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Flows on Networks

• A network is an oriented graph (finite or infinite); x ∈ V is
a vertex, (x, y) ∈ E is an oriented edge.

• A flow Q : E → R+ assigns the amount of mass Q(x, y) ≥ 0
flowing on the edge (x, y).
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Discrete divergence

The divergence of Q at x ∈ V is

divQ(x) = exiting flow − entering flow

=
∑

y :(x,y)∈E

Q(x, y)−
∑

y :(y,x)∈E

Q(y, x)

Discrete Calculus∑
x∈V

f(x)divQ(x) = −
∑

(x,y)∈E

Q(x, y)
(
f(y)− f(x)

)

Davide Gabrielli A FLOW ON NETWORK APPROACH TO SOME PROBABILISTIC PROBLEMS



Continuity equation

µ1 and µ2 two probability measures on V
Q constant in time flow such that divQ = µ1 − µ2

Consider {
∂tν + divQ = 0 ,
ν(0) = µ1

then
ν(t) = (1− t)µ1 + tµ2

the constant flow Q transform µ1 into µ2 in a unitary time
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Networks from Markov chains

Transition graph of a continuous time Markov chain

(x, y) ∈ E ⇐⇒ r(x, y) > 0

X(t)t∈[0,T ] a trajectory
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Empirical measure and flow

Empirical measure

µT (x) =
1

T

∫ T

0
δx,X(s)ds

probability measure on V

Empirical flow

QT (x, y) =
1

T

∣∣∣ {jumps x→ y in [0, T ]}
∣∣∣

Observe that divQT (x) = 0 ∀x 6= X(0), X(T ).
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Large deviations

µT satisfies a LDP when T → +∞ (Donsker-Varadhan) with
rate functional

P (µT ' µ) ∼ e−TIdv(µ)

Idv(µ) = sup
f

 ∑
(x,y)∈E

µ(x)r(x, y)
(
1− ef(y)−f(x)

)
(µT , QT ) satisfy a joint LDP with explicit rate functional

I(µ,Q) =
∑

(x,y)∈E

[
Q(x, y) log

Q(x, y)

µ(x)r(x, y)
+ µ(x)r(x, y)−Q(x, y)

]

if divQ = 0 and +∞ otherwise
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Structure of the rate functional

I(µ,Q) =
∑

(x,y)∈E

IPµ(x)r(x,y)

(
Q(x, y)

)
where if NT is Poisson process of parameter λ the NT

T satisfies a
LDP with rate

IPλ (x) = x log
x

λ
+ λ− x

By contraction =⇒ Donsker-Varadhan

inf
Q
I(µ,Q) = Idv(µ)
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Idea of the proof

Consider two Markov chains with transition rates r(x, y) and
r′(x, y); call r(x) =

∑
y r(x, y), r′(x) =

∑
y r
′(x, y); then

dP
dP′

(X) = e
−T

[∑
(x,y)∈E QT (x,y) log

r′(x,y)
r(x,y)

+
∑

x∈V µT (x)
(
r(x)−r′(x)

)]
is a function of the empirical measure µT and flow QT
associated to the trajectory X = X(t)t∈[0,T ]
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Motivations

• Scaling limit for specific models (and not)

• Many interesting observables are function of empirical
measure and flow

Empirical current JT (x, y) = QT (x, y)−QT (y, x)

Total activity NT =
∑

(x,y)∈E QT (x, y)

Gallavotti-Choen functional WT = 1
2

∑
(x,y)∈E JT (x, y) log r(x,y)

r(y,x)
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One particle on a ring

One particle on a ring
r(x, x+ 1) = r(x+ 1, x) = λ homogeneous symmetric, or
homogeneous + one distinguished bond (tomorrow?), or
inhomogeneous
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One particle on a ring

Joint LDP for (WT , NT ) (exact formula!)

Γ(w, n) = inf
Aw,n

I(µ,Q)

where Aw,n is the collection of (µ,Q) s.t.
∑

(x,y)Q(x, y) = n

and 1
2

∑
(x,y)

(
Q(x, y)−Q(y, x)

)
log r(x,y)

r(y,x) = w

Minimizers give informations on the behavior of the system
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Phase transitions
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One particle on a ring

Simple case: LDP for empirical current JT for the homogeneous
symmetric walk

ΓN (j) = inf
Aj

I(µ,Q)

where

Aj = {(µ,Q) : Q(x, x+ 1)−Q(x+ 1, x) = j}

you can solve the problem

ΓN (j) = Nj log

(
Nj +

√
(Nj)2 + λ2

λ

)
−
√

(Nj)2 + λ2 + λ
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Scaling limit

In the diffusive rescaling λ = λN = αN2

lim
N→+∞

ΓN (j) =
j2

2α

In the scaling limit you have current j at time T if WT ∼ Tj
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Potential applications

• current fluctuations for particle systems (TASEP
yesterday); in principle also not one dimensional

• LDP for total activity of costrained lattice gases
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Zero range model

Davide Gabrielli A FLOW ON NETWORK APPROACH TO SOME PROBABILISTIC PROBLEMS



Zero range model

LDP for the current through one bond of one dimensional
boundary driven Z.R.
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In the realm of configuration space

I(Q,µ) =
∑
η∈ΛN

[
Φ
(
Q(η, η1,−), µ(η)g(η(1))

)
+Φ
(
Q(η, η1,+), µ(η)A

)

+

N−1∑
x=1

Φ
(
Q(η, ηx,x+1), µ(η)g(η(x))

)
+

N∑
x=2

Φ
(
Q(η, ηx,x−1), µ(η)g(η(x))

)
+Φ
(
Q(η, ηN,+), µ(η)B

)
+ Φ

(
Q(η, ηN,−), µ(η)g(η(N))

)]
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Projection

The flow Q on the configuration space can be projected to a
flow on the simple physical space where particles move (one
dimensional lattice)

Q̃(x, x+ 1) =
∑
η

Q(η, ηx,x+1)

and then

j̃(x, x+ 1) = Q̃(x, x+ 1)− Q̃(x+ 1, x)
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An exact formula

LDP for the current through a bond

Γ(j̃) = inf
Aj̃

I(µ,Q)

exact but difficult
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A restricted problem

If Q(η, η′) = µ(η)r(η, η′) then µ is invariant for r ⇐⇒ Q is
divergence free
We restrict to zero range perturbations of the original dynamics

Q(η, η′) = µ(η)r(η, η′)eγ(η′)−γ(η)±λ

where
γ(η) =

∑
x

λ(x)η(x) , λ parameters

Then

µ(η) =
∏
x

φ(x)η(x)

Z(φ(x))g(η(x))!

with

φ(x)eλ(x+1)−λ(x)+λ − φ(x+ 1)eλ(x)−λ(x+1)−λ = j̃
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A simplified functional

Inserting (µ,Q) of this form in I(µ,Q), after some algebra and∑
η

µ(η)g(η(x)) = φ(x)

Sum on configuration space =⇒ sum on real space

j̃

2

 N∑
x=0

log
j̃ +

√
j̃2 + 4φ(x)φ(x+ 1)√

j̃2 + 4φ(x)φ(x+ 1)− j̃
+ log

β

α


+A+B − 1

2

(√
j̃2 + 4BφN +

√
j̃2 + 4Aφ1

)
.
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Minimizing the simplified problem

The parameters φ have no constraint, taking ∇φ the stationary
equations are

4φ(x) =

√
j̃2 + 4φ(x− 1)φ(x)+

√
j̃2 + 4φ(x)φ(x+ 1) , x = 1, . . . , N

Magically φ(x) = a+ bx+ cx2 with b2 − 4ac = j̃ solves !!
As N → +∞, with suitable rescaling =⇒ a kind of Riemannian
sums converging to the corresponding continuum value of MFT
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The continuum problem

MFT predicts LDP for time averaged current

1

4
inf

∫ 1

0

(
j̃ +G′(ρ)∇ρ

)2
G(ρ(u))

d u . (1)

The infimum is over all density profiles such that G(ρ(0)) = α
and G(ρ(1)) = β. G(x) is determined by the dynamics. If we
call ϕ(u) := G(ρ(u)) we get

1

4
inf

∫ 1

0

(
j̃ + ϕ′(u)

)2
ϕ(u)

du , (2)

where ϕ is such that ϕ(0) = α and ϕ(1) = β. The corresponding
Euler-Lagrange equation has solution a+ bx+ cx2
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Partial orders and networks

≤ partial order relation on V , x ≤ y

partial order⇔ oriented acyclic graph

An oriented acyclic graph contains no oriented cycles

x ≤ y ⇔ ∃ a path x y
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Hasse diagrams

∃ minimal network describing a partial order (Hasse diagram,
transitive reduction)
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Stochastic monotonicity

≤ induces a partial order relation � on probability measures

µ1 � µ2 if and only if Eµ1(f) ≤ Eµ2(f)

for any function f increasing (f(x) ≤ f(y) when x ≤ y)
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Couplings

ρ a probability measure on V × V is a coupling between µ1 and
µ2 if { ∑

y ρ(x, y) = µ1(x)∑
x ρ(x, y) = µ2(y)

ρ is compatible w.r.t. ≤ if

ρ
(
{(x, y) : x ≤ y}

)
= 1
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Strassen Theorem

The following statements are equivalent

• µ1 � µ2

• ∃ a compatible coupling ρ between µ1 and µ2

Intuition on the second issue: mass can be transported
respecting the partial order
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Strassen Theorem revisited

This intuition can be made precise

The following items are equivalent

• µ1 � µ2

• ∃ a compatible coupling ρ between µ1 and µ2

• ∃ a flow Q on the Hasse diagram such that divQ = µ1 − µ2
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Finitely decomposable flows

Q is finitely decomposable if it can be written as Q =
∑

n qnIγn ;
γn self avoiding paths and qn ≥ 0 such that

∑
n qn < +∞

Sufficient condition: If Q has zero flux towards ∞

lim
n→+∞

∑
x∈Vv ,y 6∈Vn

Q(x, y) = 0

(Vn invading sequence) then it is finitely decomposable.
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Strassen Theorem revisited (infinite case)

The following items are equivalent

• µ1 � µ2

• ∃ a compatible coupling ρ between µ1 and µ2

• ∃ a finitely decomposable flow Q such that divQ = µ1 − µ2

Constructive proof: algorithms Q =⇒ ρ
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An example

Integer lattice Z
divQ = µ1 − µ2 has one parameter family of solutions

Q(x.x+ 1) =

x∑
y=−∞

(
µ1(y)− µ2(y)

)
+ c

Finitely decomposable ⇐⇒ c = 0

Q(x.x+ 1) =

x∑
y=−∞

(
µ1(y)− µ2(y)

)
= F1(x)− F2(x) ≥ 0
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