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Onsager Symmetry from Microscopic TP Invariance
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We prove for a class of conservative interacting particle systems the validity of
Onsager reciprocity relations for the transport coefficients if the microscopic
dynamics is invariant under the combined action of time reversal and parity.
The situation is reminiscent of TCP invariance in quantum field theory. Our
systems include multicomponent zero-range and exchange dynamics.

KEY WORDS: Onsager symmetry; microscopic nonreversibility; TP invari-
ance; interacting particle systems.

1. INTRODUCTION

Even if the evolution of thermodynamic systems is irreversible, one can dis-
cover traces of the time reversibility of the underlying microscopic system.
The most well known consequences of microreversibility are perhaps
Onsager's symmetry of the transport coefficients(1) and the Onsager�
Machlup time reversal relation for the most probable trajectories creating
a fluctuation or relaxing it to equilibrium.(2) The question naturally arises
whether these macroscopic consequences of microreversibility, that we shall
denote briefly as macroscopic reversibility, can be obtained under more
general conditions for the microscopic dynamics. This possibility is not
usually discussed in the physical literature, in particular in textbooks,
where the prevailing attitude is well summarized by the following statement
from the introduction of a recent treatise by R. L. Stratonovich(3): ``If the
principle of time reversibility is invalid, then the number of useful relations
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of nonequilibrium thermodynamics is reduced drastically, and so the
theory becomes much poorer.''

Actually it is trivial to see that Onsager symmetry does not require
microscopic reversibility as a necessary condition. Consider in fact n
uncoupled one component thermodynamic systems some of which are
microscopically irreversible. The fact that they are uncoupled means that
the corresponding hydrodynamic equations are uncoupled. Assuming that
these equations are pure diffusions this means that the diffusion matrix is
diagonal. In this case the Onsager matrix is also diagonal and therefore is
symmetric.

A less trivial situation will be obtained if we can construct models in
which at least one of these matrices is not diagonal. In a recent paper(4) we
constructed a microscopically non reversible lattice gas with zero range
interaction which provides a very simple example of this situation. By
microscopic reversibility we understand the validity of the detailed balance
condition, that is, the self-adjointness of the generator of the dynamics with
respect to the equilibrium measure.

One of the results of the present paper is that the model(4) belongs to
a rather wide class, which includes also multicomponent exclusion systems,
sharing the same property. The reason why this class of models satisfies
Onsager symmetry has to be found in the special structure of the gener-
ators of the dynamics. In fact, one discovers that in spite of the fact that
they are not self-adjoint with respect to the equilibrium measure, these
generators are connected to their adjoints by a a parity operation and
their invariant measures are invariant under this operation. The proof
generalizes that given by Eyink, Lebowitz, and Spohn(5) for the case of
microscopic reversibility.

The class of systems for which we have proved Onsager symmetry is
restricted by the fact that a rigorous derivation of hydrodynamics is
possible only in special cases. The class of non reversible models considered
in this paper give rise at the macroscopic level to nonlinear purely diffusive
equations in the terminology of ref. 10. The equations are of the following
form

�t \= :
d

i, j=1

�ui
[Di, j (\) } �uj

\]

where \(u, t)=(\1(u, t),..., \n(u, t)) is a vector standing for the densities of
different kinds of particles and Di, j is in general a non symmetric n_n
matrix.

Associated to our models there is an entropy functional S(\) that is
written as the integral of a density s(\): S(\)=� s(\(u)) du.
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The Onsager coefficients are defined in this context by

L(\)=D(\) } R(\)

where the matrix R is determined by the entropy density s(\(u)) in the
following way

(R&1)a, b (\(u))=
�2

�\a(u) �\b(u)
s(\(u)) (1.1)

which is by definition a symmetric matrix. Onsager's reciprocity relations
mean that L is a symmetric matrix, a property which holds for our models.

We believe that our result should extend to a wider class of translational
invariant systems admitting a hydrodynamic description and invariant
microscopically under TP. The special role of parity is presumably connected
to translational invariance.

The results of the present work remind of quantum field theory, in
particular of the TCP invariance. As it is well known in field theory the
vacuum state, which in our analogy corresponds to the invariant measure,
is invariant under the application of each of these operations T, C, P
separately but there are relationships among scattering or reaction
amplitudes which do not require the invariance of the dynamics under each
operation.

Physicists have generalized Onsager symmetry to stationary non equi-
librium situations.(6) In a forthcoming paper we shall discuss also this
problem within a rigorous treatment of interacting particle models.

All the models considered above are conservative. In a paper of the
authors in collaboration with M. E. Vares, (7) we have analyzed a class of
dissipative systems whose dynamics is a superposition of the Kawasaki and
Glauber dynamics.(8, 9) These are one component models and we were able
to show that the Onsager�Machlup time reversal relation can still hold in
absence of microscopic reversibility.

2. MULTI COMPONENT ZERO RANGE PROCESSES

For simplicity, we shall restrict ourselves to one dimensional two com-
ponent models but all analysis can be carried out for any space dimension
and for any number of components. Moreover, our results are not restricted
to the neighborhood of the equilibrium.

We consider an interacting particle system that describes the evolution
of two types of particles on the discrete one dimensional torus with N
points, denoted by TN (the integers modulo N ). Sites of TN are denoted by
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x, y and the configurations by the Greek letter '=('1 , '2) so that 'a(x)
stands for the total number of particles of type a at site x for the configura-
tion '. The stochastic dynamics can be described as follows. Fix a non-
negative function g: N � R+ that stands for the rate at which particles
jump, and two finite range, mean zero transition probability pa( } ), a=1, 2,
on Z (for a=1, 2, �y ypa( y)=0 and pa(x)=0 for |x| large enough). We
shall assume the jump rate g to vanish at 0, to be Lipschitz and to diverge
at infinity: g(0)=0<g(i) for i�1, | g(k+1)& g(k)|�l0 and limk � � g(k)
=�. If there are ka , a=1, 2, particles of type a at a site x of Z, at rate
pa( y) g(k1+k2)[ka �k1+k2] one particle of type a jumps from site x to
x+ y. This happens independently at each site.

The generator 0N of this Markov process acts on functions f as

0N f=
N 2

2
:
2

a=1

:
x, y # TN

pa( y) T x, x+ y
a f

where the addition in TN means addition modulo N; the operators [T x, y
1 ,

x, y # TN] are defined by

(T x, y
1 f )('1 , '2)=rx(') '1(x)[ f ('x, y

1 , '2)& f ('1 , '2)]

with rx(')= g('1(x)+'2(x))�['1(x)+'2(x)] and `x, y is the configuration
obtained from ` letting one particle jump from x to y:

`(z) if z{x, y
`x, y(z)={`(z)&1 if z=x

`(z)+1 if z= y

The operators [T x, y
2 , x, y # TN] are defined in a similar way.

This process has two conserved quantities: the total number of
'1 -particles and the total number of '2 -particles. It is therefore expected
that for each fixed density \a�0 there should exist an equilibrium state
with global density of 'a -particles equal to \a .

To describe these equilibrium probability measures, for each
.1 , .2�0, consider the product probability measure &N

.1 , .2
on NTN_NTN

defined by

&N
.1 , .2

[(', !); '(x)=k1 , !(x)=k2]

=
1

Z(.1 , .2)
.k1

1 .k2
2

g(k1+k2)!
(k1+k2)!

k1! k2 !
(2.2)
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for k1�0 and k2�0. In this formula Z(.1 , .2) is a normalizing constant
and g(k)! stands for g(1) } } } g(k).

Denote by E&N
.1 , .2

[ } ] expectation with respect to the measure &N
.1 , .2

and by ( } , } ) .1 , .2
the inner product in L2(&N

.1 , .2
). A simple computation

shows that these measures are invariant for the Markov process with
generator 0N . They are reversible, that is, the principle of detailed balance
holds, if the generator is also selfadjoint with respect to these measures,
i.e., if ( f, 0Ng) .1 , .2

=(0N f, g) .1 , .2
for every f, g in L2(&N

.1 , .2
). This is

possible if and only if the transition probabilities pa( } ) are even functions
for a=1, 2. If this is not the case, denote by 0*N the adjoint of 0N in
L2(&N

.1 , .2
). A simple computation shows that 0*N corresponds to the gener-

ator of a two�component zero range process with the same jump rate g
and transition probability pa*( } ) given by pa*( y)= pa(&y), a=1, 2. The
probability measures &N

.1 , .2
are invariant for 0*N and 0N , 0*N give rise to

the same hydrodynamics. Furthermore, we have the following relationship
between 0N and 0*N

0*N=P0NP

where P: NZd
_NZ d

� NZ d
_NZd

is the parity operator defined as follows

[P'](x)#'(&x), x # Z

and the action on functions is defined in the usual way:

[Pf ](')# f (P')

Notice that the invariant measures &N
.1 , .2

are invariant under P. Since 0N

and 0*N give rise to the same hydrodynamics, they are associated to the
same Onsager matrix L. On the other hand, the Onsager matrices corre-
sponding to 0N and 0*N must be one the transposed of the other which
implies that in this case they must be symmetric. This is confirmed by the
explicit calculation. The hydrodynamic equations can be easily written
down for the present situation which is a generalization of the models dis-
cussed in ref. 4.

Define \a : R+_R+ � R+ by \a(.1 , .2)=E&N
.1 , .2

['a(0)] and set
\̂=\1+\2 . One can check that \̂ is a smooth strictly increasing function
of .1+.2 . Denote by a=a( \̂) the inverse of \̂: a( } )=( \̂)&1 ( } ). A simple
computation, relying on the explicit formula (2.2) of the invariant measure,
shows that .a=(\a �\1+\2) a(\1+\2). In conclusion, for each fixed den-
sity (\1 , \2) we obtained an invariant state with total density of 'a -par-
ticles equal to \a . To keep notation simple we shall denote by b( \̂) the
function a( \̂)�\̂. We shall from now on fix a density \� =(\� 1 , \� 2).

643Onsager Symmetry from Microscopic TP Invariance



Let us consider now the unit interval T=[0, 1) with periodic bound-
ary conditions and functions #a : T � R+ , a=1, 2 with global density \� a :
�T #a(u) du=\� a . The main object of our study is the empirical measure
?N(t)=(?N

1 (t), ?N
2 (t)) defined by:

?N
a (t)=

1
N

:
y # TN

'a(t, y) $y�N

where, for u in T, $u is the Dirac measure concentrated at u and 'a(t, y)
the number of a-particles at site y at time t. If we denote by QN

#1 , #2
the dis-

tribution law of the trajectories ?N(t) when the initial measure is concen-
trated on a configuration pair ('N

1 , 'N
2 ) such that ?N(0) � (#1(u) du,

#2(u) du), as N A �, it is possible to show that QN
#1 , #2

converges weakly, as
N A �, to the measure concentrated on the path \(t, u) du whose density is
the unique solution of

{�t\=(1�2) �u[D(\) } �u\]
\(0, } )=#( } )

(2.3)

In this formula D=D(\) is the nonsymmetric diffusion matrix given by

D(\)=b( \̂) 7+b$( \̂) J(\) (2.4)

where 7 is the two by two diagonal matrix with entries :a, b equal to _2
a $a, b

and J(\) is the matrix with entries Ja, b(\)=_2
a\a . In these formulas, _2

a

stand for the variance of the transition probability pa( } ) for a=1, 2:
_2

a=�y y2pa( y).
The above result is a law of large numbers that shows that the empiri-

cal measure, in the limit of large N, behaves deterministically according to
Eq. (2.3). This result can be proved through the entropy method intro-
duced by Guo, Papanicolaou, and Varadhan in ref. 13. We refer to refs. 11
and 12 for a detailed proof in the case of a one component system.

To compute the Onsager matrix we need the entropy functional which
is obtained from the invariant measure:

S(#)=|
T

s(#(u)) du

where

s(#)= :
2

a=1

E(#a(u))+F(#1(u)+#2(u))
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is the entropy density and E(:)=�:
1 log :$ d:$, F(:)=�:

1 log b(:$) d:$.
A simple computation shows that the matrix R defined by Eq. (1.1) is such
that

(R&1)a, b (#)=$a, b
1

#a(u)
+

b$(#̂(u))
b(#̂(u))

where $a, b stands for the delta of Kronecker. The product L=DR can now
be computed using the explicit formula for D given in (2.4). The Onsager
matrix L in this context is diagonal with entries La, b equal to

La, b(#)=(1�2) _2
a#a b(#̂) $a, b

For the present models it is also possible to prove the Onsager�
Machlup time reversal relation. For this purpose we ask what is the prob-
ability that our system follows a trajectory different from the solution of
(2.3) when N is large but not infinite. This probability is exponentially
small in N and can be estimated using the methods of the theory of large
deviations introduced for the systems of interest in refs. 14, 15, and 9. The
main idea consists in introducing a modified system for which the
trajectory of interest (fluctuation) is typical being a solution of the corre-
sponding hydrodynamic equation, and then comparing the two evolutions.
For this purpose, for each pair of smooth functions Ha=Ha(t, u), a=1, 2,
we consider the time inhomogeneous Markov process defined by the gener-
ator

0H
N, t f=

N 2

2
:
2

a=1

eHa(t, ( y+x)�N )&Ha(t, x�N )pa( y) T x, x+ y
a f

with p( } ) and T x, x+ y
a as previously defined. The function H can be inter-

preted as an external field.
The deterministic equation satisfied by the density of the empirical

measure is now

{�t\=(1�2) �u[D(\) } �u\]&�u[b( \̂) A(\, H)]
\(0, } )=#( } )

where A(\, H) is the vector with components Aa=_2
a \a �u Ha .

Given a function \(t, u) twice differentiable with respect to u and once
with respect to t and such that �T \a(t, u) du=\� a this equation determines
uniquely up to an additive constant the field H=(H1 , H2).
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The probability that the original system follows a trajectory different
from a solution of (2.3) can now be expressed in terms of the field H. We
introduce the large deviation functional

I0, t0
(\)= :

2

a=1

(_2
a �2) |

t0

0
dt |

T

du b( \̂) \a(�uHa)2

Let G be a set of trajectories in the interval [0, t0]. The large fluctua-
tion estimate asserts that

QN
#1 , #2

(G)&e&NI0, t0
(G) (2.5)

where

I0, t0
(G)= inf

\ # G
I0, t0

(\) (2.6)

The sign & has to be interpreted as asymptotic equality of the logarithms.
From the Eqs. (2.5), (2.6), one sees that to find the most probable

trajectory that connects the equilibrium \� to a certain state #(u) one has to
find the trajectory \(t, u) that minimizes I&�, 0(\) in the set G# of all trajec-
tories satisfying the boundary conditions

lim
t � &�

\(t, u)=\� , \(0, u)=#(u)

It is now possible to prove, following the same approach of ref. 7, that
the unique solution of our variational problem is the function \*(t, u)
defined by

\*(t, u)=\(&t, u) (2.7)

where \(t, u) is the solution of the hydrodynamic equation which relaxes to
equilibrium with initial state #. \*(t, u) is therefore a solution of the
hydrodynamic equation with inverted drift

�t \=&(1�2) �u[D(\) } �u \]

Equation (2.7) is the Onsager�Machlup time-reversal relation.
All the analysis carried out in this section extends to multi component

zero range processes evolving on the lattice Zd.
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3. MULTI COMPONENT EXCHANGE DYNAMICS

We introduce in this section a class of multi component exchange
models. The stochastic evolution can be described as follows. Two type of
particles evolve on the lattice Zd. The sites of the lattice are denoted by the
last letters of the alphabet: x, y, z and the configurations of the state space
[0, 1, 2]Z d

are denoted by the Greek letter '. In this way '(x)=0 if there
is no particle at site x for the configuration ' and '(x)=1, 2 if there is a
particle of type 1, 2. To keep notation simple we denote hereafter by
'=('1, '2) the configuration of particles of type 1 and 2. Thus '1 and '2

are configurations of [0, 1]Zd
such that '1(x)=1 (resp. '2(x)=1) if and

only if '(x)=1 (resp. '(x)=2).
The dynamics can be informally described as follows: Fix a class of

cylinder functions cx, y : [0, 1, 2]Z d
� R+ . We shall often write c(x, y, ') for

cx, y('). At rate c(x, y, ') the occupation variables '(x) and '( y) are
exchanged if the configuration is '. The generator 0 of this process on the
lattice Zd is thus

(0f )(')= :
x, y # Z d

c(x, y, ')[ f (_x, y')& f (')]

where _x, y' stands for the configuration ' with the occupation variables
'(x) and '( y) exchanged:

'(z) if z{x, y
(_x, y')(z)={'( y) if z=x

'(x) if z= y

The operators _x, y naturally extend to cylinder functions: (_x, yf )(')=
f (_x, y'). Denote by [St , t�0] the semigroup associated to the Markov
process with generator 0.

We now introduce the assumptions made on the jump rates [cx, y ,
x, y # Zd ]. We shall assume that these jump rates are translation invariant
and of finite range in the sense that

c(x, y, ')=c(x&z, y&z, {z')

for all z in Zd and that c(x, y, ')=0 whenever |x& y| is large enough. Here
{x' stands for the translation of the configuration ' by x units, so that
({x ')(z)='(x+z) for all x, z in Zd. Moreover, to avoid singularities we
assume that the jump rates c(x, y, ') are not degenerated: c(x, y, ')>0 if
'(x){'( y) and |x& y|=1.
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Fix a positive integer N, denote by 4N the cube of linear size 2N+1
centered at the origin: 4N=[&N,..., N ]d and denote by 0N the generator
of the Markov process described above restricted to 4N with periodic
boundary condition. 0N is given by

(0N f )(')= :
x, y # 4N

c(x, y, ')[ f (_x, y')& f (')] (3.8)

Denote by [S N
t , t�0] the semigroup associated to 0N .

Since we assumed the rates to be non degenerated, there are only two
conserved quantities: the total number of particles of type 1 and the total
number of particles of type 2. In particular, for each fixed M1�0, M2�0
such that M1+M2�|4N |, there exist a unique invariant measure, denoted
by &N

M1 , M2
, concentrated on configurations ' with Ma particles of type a,

a=1, 2. This class of invariant measures inherits the translation invariance
property of the dynamics: E&N

M1 , M2
[{x f ]=E&N

M1 , M2
[ f ] for all cylinder func-

tions f.
We assume that this family of invariant measures has good limit

properties as 4N A Zd. More precisely, denote by A the set [(%1 , %2), %a�0,
%1+%2�1]. We assume that for each \ in A, as 4N A Zd and Ma�|4N | �
\a , the measure &N

M1 , M2
converges weakly to a probability measure, denoted

by &\1 , \2
. Of course this family of probability measure is invariant for the

infinite volume dynamics: E&\1 , \2
[0f ]=0 for every cylinder function f.

Denote by Td the d-dimensional torus (&1, 1]d. Fix a profile
#: Td � A and denote by ?N

a (t) the empirical measure obtained assigning
mass N&d to each particle:

?N
a (t)=N &d :

x # T
d
N

'a
t (x) $x�N

a=1, 2. Under the previous assumptions on the generator 0 and some
additional hypotheses on the invariant measures &\ , a law of large numbers
for the empirical measure ?N

a (t) speeded up by N 2 can be informally
derived as in ref. 5. More precisely, one can show that starting from an
initial measure concentrated on a configuration pair ('1, '2) such that
?N(0) � (#1(u) du, #2(u) du), as N A � the empirical measure diffusively res-
caled ?N

a (tN 2) converges in probability to an absolutely continuous
measure ?a(t)(du)=\a(t, u) du whose density \a is the solution of a system
of parabolic equations of the form

�t \= :
d

j, k=1

�uj
[Dj, k(\) } �uk

\]
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In this formula, D=[Da, b
i, j , a, b=1, 2, 1�i, j�d ] is the diffusion matrix

connected to the Onsager matrix by Li, j=Di, jR. Onsager reciprocity rela-
tion states that

La, b
i, j =Lb, a

j, i (3.9)

for 1�i, j�d, a, b=1, 2.
The derivation of the hydrodynamic equation can be done in a com-

pletely rigorous way for special models. For instance, for the two-colour
mean-zero asymmetric simple exclusion process.

As shown in ref. 5 the Onsager matrix L is composed of a static and
a dynamic part

La, b
i, j (\)=&:

z

zj ('b(z), W a
0, ei

) \+|
�

0
:
z

(_z, z+ejSr W a
0, ei

, W b
z, z+ej

) \ dr

=La, b Stat
i, j (\)+La, b Dyn

i, j (\) (3.10)

In this formula ( } ) \ stands for the expectation with respect to &\ and
Wa

z, z+ej
=Cz, z+ej

['a(z)&'a(z+ej)]. Onsager relation (3.9) is satisfied if
the generator of the process is self-adjoint with respect to the equilibrium
measure, i.e., if (0f, g) \=(0g, f ) \ for all f, g in L2(&\). This means that
the stochastic dynamics is reversible.

We want to prove (3.9) under the weaker requirement of TP
invariance. Let 0* denote the adjoint of 0 with respect to &\ . It follows
from the identity (0f, g) \=( f, 0*g) \ that 0* is given by

(0*f )(')= :
x, y

c*(x, y, ')[ f (_x, y')& f (')]

where

c*(x, y, ')=c(x, y, _x, y')
&\(_x, y')

&\(')
(3.11)

We shall assume that the adjoint 0* is related to the generator 0 by the
parity relation:

0*=P0P

where P is the parity operator defined in the previous section: (P')(x)=
'(&x), (Pf )(')= f (P').
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A simple computation shows that P_x, yP=_&x, &y for x, y in Zd.
In particular, it follows from the identity 0*=P0P that

c*(x, y, ')=c(&x, &y, P') (3.12)

On the other hand, we claim that &\ is invariant under the parity
operation. Fix a cylinder function f and denote by P&\ the probability
measure defined by P&\(')=&\(P'). Changing variables, we have that

| 0*fd(P&\)=| P0*fd&\

Since 0*=P0P and since &\ is invariant for 0, the previous expression is
equal to

| 0Pfd&\=0

Therefore � 0*fd(P&\)=0 for every cylinder function f. Since 0 and 0*
have the same invariant measure and P&\ is concentrated on configurations
with asymptotic density equal to \, assuming that there is only one
extremal invariant and translation invariant probability measure concen-
trated on configurations with asymptotic density equal to \, we have that
P&\=&\ .

We are now ready to prove that L satisfies the Onsager reciprocity
relations if 0*=P0P. We consider separately the static and the dynamic
part of the Onsager matrix L. We begin with the static part.

By formula (3.10), La, b Stat
i, j (\) is equal to

& :
x # Z d

xj ('b(x), W a
0, ei

) \

Fix a cube 4 and denote by ( } , } ) 4, \ the inner product with respect to
&4, \ , the measure &\ restricted to 4. Assuming that the correlations decay
fast enough, the previous sum is equal to

& lim
4 A Zd

:
x # 4

xj ('b(x), W a
0, ei

) 4, \=& lim
4 A Zd

1
|4|

:
x, y # 4

xj ('b(x), W a
y, y+ei

) 4, \

The last equality follows from our assumption on the decay of correlations.
Fix a cube 4 centered at the origin. A simple computation shows that

:
x, y # 4

x j ('b(x), W a
y, y+ei

) 4, \= :
x, y # 4

xj yi ('b(x), 0'a( y)) 4, \
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On the other hand, since 0* is the adjoint of 0 and since by assumption
0*=P0P, we have that

:
x, y # 4

xj yi ('b(x), 0'a( y)) 4, \= :
x, y # 4

xj yi (P0P'b(x), 'a( y)) 4, \

Since &\ is invariant under the parity operation, changing variables in the
right hand side of the previous identity, we show that it is equal to

:
x, y # 4

x j yi (0'b(&x), 'a(&y))4, \= :
x, y # 4

xj yi (0'b(x), 'a( y)) 4, \

This proves that La, b Stat
i, j (\)=Lb, a Stat

j, i (\).
We turn now to the dynamic part. It follows from formula (3.10) that

La, b Dyn
i, j (\) is given by

|
�

0
dr :

x # Z d

(_x, x+ej SrW a
0, ei

, W b
x, x+ej

) \

Changing variables !=_x, x+ej ', by (3.11) we obtain that the previous
expression is equal to

|
�

0
dr :

x # Z d

(Sr W a
0, ei

, W b, V
x, x+ej

) \

In this formula W* stands for the current with respect to the reversed pro-
cess. Since by assumption 0*=P0P and &\ is invariant for the parity
operator, we have that

(SrW a
0, ei

, W b, V
x, x+ej

) \=(PW a
0, ei

, SrPW b, V
x, x+ej

) \

By (3.12) we have that PW a
x, y=&W a, V

&x, &y . Changing variables in the
summation over x, we obtain that the previous time integral is equal to

|
�

0
dr :

x # Z d

(Sr W b
0, ej

, W a, V
x, x+ei

) \

This concludes the proof of the Onsager reciprocity relations in the case
where the adjoint is such that 0*=P0P.

We may ask also what happens if in d dimensions the generator and
its adjoint are related for example by a reflection of the form P(x1 ,..., xd)=
(&x1 ,..., &xi , xi+1 ,..., xd). It is easy to see that the elements of the Onsager
matrix are symmetric if the two space indices belong to the same group
(reflected or non reflected) and antisymmetric if the indices belong to dif-
ferent groups.
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