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In this paper we show that Onsager-Machlup time-reversal properties of thermodynamic fluctuations
and Onsager reciprocity relations for transport coefficients can hold also if the microscopic dynamics

is not reversible. This result is based on the explicit construction of models which can be analyzed
rigorously. [S0031-9007(96)00737-5]
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Fundamental contributions to the theory of irreversibleto nonlinear purely diffusive equations in the terminology
processes were the derivation of the reciprocal relationsf [3].
for transport coefficients in states deviating only slightly The equations are of the following form:
from equilibrium and the calculation of the most probable d
trajectory creating a fluctuation near equilibrium. The first ap = Z 9uAD(p) - 0u, P}, (1)
result was obtained by Onsager in 1931 [1] and the second i=1
one by Onsager and Machlup [2] in 1953. The calculationynhere p(u, 1) = (p;1(u, 1), ..., pa(u, 1)) is a vector stand-
of the most probable trajectory relies on the reciprocajng for the densities of different kinds of particles and
relations which in turn are a consequence of microscopigs jn general a nonsymmetric X n matrix.
reversibility. It turns out that the trajectory in question  associated with our models there is an entropy func-

is just the time reversal of the most probable trajectoryional S(p) that is written as the integral of a density
describing relaxation to equilibrium of a fluctuation. The s(5). 5(p) = [s(p(u)) du.

latter is a solution to the hydrodynamical equations. The Onsager coefficients are defined in this context by
These topics have received a certain amount of atten-
tion in the physical literature in the course of the last L(p) = D(p) - R(p), 2

40 years. No rigorous results have been, however, es- R . .
tablished. More recently, this subject has been taken u here the matrixR s deterr‘r_med by the entropy density
(p(u)) in the following way:

in various papers attempting more rigorous approaches.
[3-5], in the context of so-called interacting particle sys- . 92
tems and [6,7] in a context of deterministic dynamical (R ij(pWw) = ——————=s(p(u), 3)
api()ap;(u)
systems.
In [4] we discussed the following question: Is micro- which is by definition a symmetric matrix. Onsager’'s
scopic reversibility a necessary condition for the validityreciprocity relations mean thdt is a symmetric matrix,
of the Onsager and Onsager-Machlup results? The am property which holds for our models.
swer to this question is far from obvious because in going In the physical literature one usually derives the
from the microscopic to the macroscopic scale a lot of in-Onsager-Machlup time-reversal property from Onsager
formation is lost and irreversibilities at a small scale mayreciprocity relations by introducing appropriate hypothe-
be erased when taking macroscopic averages. ses on the nature of fluctuations. In our case fluctuations
In [4] we have exhibited a class of microscopic are completely described by a large deviation theorem
nonreversible stochastic dynamics for which the time{from which the Onsager-Machlup time-reversal property
reversal rule of Onsager and Machlup is still valid evenfollows. Onsager reciprocity relations are obtained as
for fluctuations very far from equilibrium. This class a by-product. The reason for choosing this approach is
of dynamics concerns one component systems with that the Onsager-Machlup time-reversal property and the
hydrodynamic equation of gradient type. Therefore therdarge deviation result are interesting by themselves and
is no Onsager reciprocity relation to verify. deeper than Onsager reciprocity. As emphasized later,
In this paper we present a class of nonreversible mulanother possibility is to start from the invariant measure,
ticomponent models giving rise at the macroscopic leveif this is known as in our case, and derive Onsager
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reciprocity directly. Our results are not restricted to thefor k; = 0 and k, = 0.

neighborhood of the equilibrium.

For simplicity, we shall restrict ourselves to one-

In this formulaZ(e, ¢,) is a
normalizing constant angl(k)! stands forg(1) - - - g(k).
Denote byE,~» [-] expectation with respect to the

Voi.e2

dimensional two-component models but all analysis camneasureygl’w e, Ey [fl= ff(n)vf;’l,%(dn) and

be carried out for any space dimension and for anyy (*, Y10, the inner product inLZ(yg

Ler)- A simple

number of components. As in [4], we consider periodiccomputation shows that these measures are invariant
boundary conditions. The systems considered in thisor the Markov process with generatdry. They are
paper differ from those of [4] due to the conservativereversible, that is, the principle of detailed balance holds,

character of the dynamics.

if the generator is also self-adjoint with respect to these

We consider an interacting particle system that describemeasures, i.e., € £, Ly )0, = (LnSf:8)o,.e, fOr eVery

the evolution of two types of particles on the discrete one, ¢ in LZ(VQ

dimensional torus witlv points, denoted by y (the inte-

gers modulaV). Sites ofZy are denoted by the characters

x, y and the configurations by the greek letger= (71, 12)

.e,)- This is possible if and only if the
transition probabilityp(-) is an even function.

Define p;: Ry X Ry = Ry by pi(er, @) =
E,» . [7m:(0)] and setp = p; + p>. One can check that

so thatn;(x) stands for the total number of particles of 5 is a smooth strictly increasing function ef; + ¢».

type i at sitex for the configurationp. The stochas-

Denote bya = a(p) the inverse ofp: a(-) = (p)~'(-).

tic dynamics can be described as follows. Fix a nonwe have thaip; = (p;/p1 + p2)alp) + p2). To keep
negative functiong: N — R, that stands for the rate at notation simple we shall denote by(p) the function
which particles jump and a finite range, mean zero transiz(5)/. Thus for each fixed density, p») we obtained

tion probability p(-) on Z [, yp(y) = 0 and p(x) = 0
for |x| large enough]. We shall assume the jump gate

an invariant state with total density af; particles equal
to p;. We shall from now on fix a densify; = (p1, p2).

vanish at 0, to be Lipschitz, and to diverge at the bound- |et us consider now the unit intervdl = [0, 1) with

ary:g(0) =0 < g(i)fori = 1, |gtk + 1) — g(k)| = Iy,

and lim—. g(k) = «. Ifthere arek;,i = 1,2, particles of

typei at a sitex of Z, atratep(y)g(k;, + ko) {ki/ki + ka}
one particle of type jumps from sitex to x + y. This
happens independently at each site.

The generatorLy of this Markov process acts on

functionsf as

N2 2 x,x+y
Lyf ==Y > pnr;" 1, (4)

2 J=1 xyEZy

where the addition iZy means addition modul®&/; the
operatorsT;” are defined by

(T ) (i, m2) = re)n; () [F(1” s m2) — (1, m2)]

with re(n) = glni(x) + m()]/{mx) + ()} and
n;” is the configuration obtained frony; letting one
particle jump fromx to y:

. 7i(z) if z # x,y,
7@ =4 mk -1 ifz=nx, (5)
7i(z) + 1 ifz=y.

The operatorgd’,” are defined in a similar way.

This process has two conserved quantities: the total

number of n; particles and the total number of,
particles.

periodic boundary condition and functiops: T — R,

i = 1,2 with global density p;: [1v:(u)du = p;.
The main object of our study is the empirical measure
pV (1) = (1), wb(0)):

Y0 =5 3wy, ™
YEZy

where, foru in T, 6, is the Dirac measure concentrated
at u and 7;(r,y) the number ofi particles at sitey at
time r. If we denote byQ}  the distribution law of the
trajectoriesu” (1) when the initial measure is concentrated
on a configuration pair(nt’,7?) such thatu"(0) —
(y1(w)du, y2(u)du) as N 1o, it is possible to show
that Qym converges weakly, a& 1 o, to the measure
concentrated on the pait(u, r)du whose density is the

unique solution of
ap = (0°/2)3.4D(p) - dup},
p0,:) =v().

In this formulac? = 3 y?p(y) and D = D(p) is the
nonsymmetric diffusion matrix given by

D(p) = b(p) + b'(p)J(p), 9)

(8)

It is therefore expected that for each fixedwherel is the identity and/(p) is the matrix with entries

density p; = 0 there should exist an equilibrium state J; ;(p) = p;.

with global density ofy; particles equal te;.

The above result is a law of large numbers that

The equilibrium probability measures depend on twoshows that the empirical measure in the limit of large
parametersp;, o = 0. Consider the product probability ¥ behaves deterministically according to Eq. (8). We

onNZ¥ x N~ defined by
vy oA m): mx) = ki, ma(x) = ko

N
measurev, o,

(ky + ky)!
ki!ky!

ko
_ 1 AR
Z(@1, ¢2) glki + ko)!

(6)

can now ask what is the probability that our system
follows a trajectory different from the solution of (8)
when N is large but not infinite. This probability is
exponentially small inv and can be estimated using the
methods of the theory of large deviations introduced for
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the systems of interest in [8], [9] and [10]. The main which relaxes to equilibrium with initial state. p*(u, t)
idea consists in introducing a modified system for whichis therefore a solution of the hydrodynamic equation with
the trajectory of interest (fluctuation) is typical being ainverted drift

solution of the corresponding hydrodynamic equation, and . 2

then comparing the t\?vo evoglquti)(/)ns. yFor this Surpose, for dip = ~(07/2)0{D(p) - dup}. (16)
each pair of smooth functiond; = H;(u,t),i = 1,2, we  Equation (15) is the Onsager-Machlup time-reversal
consider the time inhomogeneous Markov process defineiglation.

by the generator Denote byS(y) the functional defined by
N2 2 x —H.(x x,x+ S(y) = inf I—OO,O(I)) » (17)
Lz,tf _ 7 Z eH/((y+ )/N.t)—H;( /N,t)p(y)Tj yf pEG,
j=1 which, by the Boltzmann-Einstein relationship, has to be

identified with the entropy of the system. By inserting

. X ).(,x+y . . .
with p() andT; as previously defined. The function (15) into (17) we obtain an explicit formula for the

H can be interpreted as an external field. .
The deterministic equation satisfied by the density offNtrOPY:

the empirical measure is now S(y) = f S(y(u) du
J— . -I]—
ap = (0'2/2)814{D(p) Bup} where
p©O,) = v(), s(y) = D E(yj(w) + F(yi(w) + y2(u))
i—1
where A(p,H) is the vector with components; = !

and E,F are the real functions defined b¥(a) =

[ Ina’da’, F(a) = [“ Inb(a')da’ forall a in R. It

is possible to check thaf(p(-,t)) decreases in time if

p(-, 1) is a solution of the hydrodynamic equation (8).
P of course, the entropy could also be calculated from the
equilibrium measure (6), and it is easy to see that the two
expressions coincide up to an additive constant.

This explicit expression for the entrop§(:) permits
one to check Onsager’s relations in our model. A simple
computation shows that the matixdefined by Eq. (3) is

pid,H;.

Given a function p(u,t) twice differentiable with
respect tou and once with respect to and such that
[1 pi(u,t)du = p, this equation determines uniquely u
to an additive constant the field = (H;, H,).

The probability that the original system follows a
trajectory different from a solution of (8) can now be
expressed in terms of the field. We introduce the large
deviation functional

2, fo X 5 such that
oasp) = X0/ [ Ve [ aun(ppitouy.
i=i 0 T . 1 b'(y(w))
(R™)ij(y(w) = 6, @ b))’ (18)
Let G be a set of trajectories in the interal 7y]. The Yi Y
large fluctuation estimate asserts that where §; ; stands for the delta of Kronecker andy) is
_ the entropy density. The produét= DR can now be
N = ¢ Noy(G) . ! . )
05,5.(G) = e 700, (12) computed using the explicit formula fdp given in (9)
where and shown to be a symmetric matrix.
lo,(G) = inf Iy, (p). (13) In all the above calculations we never used the sym-
' (p1.p)EG metry properties of the transition probabilip(-) so that
The sign= has to be interpreted as asymptotic equality ofthey are valid for both reversible and irreversible dynam-
the logarithms. ics. The next interesting question is what are the features

From Egs. (12) and (13), one sees that to find thé)f_our model and more generally of any model that make
most probable trajectory that connects the equilibrigm this type of results possible.
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