies that 3NI(S  3) ~ lO(mod 4). Thus, NI(S  3) 
must be an integer multiple of 4 up to an error term which goes to zero, with increasing 
Nl ($3), as lOIN1 ($3). More explicitly, and referring to the expression of the f-vector 
of S 3 in terms of the balance variables xl C N and x2 E H introduced in Section 3.2, 
we get the following components: 

No(S 3) = 5 + Xl, 

Nl (S  3) = 10 + 4xl, 

N2(S 3) = 10 + 6Xl, 

N3(S 3) =5 + 3xl, (75) 

since corresponding to a stacked ~3 we have x2 = 0 (see (52)) .  The congruence 
properties just established for the f-vector of a stacked 3-sphere suggest to parameterize 
both N2(/~ 4) and N0(/~ 4) -N1 ( n  4) --1-N2(j~4), appearing in (74), in terms of NI (S 3) 
by setting 

N2(/? 4) = DNI (S 3) (76) 

and 
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No(/~ 4) - N1(/~ 4) + N2(/~4) ] = t~Nl ($3). (77) 

According to the above remarks, Nl (S 3) is asymptotically an integer multiple of 4, thus 
if we are interested to triangulations for which N1 (S 3) can grow arbitrarily large, it 
follows that the two parameters t~ and/3 necessarily are rational numbers of the form 
/3 = 4 ~ and t~ = ~ with /3 and a integers. In other words, the generic triangulations of 
Ss 4 ~ B 4 Us3 C(0B 4) with the joining S 3 stacked (b(3, 1) = 9/2),  can be conveniently 
parameterized by setting 

N2(/~4) - /3 (78) 
Nl (S 3) 4 

No(B 4) - NI(B 4) --I- N2(J~ 4) . o~ 
NI(S 3) = ~-, (79) 

where a and fl are integers. Note that while/3/> 0, a can possibly take also negative 
values. However, if we rewrite (74) in terms of such parameters 

1 2 + 2 a  
b(4, 2) = 10. 30 -t- 3~-~' (80) 

the kinematical bound b(4, 2) ~> 4 implies 5a >/3/3, and thus a is non-negative as well. 
The parameters a and fl so introduced are completely equivalent to the balance 

variables Yl and YE related to the cumulant action of the (k,l) moves. Explicitly, we 

obtain 

,) 2yl= + ~ / 3 - ~ c e  NI(S 3 ) - - ~ - ,  

2y2= (5a-1 /3)  N,(S3) + 20-~-. (81) 

The Dehn-Sommerville relations for the f-vector Ni(/~ 4) allow us to express also its 
components in terms of a and/3 according to 

3No(~4)=[3/3-4a 1 ~- NI(S 3) + 10, 

3N1(/ )4)=[  9 / 3 - 1 0 a ]  N1(S 3) + 10, 

1 3 N2(/~ 4) = ~/3NI(S ), 

3N3( B4) = [ 3 q--45.------~] Nl( S3) - 5 , 

3N4( ~4) = [3 42°e] N1( S3) - 2. (82) 

The generic conditions Yl > 0 and Y2 > 0 (and both approaching +c~), together 
with No (B 4) > 0, imply that the parameters a and/3 are related by 

and 
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313 < Ce < 3/3, (83) 

with (a , /3)  C N + x N +. From these remarks it follows that, as Yl and )'2 go to +oc, 
there are two distinct regimes for the set of triangulations considered: 

(i) If we constrain the f-vector Ni(S  3) of the connecting OB 4 to be O(1),  then 
according to (81), ce and 13 go to o~ as Yl,Y2 --~ +oc. From (82) we get that in this 

regime 

N4(S 4) ~ N 4 ( B  4) ~ (o l /6 )NI (S3) ,  

N2(S 4) ~ N2(B 4) = ( ~ / 4 ) N 1 ( $ 3 ) ,  (84) 

where N1 (S 3) is a constant. The geometrical bounds (83) simply imply that as ce,/3 
c~, the corresponding average incidence b(4, 2) varies between the kinematical bounds 
4 ~< b(4, 2) ~< 5, as required. 

(ii) Conversely, if we do not constrain Ni(S  3) to be O(1),  then according to (81), 
Nl (S 3) (and hence N3(S 3)) is allowed to grow unboundedly large as yl, y2 ~ + ~ .  
This growth, which corresponds to the generation of singular vertices, is possible for any 
finite value of the parameters a and/3 compatible with (83). Note that if kinematically 
possible, according to (83), such singular triangulations entropically dominate over the 
regular ones since these latter are generated by the constrained configurations forcing 
Ni(S  3) to be O(1),  while the former are unconstrained. More specifically, since the 
number of distinct triangulations of a 3-sphere S 3 grows exponentially with N3($3), 
configurations with N 3 (S 3) as large as possible, if kinematically allowed, will dominate 
over configurations with N3 (S 3) = O( 1 ). 

The kinematical bound (83) for the occurrence of singular triangulations is not trivial. 
In order to discuss its implications, let us consider the ratio between the total volume 
of the triangulated S4v and the volume of the ball around the singular vertex o -°, viz. 

Vol(S 4) N4 12 + 2ce 
= - -  - ( 8 5 )  

Volsing (o "0 ) N3(S 3 ) 9 

A direct computation of the average incidence b(4,2)  (see 80) together with (83) 
immediately shows that the smallest b(4, 2) 's for which we may have singular triangu- 
lations occur for 

ce=5 + 3 h ,  

/3 = 8 + 5h, (86) 

with h = 0, 1,2 . . . .  As h varies, the average incidence b(4, 2)h and the volume ratio 
(85) respectively take the values 

22 + 6h 
bh(4,2) = 10. 54 + 15h' (87) 

V°I(S4) h-- 2 2 + 6 h  (88) 
Volsing ( o "0) 9 
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Table 1 
The smallest incidence numbers b(4, 2)]h and the associated singular volume fraction Vol(S4)/Volsing(tr °)  
as a function of the parameters ct and/3  

h /3 a b(2 ,4)  VoI(S4 )/Volsi.u (oZ)) I h 

0 8 5 ~ ----- 4.07407 ~ --~ 2.444 

1 13 8 281)69 ~-- 4.0579 ~ --~ 3.111 

~0 ~ 4.04761 an 2 18 11 --ff ~- _ 3.777 

3 23 14 ~ _~ 4.0404 ~ ~ 4.444 

4 28 17 460114 ~ - - "  4.03508 --~ _~ 5.111 

5 33 20 52<) ,,, 4.03100 52 12-'7 y _ 5.777 

Since the singular triangulations that entropically dominate are those for which the ration 
Vol(S4)/Volsing(O'0) ]h is as low as possible, the smallest b(4, 2) for which we may have 

generic singular triangulations with the largest Volsing(O "0) is 

110 
b(2,4)sing = 27 -~ 4.07407. . .  (89) 

(corresponding to h = 0 and Vol(S4)/Volsing(O "0) = 22/9 -~ 2 .444. . . ) .  It is easily 
verified that such an average incidence is associated to a relative concentration of (1 ,5)  

moves versus (2, 4) moves given by 

yl = 5y2. (90) 

It is clear from (87) that singular triangulations may appear also for smaller values of 
b(4, 2). A list of the first possible values of b/,(4,2) is provided by Table 1. These 
triangulations are less singular than the ones associated with b(4, 2) = ~ since they 
correspond to larger values of the ratio Vol(S4)/Volsing(tr°), and for this reason we 
may be tempted to consider them as entropically sub dominating at least in the large- 
volume limit. Yet, this is mere appearance since their presence is particularly relevant for 
locating the critical incidence b0 and for understanding the present status of the Monte 
Carlo simulations. Moreover, as we see in the next section, these triangulations have a 
subtle interplay with the particular singular geometry dominating in the strong coupling 
phase of 4D simplicial gravity: PL manifolds with a single singular edge connecting 
two singular vertices. In order to get the complete geometrical picture, one has to note 
that for ce = 2 + 8h and fl = 3 + 13h, we also get a highly degenerate configuration for 

which 

160 
bh(4, 2) = ~-- 4.102564 (91) 

39 

is a constant average incidence as h varies, whereas Wol(sa)/VOlsing(O'°)lh = 16+16/, 9 ' 
h = 0 , 1 , 2  . . . .  

In other words, corresponding to such value of b(4, 2) we have distinct triangulations 
with distinct ratios Vol(sa)/volsing(O'0)lh but with b(4,2)  fixed. Even if this set of 
triangulations contains configurations for which Vol(sa)/volsing(O "°) 1/, ~- 1.777, such a 



J. Ambjcrn et al./Nuclear Physics B 542 (1999) 349-394 373 

degeneration makes any particular configuration at fixed Vol ( S 4)/Volsing (o "°) Ih entrop- 
ically subdominating with respect to the generic configurations described by (87), at 

least as N4 ~ oo. 

3.4. The development of singular edges: S~ 

The explicit construction of the previous section may suggest that the singular trian- 
gulations we are explicitly considering are characterized by the dominance of just one 
singular vertex. Actually, as the parameters a and /3 vary, triangulations of S 4 of the 
form B 4 US3 C (a B  4) are not the only ones possible whose average incidence b(4, 2) 
takes on the value (80), at least as N4(S 4) --~ c~. As a matter of fact, in the infinite 
volume limit (but not at finite volume), triangulations with more than one singular 
vertex and with singular edges are still characterized by the average incidence (80). 
Their dominance in the class of triangulations considered, as N4(S 4) --, cx~, is driven 

by a rather simple entropic mechanism which we discuss in detail in this section. 
Implicitly, the occurrence of more than one singular vertices may still be described by 

the construction B4Us 3 C (aB4), since one may simply consider the new singular vertices 

and edges to be located in the ball B 4. However, the interplay between dominance of one 
or more (edge-connected) singular vertices is most easily seen from a simple variant of 
the construction leading to (80). The generic singular triangulation of S 4 is still realized 
by gluing two 4-balls along an isometric S 3 boundary which is again assumed to be a 
stacked 3-sphere, i.e. as Be 4 Us3 B 4. However, one of the two balls, say the one denoted 
by Be4~ (es being an acronym for edge-singular), is no longer taken of the form of a 
cone C ( a B  4) over the S 3 boundary, but more generally is provided by a triangulation 

with f-vector 

k 
1 Z N 3 ( B 3 ( j ) )  +k, No (B4s) = 

j=l 

l k - I  
gl  (nes) = ~ 4  5 E N 3 ( B 3 ( j ) )  ÷ 2 E N 2 ( S 2 ( I ) ) ÷ 3 ( k _ I )  , 

j=l /=1 

N2 (B4s) 1 0 +  k-1 = 3 z---~N3(Ba(j)) +2EN2($2( I ) )  + 2 ( k -  1), 
j=l 1=1 

k 5k-~ 
N3 (B4s) = 3 E N3( B3 ( j )  ) ÷ -2 E N2( S2(1) )' 

.j=l 1=1 

k k-I 
g4(n4s)  = E N3(B3 ( j ) )  ÷ E N2(S2(I))" (92) 

j=l /=1 

To grasp the geometrical origin of this f-vector imagine k distinct 3-spherical disks, 
B 3 ( j ) ,  joined through ( k -  1) S2-boundaries, S 2 (1) ; a sort of 3-dimensional peanut-shell 
with k-bulges and k - 1 necks. This gives rise to a 3-spherical peanut-shell S 3, and we 
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get a 4-dimensional ball Be 4 out of this 5 3 by considering ( k -  1 ) edges {001 (1) }/=l,...,k-1 
not belonging to 5 3 and connecting k vertices {000(j)}j=l....,k ~ 5 3. The 4-ball Be 4 is 
defined by requiring that the generic 2-spheres 52(l) are the links (in Be 4) of the 
corresponding edges 001 (l), l = 1 . . . . .  k - 1. Moreover, the complex obtained by Be 4 by 
removing the (k 1) stars (in 4 - Bes ) of the edges 0 °1 (l), is assumed to be the disjoint 
union of k cones C(B3(j)) over the 3-spherical disks B3(j) ,  with apices in the k 
vertices o-°(j).  This construction can be roughly described as a 3-dimensional peanut 
shell containing one rather than k distinct 4-dimensional nuts. It is easily verified that 
the f-vector Ni(B4es) (92) describes this generalized peanut triangulation and that it 
represents a triangulated 4-ball with No(Bas) vertices, k of which, {000(j)}j=l,..., k are 
interior vertices (i.e. 000(j) ~ OBas), with N3(B3(j))+ N2(S2(j)) 4-simplices 004 
incident on the jth of them. The jth of the k - 1 interior links 001(l), connects the 
vertex 000(j) with o-°(j + 1), and N2(S2(j)) 4-dimensional simplices 004 are incident 
on it. Thus, if some, say 1 ~< s ~< k, of the {N3(B3(j)} and the corresponding s - I 
of the {N2 (S2(l))}  grow with the simplicial volume of the 5 4 ~ Be 4, (not necessarily 
with the same rate), the triangulation of Bas just constructed contains s singular vertices 
connected by s - 1 singular edges. Note that if we take the boundary of this triangulated 
Be 4 we obtain a stacked 3-sphere 5 3 with f-vector 

k 
1 

N0(S3) = 3 Z N 3 ( B 3 ( j ) ) '  
j=l 

4 k 
NI(S 3) = ~ E N 3 ( B 3 ( j ) ) '  

j=  1 

k 
N2(S 3) = 2 E N 3 ( B 3 ( j )  ) '  

j=l 
k 

N3($3) = Z N 3 ( B 3 ( j )  )" 
j= 1 

(93) 

This 5 3 boundary of the 4-dimensional ball B4s may be profitably thought of as resulting 
from the connected sum, along isometric S2-boundaries of k distinct stacked 3-spheres 
S~, i = 1 . . . . .  k, to be considered as the links (in an 5 4) of a corresponding singular 
vertex. In this way the singular ball B4s (and the corresponding 5 4) can be considered 
as the kinematical set up for discussing the interaction of k distinct singular vertices 
(of  the type considered in the previous section). This picture allows us also to prove an 
elementary but important result showing that, in the class of triangulations considered, 
the order of singularity of a singular edge 0 °1 (1) in Be 4 is subdominating with respect 
to the order of singularity of the corresponding vertices 00°(l - 1) and 00°(I). In other 
words, in the large volume limit, the number of 4-simplices incident on o -l (l) grows 
slower than the number of 4-simplices incident on the vertices 00°(I-  1 ) and 00°(I). As 
usual, the number of incident 4-simplices can be considered as the (possibly) singular 
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volume associated to the corresponding edge or vertex. Thus, if we denote such simplicial 
volumes by Vol(o.l(/))  = #{0 -4 A 0-1(/)}, Vol(o.o(/_ 1)) = #{0-4 A 0-°(I - 1)}, and 

Vol(o'°(/) ) = #{o .4 A o'°(1)}, we have the following 

Lemma 2. In the class of triangulations considered for Be 4, 

Vol(o.l ( / ) )  
lim - O. (94) 

N4(B4)-.-~oo Vol(O.°(/) ) 

No(S 3) 

N1 (S 3) 

N2(S 3) 

N3(S 3) 

Since N1 (S 2) = ( 3 / 2 ) N 2 ( S  2) we immediately get 

N3(S 3) 3 N3(S 3) -+- N3($23) - 2N2(S 2) 

(Obviously the same holds with Vol(o-°(l)) replaced by Vol (o-° ( l -  1))) .  In order 
to prove this result we may consider, without loss of generality, a Be 4 whose S 3- 
boundary consists of two stacked 3-spheres S1 and $2 joined through an isometric S 2. 
The more general case can be proved similarly without much effort. Again without loss 
of generality we may assume that the two isometric copies of S 2 along which the two S~ 
and S~ are glued are the links of a vertex in the corresponding S/3 (as remarked in the 
previous paragraph, this can be always arranged; also it can be easily shown that there 
are stacked 3-spheres with a marked vertex whose 2-spherical link grows linearly with 
the simplicial volume of the 3-sphere, see Section 3.1 for an example in 4 dimensions. 
The above lemma states that, in the case of stacked 3-spheres, this large volume behavior 
for an S 2 cannot hold if such a 2-sphere is a joining neck). It immediately follows that 

the f-vector of OB4s = ~ Us2 S 3 can be written in terms of the f-vector of S 3, i = 1,2, 
and of ~2 as 

1 
= ~[N3(S~) + N3($23)] - N2(S 2) + No(S 2) - 6, 

4 
= ~ [ N3(S~) + N3($3) ] - 4N2(S 2) + Nl (S 2) - 4, 

= 2[N3(S~) + N3(S~) ] - 4N2($2), 

= N3(S~) + N3(S 3) - 2N2($2). (95) 

NI(S 3) = 4"  N3(S 3) + N3(S 3) _ ~N2(S  2) 12'4 
(96) 

lim N2($2) - -  = 0 .  ( 9 7 )  
N,(S3)---*OO N3(S 3) 

According to the remarks made above N2(S 2) = Vol(o -1 ( i))  and N3(S 3) q-N2(S 2) = 
Vol(o-°(i)), and we can write (97) as 

which implies that N3 ( S 3)/N,  ( S 3 ) > 3 as long as N 2 ( S 2)/N3 (S/3) = O( 1 ) in the large 
volume limit (i.e. as N3(S 3) + N2(S 2) ~ 0<3). Thus aB4s = S~ 13s2 $23 can be a stacked 
3-sphere if and only if 
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Vol(o'l (i)) 
lim = 0, (98) 

N4(B4s)----~c<~ Vol(o'°(i) ) -- Vol(o rl (i)) 

from which the lemma follows. This latter result only implies that the singular volume 
of the edge cannot grow linearly with the total volume of the ball Be 4 (and of the 
resulting ~4, see below). As we have seen in the previous section, a linear growth is 
instead typical for the singular volume associated to the vertices. It should be stressed 
that a subdominant rate of growth (say with some fractional power of the total volume 
o f  4 Bes), is well in agreement with (97). As a matter of fact, subdominant powers for 
the volume growth associated with a singular edge are the ones typically experienced 
in numerical simulations [5]. Note that triangulations with Vol(o-l(i)) as large as 

[N4(Bes)] for some 0 < 6 < 1, entropically kinematically possible, thus growing with 4 6 
dominate over triangulations of Be 4 with Vol(o 1 (i)) = O(1). This remark follows as 
a direct consequence of the fact that triangulating Be 4 under the hypothesis N2(S 2) = 
O(1), while sufficient to assure the validity of (97), it is not a necessary condition. 
It generates a subclass of constrained configurations in the class of triangulations of 

4 8 B4~ considered. Conversely, triangulations with N2(S 2) cx [Na(Be~)] are, according 
to (97), unconstrained, and as such much more numerous at least in the large volume 
limit. As in the previous section, we obtain a 4-sphere $4~, (es again for edge-singular), 
by gluing a generic triangulated ball B 4 with stacked S 3 boundary to the singular B4s 
defined by (92), viz., $4~ -~ B 4 t..Js3 Be 4. It is easily checked that the f-vector of such 
an $4~ is given by 

No(S~es) =No(S 3) + No(/~ 4) ÷ k, 
k - I  

1 ZN2(S2(1))  + 3 ( k -  1) Nl (S~e s) = NI (S 3) + N0(S 3) + NI (j~4) ÷ 2 
I=1 

k - I  

N2 (~s)  = N2(S 3) ÷ N1 (S 3) ÷ N2(B 4) + 2 Z N2(S2(1) ) ÷ 2(k - 1), 
l=l 

5 ~ N2(S2(I)), N3(g~es) =N3(S 3) ÷ N2(S 3) ÷ N3(J~ 4) ÷ ~  
/=1 

k - I  

N 4 ( ~ )  = N3(S 3) ÷ Na(B 4) + Z U2(S2(1))' (99) 
l=l 

where Ni(S 3) denotes the f-vector of the joining stacked 3-sphere a(Be4s) ~- S 3, and 
Ni(/~ 4) is the f-vector of the interior of B 4. According to (97), N2(S2)/N3(S 3) is 
asymptotically o(1), thus, in the large volume limit, the average incidence b(4,2) of 
such a triangulated $4~ is still provided by the expression (80) introduced in the previous 
section, viz., 

1 2 + 2 a  
lim b(4,2)ls~ ~ = 10. (100) 

N4($4)~oo ' 30 + 3fl '  
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where the two parameters/3 and a are again defined by (78) and (79), respectively. 
Before we proceed any further, we should emphasize that (100) strictly speaking only 
holds in the limit N4(S 4) ~ oo, and that atfinite (but large) volume N 4 ( ~ ) ,  we have 
b(4, 2) 14 > b(4, 2) with 

12 + 24 + N2(S2(1)) 
b(4,2)ls~ ~ = 10- 30 + 3 - - - - ~  N3($3) , (101) 

for a suitable 4- and/3-dependent constant r / >  0 which can be easily worked out. For 
instance, for the relevant case k = 2 (i.e. two singular vertex connected by a subsingular 
edge), we get to leading order in N2(S2)/N3(S 3) 

1 2 + 2 4  6 + 3 / 3 - 4 4  [N2(S2) ] (102) 
b(4, Z)ls, = 10. 30+  3---~ + 10. 16-0-~~ ~2-6/3 LN3(S3)I " 

Since according to Lemma 2 the ratio Y'~tk=q I N2(sZ(1) ) /N3(S  3) can go to zero, in the 

large volume limit, as slowly as N3($3) 8-~ for some 0 < 6 < 1, we get 

Lemma 3. At finite volume N4($4), the singular-vertex triangulations S4v ~ B 4 I..)$3 
C(aB4), considered in Section 3.3, are closer to the kinematical boundary b(4, 2) = 4 
than the edge-singular triangulations S4s -~ 8 4 t..)s3 Be 4. 

We stress that this result does not imply that the singular-vertex triangulations $4 v 
B 4 US3 C (aB 4) entropically dominate in the large volume limit. For, according to (100), 
the edge-singular triangulations become more and more important as the volume in- 
creases, and eventually in the infinite volume limit the triangulated spheres S4s enter in 
full entropic competition with the triangulated Ss 4 considered in the previous section. 
Actually this entropic competition comes into play quite rapidly as the volume increases. 
For instance, from (102), one gets that, for the dominating configurations at h = 0, 

110 100 [N2(S 2)] 
b(4'Z)ls4~ -~ -~-  + 3--~" [N3(S3)J ' (103) 

Numerical simulations at N4(S 4) = 32000 (see, e.g., Refs. [5,7]) show evidence 
that N2(S2) /N3(S  3) < 1/10, thus the average incidence b(4,2)ls~s of S4s differs (at 
h = 0) from the average incidence b(4,2)ls;~ of $4~ by less than 3/100. Therefore it 
is important to understand how, as N4(S 4) increases, the k distinct singular vertices 
(and the corresponding k - 1 subsingular connecting edges) interact among them, and 
which configuration actually dominates in the large volume limit. As we have seen 
in Section 3.3, the various singular triangulations of the 4-sphere considered there are 
parameterized by the ratio between the total simplicial volume of the given Ss4v and the 
simplicial volume of its singular part (see (85) and (88)). If we consider a similar 
ratio also for S4s, i.e. 

Vol(~s) N4 (Se4s) 
Vol(sing) - N4(B4s) ' (104) 
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then, as is easily verified, this ratio is still provided, in the large volume limit, by (85). 
It follows that the entropic comparison between the single singular vertex triangulations 
S~ 4 and the multiple singular vertices triangulations Se a should be carried out at a fixed 
value of the ratio Vol (~s)/Vol(sing) = const. = Vol ( ~v )/Volsi.g ( o -°). 

In our case 

k k-I  

N4(B4s) = ~ N3( B3(j)  ) + ~ N2( S2( I) ) 
j=l l=J 

k--1 

= N3(S 3) + ~ N2(S2(l)) • 
/=1 

(105) 

According to the remarks following Lemma 2, unconstrained triangulations of S4s gen- 
erally have ~t~=] 1 N2(S2(1)) = 0 ( N 3 ( $ 3 )  8) for some 0 < 8 < 1. Thus 

lim N4(B4s)/N3(S 3) = 1, (106) 
N4 ($4)---~OO 

and working at constant ratio (104) (in the infinite volume limit Na(Sas) ~ oo) implies 
that we have to consider triangulations of B4s with 

N3(S 3) = A1 ' N4(S 4) (107) 

and 

k-1 

A2 <~ ~ N2(S2(l) ) ~ A3 • N3($3) 8, 
l=l 

(108) 

for some positive constants A1, A2, and A3. 
Guided by these considerations we can easily get a set of entropic rules for determining 

which configuration dominates in the set of singular triangulations of S 4. We start by 
an obvious adaptation of an argument in [ 5 ], according to which the number of distinct 
triangulations associated with a singular vertex (the local entropy of  the vertex) is 
provided by the number of distinct triangulations of the link of the given vertex. The 
link, link(o-°(j)), around the jth singular vertex tr°(j) E B 4es, is a 3-sphere S3(j) ,  
and any two such links, S3(j) and S3(j + 1), associated with two singular vertex 
connected by a singular edge tr I ( j ) ,  have a non-empty intersection S 2 (j)  (the link of the 
connecting edge 0 -l ( j ) ) .  Thus, the inclusion-exclusion principle implies that the number, 
Card [ B4s (S 3 ( 1 ) . . . . .  S 3 (k); S 2 ( 1 ) . . . . .  S 2 (k - 1 ) ) ], of distinct triangulations of Be 4 
with given singular vert ices {S 3 ( j )  }j=l,..,k and given singular edges {S 2 (I) }t=J,,k- 1 is 
provided by 

Card[Bas(s3(1),. .  $3(k);$2(1) . . . . .  S2(k - 1)))]  = l-Ijk=l Card[S3(j) ] 
"' [-Itk=-i I Card[ $2(l) ] '  

(109) 
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where Card [ S 3 ( j )  ] and Card [ S 2 (l) ] respectively denote the number of distinct triangu- 
lations of the 3-spherical links of the jth singular vertex and of the 2-spherical singular 
link of the Ith singular edge. Since each S3(j) is a stacked 3-sphere (hence with an 
average incidence b(3, 1) = 9) the microcanonical partition function (9) immediately 
provides the leading order asymptotics both for Card[S3(j)] and Card[S2(l)], viz., 

[ (b(3, 1) - ~ + 1) b(3,l)-O+l ] N'(S3(J)) 
Card[S3(j) ] N3(S3(j) )~>> I ( b ( 3 , ' i ) - - - ~  J ' ( l lO) 

where b(3, 1) = 9, ~ = 3. Since Nl(S  3 ( j ) )  = 4 3 .~N3(S ( j ) ) ,  we get 

Card[S3(j)]N3(s3(j))>>,- [ ~ j  (111) 

Similarly, by setting b(2, l)  = 6, ~ = 3, and No(S2(l)) = 2 +  ½N2(S2(I)), (9) provides 

[ (b(2, l) - ~ + 1) b(2,1)-~+l ] u°(s2(t)) 
Card[S2(l)lu2(s2(°)>>' "~- [ ( g ( ~ , ' i ) - - ~  

. J  

= 5~ (112)  

Thus, by setting C(2)  - [44/33] U2 and C(3) : [(5/2)5/2/(3/2)3/214/3, we eventually 
get 

Card [ Be4s ($3 (1) . . . . .  $3(k);$2( 1 ) . . . . .  S2(k - 1 ) ) ] 

--~exp N3(S3(j))  I n C ( 3 ) -  N2(S2(1)) lnC(2)  . (113) 
- / = 1  

Since 

k k - I  

Z N3(S3(j))  = N3($3) + 2 Z N 2 ( S 2 ( I ) ) '  (114) 
j=l l=l 

where S 3 = OB4s is the stacked boundary of Be 4, we can rewrite (113) as 

Card[B4s(S3(1) . . . .  ; $2(1) . . . . .  )] _~ C(3)J%(s 3) [C(3)  2 ] )--~,~' N:(s2(t)) 
[ c(2) j (115) 

(by exploiting (105) this expression can be also rewritten in terms of N4(B4s)). Since 
C ( 3 ) / C ( 2 )  > 1, we have that triangulations of Beas with large ~t~=-~ l N2(S2(l)) are 
dominant in the infinite volume limit. This implies that the simplicial volume of the 
k - 1 edges connecting the k vertices is as large as possible. Note that (115) does not 
depend on the particular S3(j) or $2(1) but only on the fixed quantities N3(S 3) and 
~ - ~ l  N2(S2(1)) determining the ratio between N4(S 4) and the volume of the singular 
part Be4s o f S  4 (see (104) and (105)). 
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Thus, among all possible triangulations with k distinct singular vertices connected by 
k -  I distinct edges, those entropically favored, as k varies, are the less constrained ones, 
namely triangulations with just one singular edge connecting two singular vertices: the 
triangulations of B4s with k = 2. For such triangulations the S 3 links of the singular 
vertices and the S 2 link of the connecting edge are as large as kinematically possible. 
Note that for the triangulated B 4 = C ( O B  4) considered in Section 3.3 we have 

Card[ C ( O B4) ] ~-- C(3)N3($3)'  (116) 

and in the large volume limit 

[c(3)2]Z'-' Card[B4s (S 3 (1) . . . .  ; $2(1) . . . . .  ) ] ~ C (3)N3(s3) . t.~ u:(s2(I)) 
[ c(2) j 

>Card[C(OB4)] - C 3 'v3(s3) "~ ( ) . (117) 

Since, as N4(S 4) increases, the triangulations Se 4 enter more and more in entropic 
competition with the single singular vertex triangulations S4v, (117) directly implies the 
following basic result: 

Lemma 4. For a given ratio 

Vol(g~e s) N4(S4es) 22 + 6h 
VoI(sing) N4 (Be4s) 9 ' (118) 

with h = 0, I, 2 . . . . .  the singular triangulations of S 4 which are closer to the kinemat- 
ical boundary b(4, 2) = 4, and which entropically dominate in the large volume limit 
N4 (S 4) --+ 0<3, are realized by triangulations Se 4 with one subsingular edge connecting 
two singular vertices, and are characterized by the average incidence 

bh(4,2) = 10. - -  
22 + 6h 

54 + 15h" (119) 

The last part of this lemma, concerning the h-parameterization of the singular triangu- 
lations, is an immediate consequence of the expressions (100) and ( 101 ) for the average 
incidence of S4s and of the results of Section 3.3. Results which characterize the sets of 
value of ce and /3 giving the closest approach of b(4, 2) = 10. (12 + 2 a ) / ( 3 0  + 3/3) 
to the kinematical boundary b(4,2) = 4 as the ratio Vol(~s)/Vol(sing ) varies. The 
geometrical analysis just discussed and Lemma 4 appear in good qualitative agreement 
with the picture which emerges from recent Monte Carlo simulations [7] concerning 
the study of singular structures in 4D simplicial gravity. According to such a numerical 
analysis there are, at finite volume, two pseudo-critical couplings (and hence corre- 
sponding pseudo-critical incidences b(4, 2)) separately associated with the creation of 
singular edges and singular vertices. This behavior seem to correspond to the different 
entropic relevance of the single singular vertex triangulations Ss4v and of the singular 
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edge triangulations S4s discussed above. In the simulations the two pseudo-critical cou- 
plings lock into a single critical point in the large volume limit. This merging appears 
to be related to the full entropic competition between S4v and S4s which dominates 
our geometrical picture in the infinite volume limit. Explicitly, the average incidence 
b(4,2)ls~ (see 101) is slightly larger (at finite volume) than b(4,2)ls~v. Thus, if we 
apply formula (14) relating the average incidence b(4, 2) to a value of the coupling k2, 
we find that the set of k 2 ( ~ ) ' s  corresponding to b(4, 2)I~, (as h varies) is slightly 
smaller than the corresponding set of k2 (~s) ' s  associated with b(4, 2)IN.," Anticipating 
the analysis of Section 4, this remark implies that there are indeed two pseudo-critical 
points respectively associated with edge-singular sas and vertex-singular S4s triangula- 
tions, say k~rit(gs;• N4) and kcrit(s~..2 vs;N4), with 

kcrit(s~ ; N4) ~ N4),  k cdt ( ~ ; 
2 es 2 vs (120) 

and coalescing in just one critical point as N4 gets larger and larger. Obviously, what 
one actually sees at a given finite volume mostly depends on the rate N2(S2)/N3(S 3) 
(see 101) which controls how fast the two average incidences b(4, 2)Is4 and b(4, 2)Is~, 
approach each other. On this rate we are not yet able to say anything substantial. As 
recalled (see (103)) computer simulations indicates that at relatively large volumes 
(typically N4 = 32 000) the term N2(S2)/N3(S 3) is already so small that b(4, 2)Is~', -~ 
b(4, 2)ls~,s up to a few percent, and edge-singular triangulations are to all effects as 
close to the kinematical boundary b(4, 2) = 4 as the Sv4s are. Thus they do entropically 
dominate. 

3.5. The characterization of the critical incidence 

Since in the infinite volume limit both singular configurations Say and Se4s are charac- 
terized by the same average incidence (80), we can use indifferently both for charac- 
terizing the critical incidence b0(4) signaling the closest approach of generic singular 
triangulations to the kinematical boundary b(4, 2) = 4. The single singular vertex con- 
figurations Ss 4 are somehow easier to handle than S4s, thus for definiteness we describe 
the characterization of the critical incidence (and the corresponding critical gravitational 
coupling) by referring explicitly to •s4v -~ n 4 Us3 C (0B4) .  In any case, one should keep 
in mind that the extension of the analysis to Sas can be carried out without difficulty 
along the same lines. 

How can we characterize the critical incidence b0(4)? A glance at Table 1 clearly 
shows that, as Vol(S4)/Volsing(O "0) increases, the values of b(4,2)[h are very close to 
each other. This remark implies that triangulations with b(4, 2)[h=0 = 110/27, even if 
entropically dominating in Ss 4 _~ B 4 Us3 C ( aB4) ,  cannot be taken as the mark of the real 
critical incidence. As a matter of fact, for values of h close to the leading configuration 
at h = 0, there can be statistical competition between such singular triangulations, at 
least as N4 --~ c~. The critical incidence b0 is actually obtained by averaging the distinct 
b(4, 2)[h's over the set of corresponding singular triangulations. 
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To characterize such average we exploit the fact that the singular triangulations we are 
considering have their singular part constructed as a cone over a stacked 3-sphere S 3. If 
we join, through the identification of a marked o -3 E S 3, two stacked 3-spheres, $3(1) 
and S 3 (2) we get another stacked 3 -sphere S 3 ( 3 ) = [~3 ( 1 ) #S 3 (2), and all (voluminous) 
stacked spheres can be obtained in this way. Thus, if we construct the cone over this 
connected sum of stacked 3-spheres we can sweep all possible voluminous (i,e. large 
N4) singular triangulations of the type we are considering. Explicitly, let us denote the 
singular triangulations of S 4, obtained from the stacked 3-spheres $3( 1 ) and S 3 (2), by 
$4(1) - B4(1) t_Js3<l ) C($3(1))  and S4(2) - B4(2) t_Js3<2 ) C($3(2)) ,  respectively. If 
S 3 (3) = S 3 ( 1 )#fS 3 (2), where f is an homeomorphism between two marked 0 .3 ( 1 ) E 
$3(1) and o'3(2) E $3(2), then 

$4(3) = ~4(1)#f,~4(2) = (84(1) CIf 84(2))  Us3(3 ) C($3(3)) ,  (121) 

where f ,  is the extension of f to the cone over the marked 0 "3, and every singular 
triangulations of S 4 over a stacked 3-sphere can be obtained in this way. 

The analytical counterpart of (121) follows directly from the last of relations (82) 
characterizing the f-vector of the ball B 4 as the parameters a and /3 (thus h) vary. 
From it we get 

N4[B4(1)t . . j fB4(2)]=[~-~]N,(S3(1))+ [ ~ - ' ~ ] N , ( S 3 ( 2 ) )  

= N4184(1)] -1- N4[B4(2)], (122) 

where we have discarded constant terms which are o( 1 ) in the large N4 limit. To exploit 
this information let 

{ Volnorm(S 4) 6 h + 2 2  VoI (B4)=N} (123) 
'Th[VOI(B 4) = N] - Card ~4: V°lsing(O'0) = ___..~_; 

be the cardinality of the set of distinct singular triangulations of the ball B 4, constructed 
over a stacked S 3, with given ratio Vol(S4)/Volsing(0. 0) and N4(B 4) = N. According 
to the behavior of this set of triangulations under the connected sum we have 

T h [VoI(B 4) = g ( 1 )  + N(2)] = Th [Vol(B 4) = g ( 1 ) ] .  Th [Vol(B 4) = g ( 2 ) ] .  

(124) 

It is easily verified that this relation implies that the leading asymptotics of Th (VoI(B 4) ) 
is provided by 

"Th (VoI(B 4) ) = c(B4; h) N4(84) , (125) 

where lnc(B4; h) is the specific entropy for the generic 0.4 E S4s. 
Since there is a unique cone C (S 3) over the stacked sphere boundary 0 B 4 -~ S 3, (125) 

provides also the leading exponential asymptotics to the number of distinct triangulations 
of $4~ with given N4 and given h, viz., 



J. Ambj#rn et aL /Nuclear Physics B 542 (1999) 349-394 383 

Card{S4s} <x c(B4; h )  N4(B4) . (126) 

Actually, when h >> 1 and N3(S 3) = O(1),  for each triangulation of S 3, there can be 
a worth of Aut(S 3) inequivalents cones, Aut(S 3) denoting the automorphisms group of 
the given triangulation, for simplicity we disregard here these correction factors. Note 
also that the above construction applies to the edge-singular spheres S~s with minor 
modifications. 

According to (64), 

13 + 6h (127) N4(B4) = N4($4) - N3($3) = N4($4) 22 + 6h'  

thus we get that to leading order 

Card{S~s} = c(B4; h )  N4(S4)-N3(S3) - s (  h ) N4($4) , (128) 

where we have introduced the specific entropy, In s(h) ,  of a 0 ,4 E S4sv according to 

In Card{S4s} 13 + 6h in c(B4; h) (129) Ins(h)  - lim = - -  . 
N4 (S4)~oo N4(S 4 ) 2 2 + 6 h  

In order to characterize Ins(h) ,  note that triangulations of the form S4s describe, 
for h = 0, the generic singular triangulations of S 4 realizing the closest approach to the 
kinematical boundary b(4, 2) = 4. Conversely, and as already stressed, the triangulations 
sas reduce, as h ~ cx~, to the generic (branched polymer) triangulations of S 4 (with 
a rooted 0,4). These remarks imply that corresponding to h = 0 and h = hrnax we must 
have 

lns(h  = 0) = In c($4; h = 0), 

In s(h = hmax) = In c($4; h = hmax), (130) 

where hmax is characterized by the value of the ratio (88) evaluated for the smallest 
possible N3(S 3) = 5, i.e. hmax = 3 N 4 -  1~, and where lnc(S4; h) is the specific entropy 
associated with the microcanonical partition function (9),  i.e. 

(b(4, 2) - 2) b(4,2)-2 ] 10/b(4,2) 
c(S4;h) -~  (b(4 ,2)  ~ J  ' (131) 

with b(4, 2) = lO. ( 2 2 + 6 h ) / ( 5 4 +  15h) (the actual specific entropy contains a constant 
factor which is of no relevance for the present considerations, see (9) ) .  

Since c(S4;h) is a slowly varying function of h, the specific entropy Ins(h)  can 
be characterized as the convex combination of In s(h = O) and ln s(h = hmax) over the 
interval 0 ~< h ~< hmax, viz., 

l n s ( h ) =  Ins(h=hmax)+ 1- ' r ' - - - -  I n s ( h = 0 ) .  (132) 
/'/max 

In other words, we are considering In s(h) as the convex combination of the extreme 
pure phases (h = 0: crumpling, and h ---, ~ :  branched polymer). A straightforward 
computation provides 



384 J. Ambjcrn et aL /Nuclear Physics B 542 (1999) 349-394 

[ c( h=o) 
s(h)  = c ( S 4 ; h = O ) .  Lc(S4;h=hmax)j . (133) 

Since in the large N4(S 4) limit, ln[c(S4; h = 0)/c($4; h = hmax) ] ~ 0.06 we eventually 
get for the leading asymptotics 

Card{Sas} = c($4; h = 0) N'e- ~. (134) 

It is worth stressing that a completely analogous result holds for Card{•4s}, since, 
as N4 --~ oo, the set of edge-singular triangulations (with one edge connecting two 
singular vertices), 4 Seslk_-z, is as close to the kinematical boundary b(4,2) = 4 as the 
triangulations Svs. The two class S4s and S4s only differ in the subleading asymptotics. 
According to (134), the average value of b(4, 2)Ih over the set of singular triangulations 
considered is given, in the large N4 limit, by 

~hm.x b(4, 2)Ih exp[ - h ] h=0 
(b(4, 2)sing) ]h .... = ~-~h . . . .  h, (135) 

2..,h=0 expt--31 

By approximating the numerator with an integral, we get 

18 ~ + 18 4 e 2 5 [ E l ( ~ ) - E l (  5 ~3)] 
(b(4,2)sing}[hmax = 4 +  15 5 ( 1 - e  ) - -  • _ ~  , (136) 

where E1 (x) is the exponential integral function. In the large volume limit hmax ~ co, 
and the above expression reduces to 

4 ~ ( 1 8 )  
(b(4,2)sing)=4+-~e2~E1 ~ ~_4.0394361235. (137) 

As stressed, a similar analysis carried out for the class of singular triangulations Sas 
would provide the same (b(4,2)sing}. It follows that, as N4(S 4) --* c~, (137) is the 
value of the incidence b(4, 2) statistically dominating in both sets Say and S4s . As 
argued in the previous sections, these triangulations are the ones characterizing the 
smallest possible b(4, 2) marking the onset of the dominance of singular geometries. 
Thus, we can identify (b(4,2)sing) with the critical incidence b0 (see Section 2.1) 
characterizing the transition between the weak and the strong coupling phase of the 
theory, i.e. 

b0(4) - (b(4, 2)sing) ~ 4.0394361235. (138) 

Together with the critical incidence (b(4, 2)) it is worthwhile to compute the infinite 
volume average, over the set of singular triangulations Ss 4 or Sas, of the local volume of 
the singular part of the triangulation, Vol(sing). Note that for the class of triangulations 
~4 v, Vol(sing) = Vol(tr°), whereas for the triangulations of S4s dominating in the infinite 
volume limit, we have 

Vol(sing) _~ 2Vol(o-°), (139) 
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since according to the remarks of Section 3.4 and Lemma 4, in such a limit, triangulations 
with just two singular vertices (connected by a subsingular edge) dominate. 

For both class of triangulations Vol(S4)/Vol(sing) = (22 + 6h)/9, and the required 
average is provided by 

= (140) 
2_.h=o e x p l - g  ] 6h+2 2 / Vol(sing) ~--,I, . . . .  h 9 

V'h~ exp[ -- h \ Vo1 (S4)  hmax L-~h--0 7] 

(Strictly speaking, this ensemble average explicitly refers to the single singular vertex 
triangulations Ssqv, however, as stressed before, this ensemble average differs from the 
S4s ensemble average by corrections which vanish as N4(S 4) ~ c~.) 

By approximating as usual the summations with an integral we get 

Vol(sing)) 3e11/15 [ 11) (p. .~ 11)] ( 
hmax = 10(1 -~e----~Zm~'/5) E1 k ' i 5  - - E l  q- 15  " (141) 

According to (139), we get for the average local volume of the (two) most singular 
vertices, the explicit expression 

3e 11/15 [ ( 1 1 )  ( ~ . ~  11)] 
(Wol(o'0))lhmax = 20(1 - -e  -hmax/5) El -~  --El  + -~  "N4, (142)  

which, in the infinite volume limit, reduces to 

(Vol(o.O)). 3elU15 ( 1 1 )  
2 ~ E 1  ~-~ .N4. (143) 

Note that the value of the critical average incidence (b(4, 2)) ~ 4.03943... shows 
that the leading configurations contributing to the singular geometry of sas are, loosely 
speaking, those for which h ~< 6 (see Table 2). Thus, a rough indicator of what is the 
average singular volume for b(4, 2) sufficiently smaller than (b(4, 2)) "~ 4.03943... 
(viz., when in the polymeric phase) can be obtained by considering the average 

/ Vol(sing) ) X-'hm~ exp[_h] 9 = Z..ah~>6 6h+22 
x-"~hmax r h 

\ ~ poly 2_,h~>6 expt-- 5 ] 

Explicitly we get 

3e 29/15 ( 2 9 )  
(VoI(° '0))p°Iy - 20 El ]-~ • N4, 

(144) 

(145) 

which can be interpreted as the contribution to (Vol (o -°)) coming from the non-singular 
geometries in Se 4. 

4. The critical coupling k[ ~t 

The kinematical picture which emerges from the above analysis is immediately con- 
nected to the thermodynamical behavior of 4D dynamical triangulations by recalling the 
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results of Section 2.2 according to which, as k2 varies the distribution of triangulated 
manifolds is strongly peaked around triangulations with an average incidence given by 
3[A(k2)/(A(k2) - 1)] (see (14)). Thus by solving for k2 the equation 

( m ( k 2 )  ) 
(b(4,2)sing) = 3 \Ai~2)-- 1 ' (146) 

we get an estimate of the value of k2 corresponding to which singular triangulations 
start dominating the canonical partition function (4) in the infinite volume limit. Re- 
call that singular triangulations are those characterizing the subexponential subleading 
asymptotics (see Theorem 5.2.1, pp. 106-118 of Ref. [1]) 

WIN2, b(4, 2) ] ' ~  e (a4b(4'E))N2 

[(b--O+ l)b-#+l] N~ 
× ' ~ - / ~ - . _ - ~ ' ~ "  el-m(b(4'2))N]/"nlu2-11/2, (147) 

with re(b(4, 2) > 0 (see (9) for the general expression; the above expression can be 
obtained from (9) by setting n = 4, a2 = 0, r(b) = 0, and D = 0 since we are considering 
S 4, we have also dropped a few unessential constant terms). Thus we can identify the k2 
solution of Eq. (146) with the critical value, k~ tit, of the inverse gravitational coupling 
marking the transition between the strong and weak coupling in 4D simplicial quantum 
gravity. Introducing in (146) the values (b(4, 2)sing) ~ 4.0394361235 obtained above 
for the kinematical bound controlling the occurrence of generic singular triangulations, 
we get for the critical coupling the explicit value 

k~ tit ----- 1.3093. (148) 

4.1. A model for pseudo-criticality at finite N4(S 4) 

It is very interesting to compare the value for k~ rit, already in very good agreement 
with what is found by means of Monte Carlo simulations, with the other k~'s obtained 
by solving Eq. (146) with the left member (bsing(4, 2)) replaced by the values bh(4, 2) 
provided by (87). In this way we get Table 2. 

According to the remarks in the previous paragraph, k h, h = 1,2 . . . . .  can be interpreted 
as the values of the inverse gravitational coupling corresponding to which the subleading 
singular configurations comes into play. In other words, corresponding to such values 
of k2 there are distinct peaks in the distribution of singular triangulations of S4s . The 
leading peak is at k2 = k~ tit -~ 1.24465, this corresponds to the dominance of singular 
triangulations for which Vol (S 4)/Volsing ( o  "0) [h = 22/9; the first subleading peak occurs 
at k2 = k~ =1 ~ 1.2744, corresponding to the subdominance of singular triangulations for 

= b h=2 which Vol(S4)/Volsing(O -0)lh 28/9; the second subleading peak occurs at k2 = ~2 "~ 
1.2938 and is associated with the subdominance of singular triangulations for which 
Vol(sa)/volsing(O'°)lh = 34/9, and so on. In the large N4 limit there is enough phase 
space for having all such peaks contributing to the partition function of the theory, and 
the presence of the subdominating peaks lowers the critical incidence from its bare value 
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Table 2 
Some of the values of k2 h obtained by solving Eq. (146) for bh(4,2) as h varies. Such values appear 
strikingly near to the values of the pseudo-critical points found in Monte Carlo simulations as the size of the 
triangulations considered is increased 

h b(2,4) Vol(S4)/VOising(O'O)[h k h 

0 ~7 ° ~_ 4.07407 2.444 ~_ 1.24465 
1 ~9 ° ~ 4.0579 3.111 _~ 1.2744 
2 ~ ~_ 4.04761 3.777 ~-- 1.2938 
3 ~ ~ 4.0404 4.444 ~ 1.30746 
4 460 ,~ 4.03508 5.111 ~ 1.31762 

1 1 4  - -  

520 ~ 4.03100 5.777 ~_ 1.32545 5 I-T~-- 

b(4,  2)lh_-0 tO (b(4,2)sing), and shifts the critical k~ rit from the bare value 1.24465 to 
its effective value k~ tit ~ 1.3093. Using a field-theoretic image, one may say that in the 

large volume limit the fluctuations associated with the various subdominating peaks in 

the distribution of  singular triangulations dress the bare critical incidence. 
Conversely, at a finite value of  N4 one would expect that the resulting average 

(b(4,2)sing)(N4),  computed from (135) with h ~< h(N4)  ~< hmax, for some h(N4), 
is larger than the limiting value (b(4,  2)sing/. Corresponding to this /b(4,2)sing)(N4) 
one gets an Na-dependent pseudo-critical point k~rit(N4) smaller than the actual k~ tit. 

Roughly speaking, at finite volume, there is no phase space available for having all 

subdominating peaks competing with each other according to their relative entropic 

relevance. Moreover, at finite volume we should distinguish which kind of  singular ge- 
ometry we are dealing with. According to Lemma 3 and ( 101 ), the average incidence is 
larger for the edge-singular triangulations S4s than for the single singular vertex triangu- 
lations S 4. Thus, corresponding to $4 or S4s we should get a slightly different sequence 
of pseudo-critical points, (according to (146) ,  k~rit(N4)l(S4es ) ~< k~rit(N4)l(S 4)) ,  a 

difference which fades away as the volume increases. 

In order to make contact with numerical simulations is worthwhile to develop an 

analytical model taking care of  these finite size effects. Again for simplicity, let us limit 
our analysis to the vertex singular triangulations S4s, with the understanding that what 

we say can be easily extended to the edge-singular triangulations S4s with minor modi- 
fications. The starting point of  our analysis is the entropic formula (134) expressing, as 

h varies, the entropy of the triangulations S4s as convex combinations of  its extreme two 
pure phases associated with crumpling (h = 0) and polymerization (h = hmax --* cx~). 
Rather than use directly (134) we should refer to the conditional entropy 

CardS4s 
CardS4 , (149) 

which provides the contribution of  the triangulations S4s to the set of  all possible 
triangulations of  S 4, at fixed volume. 

From (134) and (9)  we get, to leading order in the large N4(S 4) limit, 
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Cards4 vs N fpd.e,-0, 
Cards4 

where 0 is the h-dependent constant 

fi & ‘(‘; h = ‘) N 33 
c(S4;h) 

@(4, 2) _ 2)b(4,2)-2 -‘“/b(492) 

(b(4,2) - 3)b(4,2)-3 1 

(150) 

(151) 

with b(4,2) = 10. (22+6h)/(54+ 15h). 

The expression (150) for the conditional entropy, holds at finite, sufficiently large 
N4 ( ,?), and, since CardS:;j,/CardS4 < 1, it implies that, at finite volume, triangulations 
S4 with h > N4( ,!?> In 0 are entropically suppressed. This remark implies that the 
configurations ts$, which actually contribute in characterizing the critical incidence, 
have an entropic cut at some value of h, say h( NJ) = O( N4(9) In 0). The specific 
entropy Inc(S“; h) of {S’} changes very slowly with h, thus at finite N,+(S“) - N, we 

may tentatively write 

for 0 < h < h(N) whereas 

= a:,,,,, 

(152) 

(153) 

for h(N)(h < h,,,, and where L%J = 1 + e, E)O, is a suitable constant not differing much 

from 1 (according to (151) fln((h = 1) N 1.01234, and fJl(h = 10’) 21 1.0615). In 
other words, we are assuming that for 0 < h 6 h(N) the system may exist as a mixture 
of its two extreme pure phases, whereas for h > h(N) it collapses into its branched 
polymer phase. It is worthwhile stressing that more realistically one may consider, in 
place of ( 152)) a convex combination of the extreme phase h = 0 and the (non-extreme) 
phase corresponding to h = ?I( N). By exploiting ( 133), this prescription can be worked 
out without difficulty. However, it gives rise to a rather complex scaling behavior of 
the resulting entropy. Moreover, the fact that ~(9; h) is a slow varying function of h, 
makes, as we shall see, the simpler (152) quite accurate and much easier to handle. 

A qualitative characterization of h(N) as N varies can be easily obtained by the 
obvious scaling properties of ( 152). If we consider triangulations St, with two distinct 
volumes, say N4(ti) = N( 1) and N4(9) = N(2), then 

(154) 

provided that h(N) scales with N according to 

h(N(2))=&(N(1))+5[N(2)-N(l)]ln& (155) 

This scaling relation implies that h(N) has a linear dependence on N4( S4) according 
to 
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h(N4) = 5N4 In 12o + s c, (156) 

where ~: is a suitable constant. This rather simple argument does not yet provide the 
actual value of the constants 120 and ~:. However, confrontation with numerical data at 
N4 (S 4) -- 32 000 indicates as reliable candidates the values 

1 
5 In Oo = 16000' 

~= -1 .  (157) 

Note that the above condition for 1"2o implies O0 ~ 1.0000125, a value which is perfectly 
consistent with the above characterization of Y2 (see (151). It also indicates that the 
triangulations Sas (actually the entropically dominating 4 Ses), do saturate the possible set 
of triangulations of S 4 in the strong coupling phase. 

The N4-dependent pseudo-critical incidence (b(4,2)sing)(N4) and the associated 
pseudo-critical point k~rit(N4) can be easily obtained from (136) by replacing hmax 
with h(N),  viz., 

I8 

(b(a, 2)sing)(N4) = 4 + --4. e ~ t E l ( ~ ) -  E I ( ~  + 2~)] (158) 
~{N) 15 5(1 - e -  .-r') 

and by solving for k2 Eq. (146) with (b(4, 2)sing)(N4) in place of (b(4, 2)sing). 
By exploiting these results we get an overall analytic picture of the large volume 

behavior of 4-dimensional simplicial quantum gravity which is in a surprising agreement 
with the Monte Carlo simulations of the real system [7]. 

5. Comparison with numerical work 

At this stage it is indeed useful to discuss the status of our geometrical results in 
the light of the most recent numerical work. This comparison is particularly important 
since, as recalled in the introductory remarks, the current perspective on 4-dimensional 
simplicial quantum gravity has undergone a rather drastic change. As a matter of fact, 
recent Monte Carlo simulations seem to accumulate more and more evidence for a 
first-order nature of the transition separating the strong and the weak coupling regime 
of the theory. Taken at face value this result suggests that dynamical triangulations is 
not likely to be a viable model of quantum gravity unless one adds additional terms 
to the action. It is perhaps fair to say that the geometrical analysis of the previous 
paragraphs bears relevance to such an issue. The characterization of the critical coupling 
k~ tit and the existence of entropically subdominating peaks in the distribution of singular 
triangulations strongly indicates that this geometrical picture may be responsible for the 
phenomenology we see in numerical work. Let us start by noticing that in numerical 
work is difficult to resolve the various contribution to the distribution of singular tri- 
angulations coming from the various peaks geometrically found by our analysis. The 
resolving power depends, among other parameters, on the size of the triangulations, and 
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Table 3 
The value of the analytical pseudo-critical points ~rit(N4) versus their Monte Carlo counterparts. These 
values are computed under the hypothesis that the linear dependence of h(N4) from N4(S 4) is given by 
hfN4) = N4/16000 - I 

N4 h Analytical G rit ( N4 ) Monte Carlo/:2 tit ( N4 ) 

32 000 1 1.25795 1.258 
48 000 2 1.26752 1.267 
64 000 3 1.27466 1.273 

as a rough indicator, the larger the size the bigger is the set of subdominating singular 
triangulations which come into play. Obviously the first subdominant terms are the most 
relevant ones, and as suggested in the previous section, an interesting value to look at 
for comparison with Monte Carlo data is the value of the inverse gravitational coupling 
corresponding to the pseudo-critical average incidence (b(2, 4)sing)(N4). As recalled 
there, by solving for k2 the equation 

( a ( k 2 )  ) (159) 
(b(4,2)sing)(N4) = 3 \A(---~2)- 1 ' 

we obtain the value of k~dt(N4) corresponding to which we expect to see a clear 
signature of the dominance of singular geometries in the set of triangulated 4-spheres 
of volume N4. This is actually a pseudo-critical point, the location of which depends 
on N4. Numerically one finds that as the volume N4 of the triangulation increases, 

k 2 (N4) increases too, (see, e.g., Ref. [6]). the corresponding pseudo-critical point erit 
Simulations and extrapolation to triangulations with size N4 = 48 000 and N4 = 64 000 
locate the corresponding k~dt(N4) at 1.267 and 1.273, respectively. According to (156) 
the actual dependence of the number of dominating peaks, h(N4), as a function of the 

volume N4 of the triangulation, is linear according to 

N4 1 (160) 
h ( N 4 ) -  16000 ' 

for N4(S 4) >~ 32000, where the actual value, (5 lnOo = 1/16000 and s ~ = - 1 ) ,  of the 
constants comes from comparison with the numerical data provided at N4 (S 4) = 32 000 
by Ref. [6]. With this expression of h(N4) we obtain, from (159) and (158), Table 3. 
The agreement between the analytical pseudo-critical points and the Monte appears 
surprisingly good, and suggests that the identification of our k~rit(N4) with the pseudo 
critical k~rit(N4) found in Monte Carlo simulations is not a mere coincidence. An impor- 

k 2 ( N 4 )  tant implication of this identification, if correct, is that the growth with N4 of crit 
is due to the increasing contribution of the subdominating singular triangulations. This 
result provides a nice explanation to the fact that Monte Carlo data seem to indicate that 
the major part of the finite size effects come from the crumpled phase [ 18]. 

By extrapolating the actual measurements, the Monte Carlo simulations locate the 
critical point around k~ ~- 1.327 or around k~ -~ 1.293 (depending on whether the data 
fit used is modeled after a second-order or a first-order transition, respectively) [6]. 
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Again, our analytical resul t  k~ tit _'2 1.3093 appears in quite good agreement with the 
numerical data (curiously enough our k~ t is, with a good approximation, the average 
of the above two numerical data), and moreover its analytical characterization provides 
a natural entropic explanation to the structure and location of the associated finite-size 
pseudo-critical points. 

Another distinct feature of recent numerical works concerns the bimodality in the 
distribution of singular vertices seen during Monte Carlo simulations exactly around 
k~rit(N4 -- 32000) _'2 1.258 [6]. In this respect, particularly interesting are Refs. [7,13], 
where long run histories (at N4(S 4) = 32000) provide a reliable measurement of the 
average maximum vertex order near the critical point. In these simulations the system 
wanders between two states characterized by two quite distinct values of the average 
maximum vertex order. In one case, this maximum is close to 3000, while for the 
other the figure it is close to 1000. A correlation analysis shows that this metastability 
corresponds to tunneling back and forth from a branched polymer state (average vertex 
order _,2 1000) containing no singular vertex and a crumpled state (average vertex order 

3000) with one or two singular vertices. 
According to our analysis, this behavior is the one exactly coded into the entropy 

formulae (152) and (153) which exactly describe a finite size tunnelling between a 
crumpled state (described by (152) ) and a branched polymer state (described by (153). 
A good indication of the average vertex order, as we approach the transition point for 
increasing k2, is provided by (143) At N4(S 4) = 32 000 this analytic formula yields 

3e 'l/15 ( 1 1 )  
(Vol(o'0))N'=32000 -- 2---'-~ El i 5  " (N4 = 32000) _~ 3400. (161) 

Conversely, if we approach the transition point by lowering k2, then a reliable indi- 
cation is provided by (145). Explicitly we get 

3e 29/15 ( 2 9 )  
(Vol(o'°))poly - 2--------~E1 -~ • (N4=32000) ~' 1770. (162) 

Such results appear quite in reasonable agreement with the values of (Vol (tr °) )m--32000 
obtained during the simulations and mentioned before. Such data suggests that the bi- 
modality seen in the numerical simulation has its origin in the presence of subdominating 
singular triangulations. In particular, due to finite size effects the set of subdominating 
singular triangulations sas for h = 0, 1 . . . . .  6 seems to provide a metastable cluster of 
configurations that entropically dominate the crumpled state. Taken at face value, this 
set of results seem to indicate, at least to the indulgent reader, a variety of viewpoints 
on the actual status of a theoretical interpretation of the numerical simulations: 

(I) The bimodality as well as the implied first-order interpretation of the transition 
between weak and strong coupling is a finite size effect related to (i) The saturation of 
the triangulations of {$4} with S4s in the strong coupling phase; (ii) The slow depen- 
dence of the specific entropy, In c($4; h), of {S 4} from the parameter h controlling the 
volume of the singular part of the triangulation. This slow variation may be responsible 
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Table 4 
A comparison between the analytical values and the available Monte Carlo data for the first two cumulants of 
the distribution of the number of vertices of the triangulation 

k2 c1 ( N4; k2 ) Cl ( Monte Carlo ) c2 ( N4; k2 ) ¢2 (Monte Carlo ) 

1.240 0.1935053 0.18970(12) 0.109062 0.141(7) 
1.246 0.1945674 0.19150(11) 0.1194586 0.144(8) 
1.252 0.1956271 0.19399(32) 0.1465348 0.254(35) 
1.258 0.1966846 0.19712(20) 0.3996907 0.316(8) 
1.264 0.1977398 0.20052(21) 0.1844987 0.118(20) 
1.270 0.1987927 0.20085(27) 0.1274851 0.118(20) 

of the fact that the tunnelling does not disappear as the volume of the triangulations 
increases. 

Obviously, this latter remark can be easily turned inside out to favor a less optimistic 
point of view: 

(II) The slow h-variation in In c( $4; h) may well be such as to maintain the bimodality 
for larger and larger volumes: we have a genuine first-order transition. It is rather 
clear that our analysis, being based on a sort of mean field approximation, cannot 
distinguish clearly between such two scenarios: we need sharper entropic estimates. 
Even if shamefully low in providing answers to the headlines that numerical simulations 
score, we wish to conclude with a final example pointing to a constructive way of 
using our analytical entropy estimates. This final point concerns the k2 dependence 
of the two normalized cumulants of the distribution of the number of vertices of the 
triangulation, Cl (N4; k2) and c2(N4; k2) whose analytic expression is explicit provided 
by (28) and (29). Strictly speaking, these expressions are accurate only near the 
actual critical average incidence b0, however we can use them quite safely in a rather 
larger range of variation of k2 (due to the slow variation of b(2 ,4)  as a function 
of k2). Accurate Monte Carlo measurements of such cumulants have been reported 
in [6], and by referring to these data for N4 = 32000, the comparison between MC 

data and our analytic results for cl ( N 4 ; k 2 )  and c2(N4;  k2) are shown in Table 4. The 
agreement between the analytical cumulant ct (k2; N4) and its Monte Carlo counterpart 
is particularly good; (note that for a better comparison with the numerical data we have 
actually used in (29) an average between b(4,2)[h_-0 and b(4,2)lh_-i sO as to shift 
from k~ ~it _~ 1.3093 to a pseudo-critical k~dt(N4) ~_ 1.258). Slightly less impressive is 
the agreement between the second cumulants, but this is to be expected since near the 
pseudo-critical point k~ tit (N4), the second cumulant c2 (N4; k2) fluctuates quite wildly. 
We wish to stress that such an agreement rests both on the rigorous asymptotics (21), 
(23) and on the scaling hypotheses 

'1' m(k2) = ~ b(k2) (163) 

and 
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lim ] 1 1 ~ ' - l . N a , , ~ _ l = c o n s t .  ' (164) 
N4-~ b(k2) b0 
k 2 ~ k~ tit 

The best agreement, used in Table 4, is obtained by choosing ~, ~ 0.94. Eq. (163) is 

nothing but a natural consequence of  the vanishing of  the parameter m ( b )  for b(2,  4) 

b0, whereas the second condition (164) rests on a less firm ground and must be consid- 

ered as a working hypothesis to be better substantiated. Some of  the results discussed 

above show that the numerical evidence pointing toward a first-order nature of  the tran- 

sition can be explained in a natural geometrical framework. The bimodality, which has 

been underlined as a strong indication that the transition is of  a first order, is well 

explained by the presence of  entropically subdominating peaks in the distribution of  

singular triangulations. Similarly to what has been argued by Catterall et al. [5] ,  the 

system tunnels among such distinct subdominant configurations with some of  these con- 

figurations being metastable for N4 finite (especially those with h ~ 0, 1 . . . .  which 

dominate the crumpled phase, and those for which h >> 1 characterizing the branched 

polymer phase). Of  course the analytical arguments provided by us are all based on a 

kind of  mean-field approximation, since we consider only a restricted class of  triangu- 

lations. Mean-field analysis is in general not very reliable when it comes to predicting 

the order of  a phase transition. However, in this case we have seen that combined with 

an additional scaling assumption, we get reasonable agreement with Monte Carlo data 

for both k~(N4), Cl (N4) and c2(N4). This might indicate a validity beyond that usually 
provided by a mean-field approximation. 

A good test of  the reliability of  the geometric truncation used in the present work is 

to apply it to the more complicated system of 4D simplicial quantum gravity coupled 

to Abelian gauge fields. In that system one seemingly observes a new interesting phase 

structure [ 19], different from the branched polymer - crumpled phase originally reported 
in [20].  
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