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In this paper we show that Onsager-Machlup time-reversal properties of thermodynamic fluctu
and Onsager reciprocity relations for transport coefficients can hold also if the microscopic dyn
is not reversible. This result is based on the explicit construction of models which can be ana
rigorously. [S0031-9007(96)00737-5]
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Fundamental contributions to the theory of irreversib
processes were the derivation of the reciprocal relati
for transport coefficients in states deviating only sligh
from equilibrium and the calculation of the most probab
trajectory creating a fluctuation near equilibrium. The fi
result was obtained by Onsager in 1931 [1] and the sec
one by Onsager and Machlup [2] in 1953. The calculat
of the most probable trajectory relies on the recipro
relations which in turn are a consequence of microsco
reversibility. It turns out that the trajectory in questio
is just the time reversal of the most probable trajecto
describing relaxation to equilibrium of a fluctuation. Th
latter is a solution to the hydrodynamical equations.

These topics have received a certain amount of att
tion in the physical literature in the course of the la
40 years. No rigorous results have been, however,
tablished. More recently, this subject has been taken
in various papers attempting more rigorous approach
[3–5], in the context of so-called interacting particle sy
tems and [6,7] in a context of deterministic dynamic
systems.

In [4] we discussed the following question: Is micro
scopic reversibility a necessary condition for the valid
of the Onsager and Onsager-Machlup results? The
swer to this question is far from obvious because in go
from the microscopic to the macroscopic scale a lot of
formation is lost and irreversibilities at a small scale m
be erased when taking macroscopic averages.

In [4] we have exhibited a class of microscop
nonreversible stochastic dynamics for which the tim
reversal rule of Onsager and Machlup is still valid ev
for fluctuations very far from equilibrium. This clas
of dynamics concerns one component systems with
hydrodynamic equation of gradient type. Therefore th
is no Onsager reciprocity relation to verify.

In this paper we present a class of nonreversible m
ticomponent models giving rise at the macroscopic le
0031-9007y96y77(7)y1202(4)$10.00
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to nonlinear purely diffusive equations in the terminolog
of [3].

The equations are of the following form:

≠tr ­
dX

i­1

≠ui
hDsrd ? ≠ui

rj , (1)

wherersu, td ­ sssr1su, td, . . . , rnsu, tdddd is a vector stand-
ing for the densities of different kinds of particles andD
is in general a nonsymmetricn 3 n matrix.

Associated with our models there is an entropy fun
tional Ssrd that is written as the integral of a densit
ssrd: Ssrd ­

R
ssssrsudddd du.

The Onsager coefficients are defined in this context

Lsrd ­ Dsrd ? Rsrd , (2)

where the matrixR is determined by the entropy densit
ssssrsudddd in the following way:

sR21di,jsssrsudddd ­
≠2

≠risud≠rjsud
ssssrsudddd , (3)

which is by definition a symmetric matrix. Onsager
reciprocity relations mean thatL is a symmetric matrix,
a property which holds for our models.

In the physical literature one usually derives th
Onsager-Machlup time-reversal property from Onsa
reciprocity relations by introducing appropriate hypoth
ses on the nature of fluctuations. In our case fluctuati
are completely described by a large deviation theor
from which the Onsager-Machlup time-reversal prope
follows. Onsager reciprocity relations are obtained
a by-product. The reason for choosing this approach
that the Onsager-Machlup time-reversal property and
large deviation result are interesting by themselves a
deeper than Onsager reciprocity. As emphasized la
another possibility is to start from the invariant measu
if this is known as in our case, and derive Onsag
© 1996 The American Physical Society
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reciprocity directly. Our results are not restricted to t
neighborhood of the equilibrium.

For simplicity, we shall restrict ourselves to on
dimensional two-component models but all analysis
be carried out for any space dimension and for a
number of components. As in [4], we consider perio
boundary conditions. The systems considered in
paper differ from those of [4] due to the conservat
character of the dynamics.

We consider an interacting particle system that descr
the evolution of two types of particles on the discrete o
dimensional torus withN points, denoted byZN (the inte-
gers moduloN). Sites ofZN are denoted by the characte
x, y and the configurations by the greek letterh ­ sh1, h2d
so thathisxd stands for the total number of particles
type i at site x for the configurationh. The stochas-
tic dynamics can be described as follows. Fix a n
negative functiong: N ! R1 that stands for the rate a
which particles jump and a finite range, mean zero tra
tion probability ps?d on Z [

P
y yps yd ­ 0 and psxd ­ 0

for jxj large enough]. We shall assume the jump rateg to
vanish at 0, to be Lipschitz, and to diverge at the bou
ary: gs0d ­ 0 , gsid for i $ 1, jgsk 1 1d 2 gskdj # l0,
and limk!` gskd ­ `. If there areki, i ­ 1, 2, particles of
typei at a sitex of Z, at rateps ydgsk1 1 k2d hkiyk1 1 k2j
one particle of typei jumps from sitex to x 1 y. This
happens independently at each site.

The generatorLN of this Markov process acts o
functionsf as

LNf ­
N2

2

2X
j­1

X
x,y[ZN

ps ydTx,x1y
j f , (4)

where the addition inZN means addition moduloN; the
operatorsT

x,y
1 are defined by

sTx,y
1 f d sh1, h2d ­ rxshdhjsxd f fshx,y

1 , h2d 2 fsh1, h2dg
with rxshd ­ gfh1sxd 1 h2sxdgyhh1sxd 1 h2sxdj and
h

x,y
i is the configuration obtained fromhi letting one

particle jump fromx to y:

h
x,y
i szd ­

8<: hiszd if z fi x, y ,
hiszd 2 1 if z ­ x ,
hiszd 1 1 if z ­ y .

(5)

The operatorsT
x,y
2 are defined in a similar way.

This process has two conserved quantities: the t
number of h1 particles and the total number ofh2

particles. It is therefore expected that for each fix
density ri $ 0 there should exist an equilibrium sta
with global density ofhi particles equal tori.

The equilibrium probability measures depend on t
parametersw1, w2 $ 0. Consider the product probabilit
measurenN

w1,w2
on NZN 3 NZN defined by

nN
w1,w2

hsh1, h2d; h1sxd ­ k1, h2sxd ­ k2j

­
1

Zsw1, w2d
w

k1
1 w

k2
2

gsk1 1 k2d!
sk1 1 k2d!

k1! k2!
(6)
n
y

is

s
-

-
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-
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for k1 $ 0 and k2 $ 0. In this formulaZsw1, w2d is a
normalizing constant andgskd! stands forgs1d · · · gskd.

Denote by En
N
w1,w2

f?g expectation with respect to th
measurenN

w1,w2
, i.e., En

N
w1,w2

f fg ­
R

fshdnN
w1,w2

sdhd and
by k?, ?lw1,w2 the inner product inL2snN

w1,w2
d. A simple

computation shows that these measures are inva
for the Markov process with generatorLN . They are
reversible, that is, the principle of detailed balance ho
if the generator is also self-adjoint with respect to the
measures, i.e., ifk f, LNglw1,w2 ­ kLNf, glw1,w2 for every
f, g in L2snN

w1,w2
d. This is possible if and only if the

transition probabilityps?d is an even function.
Define ri: R1 3 R1 ! R1 by risw1, w2d ­

En
N
w1,w2

fhis0dg and setr̂ ­ r1 1 r2. One can check tha
r̂ is a smooth strictly increasing function ofw1 1 w2.
Denote bya ­ asr̂d the inverse ofr̂: as?d ­ sr̂d21s?d.
We have thatwi ­ sriyr1 1 r2dasr1 1 r2d. To keep
notation simple we shall denote bybsr̂d the function
asr̂dyr̂. Thus for each fixed densitysr1, r2d we obtained
an invariant state with total density ofhi particles equal
to ri. We shall from now on fix a densityri ­ sr̄1, r̄2d.

Let us consider now the unit intervalT ­ f0, 1d with
periodic boundary condition and functionsgi : T ! R1,
i ­ 1, 2 with global density ri:

R
T gisud du ­ ri .

The main object of our study is the empirical measu
mN std ­ sssmN

1 std, m
N
2 stdddd:

mN
i std ­

1
N

X
y[ZN

hist, yddyyN , (7)

where, foru in T, du is the Dirac measure concentrate
at u and hist, yd the number ofi particles at sitey at
time t. If we denote byQN

g1,g2
the distribution law of the

trajectoriesmN std when the initial measure is concentrat
on a configuration pairshN

1 , h
N
2 d such that mN s0d !

sssg1suddu, g2sudduddd as N " `, it is possible to show
that QN

g1,g2
converges weakly, asN " `, to the measure

concentrated on the pathrsu, tddu whose density is the
unique solution of

≠tr ­ ss2y2d≠uhDsrd ? ≠urj ,

rs0, ?d ­ gs?d .
(8)

In this formula s2 ­
P

y y2ps yd and D ­ Dsrd is the
nonsymmetric diffusion matrix given by

Dsrd ­ bsr̂dI 1 b0sr̂dJsrd , (9)

whereI is the identity andJsrd is the matrix with entries
Ji,jsrd ­ ri .

The above result is a law of large numbers th
shows that the empirical measure in the limit of lar
N behaves deterministically according to Eq. (8). W
can now ask what is the probability that our syste
follows a trajectory different from the solution of (8
when N is large but not infinite. This probability is
exponentially small inN and can be estimated using th
methods of the theory of large deviations introduced
1203
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the systems of interest in [8], [9] and [10]. The ma
idea consists in introducing a modified system for wh
the trajectory of interest (fluctuation) is typical being
solution of the corresponding hydrodynamic equation, a
then comparing the two evolutions. For this purpose,
each pair of smooth functionsHi ­ Hisu, td, i ­ 1, 2, we
consider the time inhomogeneous Markov process defi
by the generator

LH
N ,tf ­

N2

2

2X
j­1

eHjssss y1xdyN ,tddd2Hj sxyN ,tdps ydTx,x1y
j f

with ps?d andT
x,x1y
j as previously defined. The functio

H can be interpreted as an external field.
The deterministic equation satisfied by the density

the empirical measure is now

≠tr ­ ss2y2d≠uhDsrd ? ≠urj
2 s2≠uhbsr̂dAsr, Hdj , (10)

rs0, ?d ­ gs?d ,

where Asr, Hd is the vector with componentsAi ­
ri≠uHi.

Given a function rsu, td twice differentiable with
respect tou and once with respect tot and such thatR

T risu, td du ­ r̄i this equation determines uniquely u
to an additive constant the fieldH ­ sH1, H2d.

The probability that the original system follows
trajectory different from a solution of (8) can now b
expressed in terms of the fieldH. We introduce the large
deviation functional

I0,t0 srd ­
2X

i­1

ss2y2d
Z t0

0
dt

Z
T

du bsr̂dris≠uHid2. (11)

Let G be a set of trajectories in the intervalf0, t0g. The
large fluctuation estimate asserts that

QN
g1,g2

sGd . e2NI0,t0 sGd, (12)

where

I0,t0 sG d ­ inf
s r1,r2d[G

I0,t0srd . (13)

The sign. has to be interpreted as asymptotic equality
the logarithms.

From Eqs. (12) and (13), one sees that to find
most probable trajectory that connects the equilibriumr
to a certain stategsud one has to find thersu, td that
minimizesI2`,0srd in the setGg1, g2 of all trajectories
satisfying the boundary conditions

lim
t !2`

rsu, td ­ r, rsu, 0d ­ gsud . (14)

It is now possible to prove, following the same a
proach of [4], that the unique solution of our variation
problem is the functionrpsu, td defined by

rpsu, td ­ rsu, 2td , (15)

wherersu, td is the solution of the hydrodynamic equ
1204
d
r

d

f

f
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which relaxes to equilibrium with initial stateg. rpsu, td
is therefore a solution of the hydrodynamic equation w
inverted drift

≠tr ­ 2ss2y2d≠uhDsrd ? ≠urj . (16)

Equation (15) is the Onsager-Machlup time-rever
relation.

Denote bySsgd the functional defined by

Ssgd ­ inf
r[Gg1,g2

I2`,0srd , (17)

which, by the Boltzmann-Einstein relationship, has to
identified with the entropy of the system. By insertin
(15) into (17) we obtain an explicit formula for th
entropy:

Ssgd ­
Z

T
Ssssgsudddd du

where

ssgd ­
2X

j­1

Esssgjsudddd 1 Fsssg1sud 1 g2sudddd

and E, F are the real functions defined byEsad ­R
a lna0 da0, Fsad ­

R
a lnbsa0d da0 for all a in R1. It

is possible to check thatSsssrs?, tdddd decreases in time if
rs?, td is a solution of the hydrodynamic equation (8).

Of course, the entropy could also be calculated from
equilibrium measure (6), and it is easy to see that the
expressions coincide up to an additive constant.

This explicit expression for the entropySs?d permits
one to check Onsager’s relations in our model. A sim
computation shows that the matrixR defined by Eq. (3) is
such that

sR21di,jsssgsudddd ­ di,j
1

gisud
1

b0sssĝsudddd
bsssĝsudddd

, (18)

wheredi,j stands for the delta of Kronecker andssgd is
the entropy density. The productL ­ DR can now be
computed using the explicit formula forD given in (9)
and shown to be a symmetric matrix.

In all the above calculations we never used the sy
metry properties of the transition probabilityps?d so that
they are valid for both reversible and irreversible dyna
ics. The next interesting question is what are the featu
of our model and more generally of any model that ma
this type of results possible.
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