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Polymeric phase of simplicial quantum gravity
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Abstract

We deduce the appearance of a polymeric phase in 4-dimensional simplicial quantum gravity by varying the values of the
coupling constants and discuss the geometric structure of the phase in terms of ergodic moves. A similar result is true in
3-dimensions. q 1998 Elsevier Science B.V.

1. Introduction

Path-integral approach to quantum gravity leads
in a natural way to geometric and probabilistic prob-
lems that have a great interest both in physics and

w xmathematics 1,2 . A basic issue of the theory is to
make sense of a formal probability measure on Rie-
mannian structures associated with the partition func-
tion

yS w g , M xZZs DD g M e 1Ž . Ž .Ý H Ž .Riem M
Top

Ž .Diff M

where the action S is defined as a functional over
Ž .Riemannian manifolds M, g

1
4 4' 'w xS M , g sL dx g y dx g RH H

16p GŽ . Ž .M , g M , g

2Ž .

with L the cosmological constant and G the gravita-
tional constant. ZZ is a badly ill-defined quantity
since both the sum over topologies and the integra-

Ž .Riem Mtion on the space of Riemannian structures Ž .Diff M

cannot be given any sensible mathematical status.

The idea of simplicial quantum gravity is the
classical and often useful idea of bypassing such
issues by discretizing the theory and recovering the
continuum one with a suitable limiting procedure.

w xFollowing Regge 8 we use as discrete Riemannian
manifolds piecewise flat manifolds obtained by glu-
ing together a finite number of simplices. Briefly:

Ž .inequivalent in the sense of Tutte dynamical trian-
gulations will simulate the inequivalent Riemannian
structures; the vector

fs N , N , N , N , N 3Ž . Ž .0 1 2 3 4

with N the number of i dimensional simplices isi

called the f vector of the triangulation and the
curvature is concentrated on the dy2 dimensional

Ž .simplices bones : the curvature on the bone b is

1y1'48 15 2pyq b cosŽ . 4
K b s 4Ž . Ž .2 q ba Ž .

Ž .where q b is the number of d dimensional sim-
plices incident on b and a is the length of the sides
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of the gluing simplices. The discrete counterpart of
Ž .the action 2 is

Ssk N yk N 5Ž .4 4 2 2

where k depends linearly on the inverse of the4

gravitational constant and on the cosmological con-
stant, whereas k is proportional to the inverse of the2

gravitational constant. Restricting to triangulations
with spherical topology, the partition function of the
discrete theory is:

ZZ k ,k s ek 2 N2ŽT .yk4 N4ŽT . . 6Ž . Ž .Ý2 4
4TgS

This can be written more explicitly in the form

ZZ k ,k s W N , N ek 2 N2yk 4 N4Ž . Ž .Ý Ý2 4 2 4
N N4 2

s Z N ,k eyk 4 N4 7Ž . Ž .Ý 4 2
N4

Ž .where W N , N is the number of inequivalent2 4

spherical triangulations with N simplices and N4 2
Ž .bones, and Z N ,k is the canonical partition func-4 2

Ž .tion at fixed volume . It is important to stress that
N and N completely determine the f vector due to4 2

the Dhen-Sommerville relations:

4
iy1 N T sx T 8Ž . Ž . Ž . Ž .Ý i

is0

4 iq1 !Ž .iy1 N T s0Ž . Ž .Ý iiy2kq2 ! 2ky1 !Ž . Ž .is2 ky1

9Ž .

Ž .with ks1,2. Eq. 8 is just the Euler-Poincare equa-´
Ž .tion while 9 are consequence of the fact that the

link of every 2k-simplex is an odd dimensional
sphere, and hence has Euler number zero. Our inter-

Ž .est will be concentrated on the statistical system 7 .

2. Geometrical constraints and ergodic moves

ŽThere exists a set of ergodic moves elementary
.surgery operations in 3 and 4 dimensions called

Ž . w xgenerically k,l moves 5 : k and l are integers
numbers such that kq lsdq2. The moves consist
in cutting out a subcomplex made up of k simplices

substituting it with a complex of l simplices with the
same boundary. In particular, if sd is the d-dimen-
sional simplex, the k complex is the star of a dyk
q1 simplex in E sdq1 and the l complex is the

Ž w x .complement see 5 for a detailed description . In
this way all spherical triangulations can be con-
structed starting from the basic E sdq1 with a finite

Žnumber of moves actually in 4d this is true only for
.smooth triangulations . Following this construction

we can give a characterization of the generic f
Ž .vector by analyzing how k,l moves modify it:

1,5 ™ D fs 1,5,10,10,4 10Ž . Ž . Ž .1,5

2,4 ™ D fs 0,1,4,5,2 11Ž . Ž . Ž .2,4

3,3 ™ D fs 0,0,0,0,0 12Ž . Ž . Ž .3,3

and obviously D fsyD f and D fsyD f.5,1 1,5 4,2 2,4
Ž .If n is the number of moves of the type k,l thek , l

corresponding f vector will be

fs 6qx ,15q5x qx ,20q10 x q4 x ,Ž 1 1 2 1 2

15q10 x q5x ,6q4 x q2 x 13. Ž .1 2 1 2

with x sn yn and x sn yn .1 1,5 5,1 2 2,4 4,2

This characterization of the f vector is equivalent
Ž .to 3 with the Dhen-Sommerville relations. This is

not enough to completely determine the possible f
vectors since it is not always possible to perform a
Ž .k,l move. It is always possible apply a move of the

Ž .type 1,5 but to apply the reverse move we must
start from a triangulation that has a vertex with a star
made of 5 simplices. It is often possible to apply a

Ž .move of type 2,4 but in order to apply the reverse
move we must start from a triangulation that has an
edge with a star made of 4 simplices. A result in this
direction is the following, essentially due to Walkup
w x9 :

Theorem For any combinatorial triangulation of a
4 sphere the inequality

N G5N y15 14Ž .1 0

holds with equality if and only if it is a stacked
sphere.

A d-dimensional stacked sphere is a triangulation
dq1 Ž .obtained from E s applying only 1,dq1 moves.
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To this lower bound theorems we can add a more
trivial upper bound

N N y1Ž .0 0
N F 15Ž .1 2

that only says that evidently the edges must be less
than all the possible couple of vertices, together with
the obvious condition

N Gdq2 16Ž .0

Translating this inequalities in terms of moves we
obtain

x G0, x G0, x 2 qx y2 x G0 17Ž .2 1 1 1 2

It is interesting also to write explicitly these con-
straints in terms of the parameters that are usually
used, N and N , since we will be interested in the2 4

statistic behavior at fixed volume:
5N F N q5, N G2 N q8 18Ž .2 4 2 42

9N 2 y18 N y12 N N q24N q4N 2 G0 19Ž .2 2 2 4 4 4

w xIt will be very useful 2 in the study of the asymp-
totic behavior of our model to introduce the parame-
ter jsN rN . Also the geometrical constraints be-2 4

come more easy, in the large volume limit, using this
Ž .parameter; Eqs. 18 tell to us that

5 5 8
jF q , jG2q 20Ž .

2 N N4 4

that in the limit N ™` become4

52FjF 21Ž .2

Ž .From Eq. 19 we obtain

j 24
29j y18 y12jq q4G0 22Ž .

N N4 4

Ž .and using the bounds 21 we obtain

229j y12jq4s 3jy2 G0 23Ž . Ž .
that is always true.

These asymptotic conditions are consequences of
Walkups theorem whose demonstration is in fact
quite not trivial. However, we can give a simple
argument in terms of moves providing an intuitive
picture: as we have already stressed it is far more

Ž .easy to perform a k,l move with k- l than the
reverse one and such a move increases the volume of

the manifold while the reverse move decreases it; so
we can conclude that, when the number of simplices

Žis large, almost all in fact Walkups theorem say all
Ž ..17 triangulations are obtained with a number of
Ž . Ž .k,l moves greater than l,k . So we can obtain the

Ž .conditions 21 as limiting values in the boundaries
of the allowed region:

20q10 x q4 x1 2
j s lim js lim s2 24Ž .min 6q4 x q2 xx ™` x ™`2 2 1 2

20q10 x q4 x 51 2
j s lim js lim s 25Ž .max 6q4 x q2 x 2x ™` x ™`1 1 1 2

A funny dynamical interpretation of the constraints
can be given in terms of equilibrium points of the
‘‘moves operators’’: starting from a triangulation
with jsN rN we have a jump2 4

N q10 N2 2
D js y 26Ž .1,5 N q4 N4 4

The equilibrium condition is

5
D js0ljs 27Ž .1,5 2

and this equilibrium point is stable in the sense that
5 5

D j)0lj- , D j-0lj) 28Ž .1,5 1,52 2

Ž .Likewise for move 2,4

D js0ljs2 29Ž .2,4

and also this equilibrium point is stable in the sense
Ž .28 . This simple analysis explain why only the

Ž .region 21 is spanned when constructing spherical
triangulations with a large number of simplexes:
because points j that are outside this interval are
attracted towards it.

3. Asymptotic behavior of canonical measure

The behavior of the system conditioned to fixed
volume is described by canonical partition function

Z k , N s ek 2 N2 s W N , N ek 2 N2 30Ž . Ž . Ž .Ý Ý2 4 2 4
T NN 24

w xWe can study it by using the parameter j 2 :

Z k , N s W N ,j N ek 2 N4 j k 31Ž . Ž . Ž .Ý2 4 4 k 4
k
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Since the number of triangulations with N sim-4
Žplexes is asymptotically exponentially bounded see

w x .2 for a demonstration , the asymptotic behavior of
Ž .W N ,j N can be formalized in the form4 k 4

W N ,j N ; f N ,j e N4 sŽ j k . 32Ž . Ž . Ž .4 k 4 4 k

Ž .with f N ,j that has typically a polynomial or4

subexponential asymptotic behavior in N . The mea-4

sure induced in this way in the space of triangula-
tions is defined by the probabilities

f N ,j e N4Ž sŽ j k .yk 2 j k .Ž .4 kCm j s 33Ž . Ž .k , N k2 4 Z k , NŽ .2 4

The asymptotic behavior of probability measures
defined in this way is a classical problem of proba-
bility theory and under general conditions the result
is

mC ´ m d jyj ) 34Ž .Ž .Ýk , N N ™` i i2 4 4
i

The points j ) are defined by the conditioni

) )s j yk j ssup s j yk jŽ .Ž .i 2 i j F j F j 2min max

35Ž .
Ž .and the convergence 34 is very fast; namely con-

sidered a set A such that j )

fA we havei

e N4Žsupj g Aw sŽ j .yk 2 j x.
C yK N4m A ; ;e 36Ž . Ž .

) )k , N N Ž sŽ j .yk j .2 4 4 2e

with K)0; that says that the probability of deviant
events A goes to zero exponentially fast: this fact is
usually referred as the deviations are large.

This general argument can be formalized in this
particular case in terms of Laplaces method: the
form of the partition function

Z k , N s f N ,j e N4Ž sŽ j k .qk 2 j k . 37Ž . Ž . Ž .Ý2 4 4 k
k

has the structure of a Riemann sum

Z k , N ; N f N ,j e N4Ž sŽ j k .qk 2 j k .D jŽ . Ž . Ž .Ý2 4 4 4 k k
k

38Ž .
namely j yj ;1rN and we have a sum ofkq1 k 4
j y jma x min Ž .;N terms. So for large N 38 is well4 4Dj

Ž w xapproximated by the continuum version see 2 for
˜Ž . Ž ..details and an explicit form of s j and f N ,j4

jmax N Ž sŽ j .qk j .4 2˜Z k , N ; f N ,j e dj 39Ž . Ž . Ž .H2 4 4
jmin

Laplaces theorem says that when N is large almost4
Ž .all the contribution to the value of the integral 39

Ž . )comes from the region near the point s j ; and this
Ž .is a result of type 34 .

4. Polymeric phase

We are now interested in a theoretic interpretation
of numerical results that give a strong evidence of
the appearance of a polymeric phase for k large2

w xenough 3 . We will show that this phenomena is a
direct consequence of the concentration of the mea-
sure illustrated in the previous chapter and we will
analyze the geometrical characteristic of this phase.

When k is large, triangulations with large j are2

favorite; we translate this simple idea into a mathe-
matical language: the points of maximum in the

Ž .exponent of the expression 39 are determined by
the condition

sX
j qk s0 40Ž . Ž .2

from this it is immediately to deduce that if k )2
XŽ . Ž .yinf s j the expression 40 is alwaysj F j F jmin max

greater than zero and the canonical measure concen-
trates on j :max

mC j ´ d jyj 41Ž . Ž . Ž .k , N N ™` max2 4 4

These triangulations are well described by the lower
bound result of Walkup and we can conclude that in
this region of the parameter k the dominant config-2

Ž .urations in the statistical sum 30 are essentially
stacked spheres. A more precise statement could be
that for the dominant configurations the most impor-

ŽŽ . .tant phenomena is the stacking 1,dq1 moves ; a
general characterization can in fact be given: starting

N y 2 y y 64 2from y s we obtain1 4

5 y 52
js y q 42Ž .

2 N N4 4

We can easily conclude that triangulations with large
5N characterized by a jsj s are obtained with4 max 2

the condition
y2

lim s0 43Ž .
NN ™`4 4

This condition is satisfied not only by stacked
spheres, which are defined by the relation y s0,2
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but also by triangulations with y sC-` that can2

be constructed, for example, by stacking starting
Ž .from a generic triangulation defined by y sC and2

not from the basic triangulation E s5; and more in
general the condition is satisfied also by triangula-
tions constructed with a number of moves y that2

grows with a power in N smaller than one.4

The practical consequence of this assertions is
that we can study the statistical property of simpli-
cial quantum gravity for that region of k by study-2

ing a more simple model obtained by restricting the
space of configurations: the smaller statistical system
that we will consider is the system constituted by
only stacked spheres. We have just showed that this
in fact is a further simplification but what happens is
that this subsystem contains all the principal features
of interest. In general the following trivial relation is
true:

Z k , N ) ek 2 N2 44Ž . Ž .Ý2 4
Ž .S.S. N4

but for k large enough this relation becomes2

Z k , N R ek 2 N2 45Ž . Ž .Ý2 4
Ž .S.S. N4

Ž .where the abbreviation S.S. means obviously
Ž .Stacked Spheres and the symbol R means that the
exact relation is G but the asymptotic behavior is
the same ; .

The study of the partition function for the stacked
Ž .spheres system 45 is an easier problem: the condi-

tion for stacked spheres y s0 tells to us that N s2 4

6q4 y and N s20q10 y and we obtain the1 2 1
5relation N s N q5. This latter tells to us that the2 42

number of bones is determined by the number of
simplices. Consequently, the explicit expression of
the partition function is:

5
.k Ž N q52 4Z k , N sW N e 46Ž . Ž . Ž .2S.S . 2 4 S.S . 4

The problem that remain to face is the calculation of
the number of inequivalent stacked spheres with N4

simplices: we will do it in an approximate way
stressing above all the fact that the structure of the
different configurations is typical of branched poly-

Ž .mers with a fundamental element monomer that
builds up a tree configuration, and we will also

1calculate the entropy exponent g and show that it is 2

as is typical of branched polymers.
The tree structure that is behind stacked spheres

can be easily reconstructed from the following geo-
Ž .metrical interpretation of 1,5 moves: starting from

s5 we construct the basic spherical 4-d triangulation
5 Ž .as E s ; a 1,5 move is obtained by substituting a 4-d

simplex of this triangulation with 5 simplices as
discussed in Section 2; but we can proceed also in a
different way by constructing a new triangulation of
the 5-d ball gluing a second s5 trough a 4-d face to
the beginning simplex. The spherical triangulation
E B where B is the new triangulating ball obtained in
this way is equivalent to the triangulation obtained

Ž .with the 1,5 move. This construction is general: we
obtain every stacked sphere as the boundary E B ofn

triangulations of the 5-d ball obtained by gluing a s5

to B through a 4-d face of E B and thisny1 ny1
w xcorrespondence is easily seen to be one to one 9 . It

is also easily to see that E B is a stacked sphere withn

2q4n simplices. This construction is illuminating
in characterizing a polymeric phase in simplicial
quantum gravity. The monomer with which the poly-
mer is builded is provided by the s5 simplices and
the polymer structure is obtained by analyzing the
only tree-like triangulations of 5-d ball whose
boundary are stacked spheres. A good insight in the
structure of such polymers and also a tool for calcu-

Ž .lating W N is obtained by analyzing the 1-dS.S. 4

skeleton of the dual of B s. To every s5 it isn

associated a point and in each such points there are 6
lines incident that correspond to the 6 4-d faces;
when two s5 are glued along a face the correspond-
ing points are joined by a line. The graphs obtained
in this way are all the possible trees the incidence
numbers of which are only 6 and 1: the vertices with
incidence 6 represent the 5-d simplices glued to-
gether and the vertices with incidence 1 represents
the free 4-d faces of E B . This construction is notn

enough to reconstruct the ball B , and the corre-n

sponding stacked sphere. This reconstruction would
be possible only from the knowledge of the full dual
structure, nonetheless the above partial construction
will be enough to calculate the right asymptotic
behavior.

The problem of counting such trees is equivalent
to a problem of counting isomers in chemistry: a

w xsolution is given in the classical paper of Otter 7 .
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The asymptotic expression of the number of not
isomorphic trees with n vertex and ramification
number not greater than m is:

n
a mŽ .

- mT ;c m 47Ž . Ž .n 5

2n

This is easily seen to be also the solution of our
counting problem: namely the following relation
holds:

T - m sT Ž1,m. 48Ž .n ŽŽmy2.nq2,n.

The notation of the left side was already explained
and the symbol on the right side means the number

Ž .of trees with my2 nq2 vertices with number of
incidence 1 and n vertices with number of incidence
m. The equality is verified by constructing explicitly
a one to one correspondence: starting from a tree in
T Ž1,m. we delete all vertices with number ofŽŽmy2.nq2,n.
incidence 1 and the corresponding lines and we
obtain an element in T - m; the reverse correspon-n

dence is obtained by joining new vertices with rami-
fication number 1 to the old vertices until all the old
vertices reach the exact ramification number m.

In order to count the number of stacked spheres
with N simplexes we have to estimate the number4

N y 24of inequivalent trees with vertices with inci-4

dence 6 and N vertices with incidence 1; we get4

Ž1,6. N y2
- 6
N y24 4W N RT sTŽ . .S.S. 4 ŽN ,4 4 4

N41N y24
44 aa ž /

sc ;cos t 49Ž .5 5
N y24 2 2N4ž /4

With this rough but effective asymptotic estimate
we get informations about the canonical partition

Ž . Ž .function by using relations 45 , 46

1 51 .N Ž log aq k4 2Z k , N RC k e 50Ž . Ž . Ž .4 22 4 2 5

2N4

Thus, we have obtained an expression of the form

f N e N4 k4
cŽk 2 . 51Ž . Ž .k 42

Ž .with a subleading asymptotics f N of polynomialk 42

type. The subleading asymptotics is particularly im-
portant because from it we can deduce the entropy

Ž . gy3exponent g : the general form is f N ;N thatk 4 425 1in our case gives gy3sy and we obtain gs2 2

as is typical of branched polymers and as comes out
w xfrom numerical simulations 3 . From the knowledge

of this exponent we can for example obtain the
w xcritical behavior of susceptibility 3

d2
ygcG r ,k ,k s ZZ k ,k ; k ykŽ . Ž . Ž .Ý 2 4 2 4 4 42dk4r

1
yc 2s k yk 52Ž .Ž .4 4

Ž . w xwhere G r,k ,k is the correlation function 3 .2 4
Ž .From expression 50 we can also get an estimate

of the critical line that we expect to be quit good
when the parameter k is large enough:2

1 5ck k R log aq k 53Ž . Ž .4 2 24 2

This turn out to be in fact compatible both with
w xnumerical and analytical 2 results.

5. Conclusions

There exists a Walkups theorem also for the
w x3-dimensional case 6,9 , and all the previous analy-

sis can be repeated.
The asymptotic behavior of canonical measure

suggested in Section 3 stresses the peculiar character
of simplicial quantum gravity as a critical system:
the measure concentrates on different regions of the
space of configurations for different values of k .2

This characteristics allows, for example, to compute
the mean value of geometrical objects restricting on
a smaller region of the configuration space.

E C f ´ E ) f 54Ž . Ž . Ž .m N ™` d Ž jyj Žk ..k , N 4 22 4

This is exactly the procedure followed to describe
the structure of the polymeric phase and more infor-
mations could be obtained with a detailed study of

Žstatistical mechanics of stacked spheres correlations
.functions, for example .
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A further step must be the comprehension of the
geometric structure of the crumpled phase. This is
connected with the discovery of upper bound theo-

Ž .rems that substitute the trivial bound 15 ; recent
Ž w x .results see 4 , for example suggest that the region

of the phase space that corresponds to the crumpled
phase is characterized by the appearance of singular
structures.
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