A FLOW ON NETWORK APPROACH TO SOME PROBABILISTIC PROBLEMS

Davide Gabrielli

University of L'Aquila

November 2014

NITheP Workshop LARGE DEVIATIONS IN STATISTICAL PHYSICS Wallenberg Research Centre Stellenbosch University, South Africa

References

- L. Bertini, A. Faggionato, D. Gabrielli Large deviations of the empirical flow for continuous time Markov chains arXiv:1210.2004
- L. Bertini, A. Faggionato, D. Gabrielli From level 2.5 to level 2 large deviations for continuous time Markov chains arXiv:1212.6908
- D. Gabrielli, I.G. Minelli Economic couplings and acyclic flows arXiv:1403.3855
- L. Bertini; A, Faggionato; D. Gabrielli Flows, currents, and cycles for Markov Chains: large deviation asymptotics arXiv:1408.5477

Flows on Networks

- A network is an oriented graph (finite or infinite); $x \in V$ is a vertex, $(x, y) \in E$ is an oriented edge.
- A flow $Q: E \to \mathbb{R}^+$ assigns the amount of mass $Q(x,y) \ge 0$ flowing on the edge (x,y).

Discrete divergence

The divergence of Q at $x \in V$ is

$$\begin{array}{rcl} \operatorname{div} Q(x) & = & \operatorname{exiting} & \operatorname{flow} & - & \operatorname{entering} & \operatorname{flow} \\ & = & \displaystyle \sum_{y \, : \, (x,y) \in E} Q(x,y) - \sum_{y \, : \, (y,x) \in E} Q(y,x) \end{array}$$

Discrete Calculus

$$\sum_{x \in V} f(x) \operatorname{div} Q(x) = -\sum_{(x,y) \in E} Q(x,y) (f(y) - f(x))$$

Continuity equation

 μ_1 and μ_2 two probability measures on VQ constant in time flow such that div $Q = \mu_1 - \mu_2$

Consider

$$\begin{cases} \partial_t \nu + \operatorname{div} Q = 0, \\ \nu(0) = \mu_1 \end{cases}$$

then

$$\nu(t) = (1 - t)\mu_1 + t\mu_2$$

the constant flow Q transform μ_1 into μ_2 in a unitary time

Networks from Markov chains

Transition graph of a continuous time Markov chain

$$(x,y) \in E \Longleftrightarrow r(x,y) > 0$$

 $X(t)_{t\in[0,T]}$ a trajectory

Empirical measure and flow

Empirical measure

$$\mu_T(x) = \frac{1}{T} \int_0^T \delta_{x,X(s)} ds$$

probability measure on V

Empirical flow

$$Q_T(x,y) = \frac{1}{T} \Big| \{ \text{jumps } x \to y \text{ in } [0,T] \} \Big|$$

Observe that $\operatorname{div} Q_T(x) = 0 \ \forall x \neq X(0), X(T)$.

Large deviations

 μ_T satisfies a LDP when $T \to +\infty$ (Donsker-Varadhan) with rate functional

$$\mathbb{P}\left(\mu_T \simeq \mu\right) \sim e^{-TI_{dv}(\mu)}$$

$$I_{dv}(\mu) = \sup_{f} \left\{ \sum_{(x,y)\in E} \mu(x)r(x,y) \left(1 - e^{f(y) - f(x)}\right) \right\}$$

 (μ_T, Q_T) satisfy a joint LDP with explicit rate functional

$$I(\mu, Q) = \sum_{(x,y) \in E} \left[Q(x,y) \log \frac{Q(x,y)}{\mu(x)r(x,y)} + \mu(x)r(x,y) - Q(x,y) \right]$$

if div Q = 0 and $+\infty$ otherwise

Structure of the rate functional

$$I(\mu,Q) = \sum_{(x,y) \in E} I^P_{\mu(x)r(x,y)} \big(Q(x,y)\big)$$

where if N_T is Poisson process of parameter λ the $\frac{N_T}{T}$ satisfies a LDP with rate

$$I_{\lambda}^{P}(x) = x \log \frac{x}{\lambda} + \lambda - x$$

By contraction \Longrightarrow Donsker-Varadhan

$$\inf_{Q} I(\mu, Q) = I_{dv}(\mu)$$

Idea of the proof

Consider two Markov chains with transition rates r(x,y) and r'(x,y); call $r(x)=\sum_y r(x,y),\ r'(x)=\sum_y r'(x,y)$; then

$$\frac{d\mathbb{P}}{d\mathbb{P}'}(X) = e^{-T\left[\sum_{(x,y)\in E} Q_T(x,y) \log \frac{r'(x,y)}{r(x,y)} + \sum_{x\in V} \mu_T(x) \left(r(x) - r'(x)\right)\right]}$$

is a function of the empirical measure μ_T and flow Q_T associated to the trajectory $X = X(t)_{t \in [0,T]}$

Motivations

- Scaling limit for specific models (and not)
- Many interesting observables are function of empirical measure and flow

Empirical current
$$J_T(x,y) = Q_T(x,y) - Q_T(y,x)$$

Total activity
$$N_T = \sum_{(x,y) \in E} Q_T(x,y)$$

Gallavotti-Choen functional
$$W_T = \frac{1}{2} \sum_{(x,y) \in E} J_T(x,y) \log \frac{r(x,y)}{r(y,x)}$$

One particle on a ring

One particle on a ring

 $r(x,x+1)=r(x+1,x)=\lambda$ homogeneous symmetric, or homogeneous + one distinguished bond (tomorrow?), or inhomogeneous

One particle on a ring

Joint LDP for (W_T, N_T) (exact formula!)

$$\Gamma(w,n) = \inf_{\mathcal{A}_{w,n}} I(\mu, Q)$$

where $\mathcal{A}_{w,n}$ is the collection of (μ, Q) s.t. $\sum_{(x,y)} Q(x,y) = n$ and $\frac{1}{2} \sum_{(x,y)} (Q(x,y) - Q(y,x)) \log \frac{r(x,y)}{r(y,x)} = w$

Minimizers give informations on the behavior of the system

Phase transitions

One particle on a ring

Simple case: LDP for empirical current J_T for the homogeneous symmetric walk

$$\Gamma_N(j) = \inf_{\mathcal{A}_j} I(\mu, Q)$$

where

$$A_j = \{ (\mu, Q) : Q(x, x+1) - Q(x+1, x) = j \}$$

you can solve the problem

$$\Gamma_N(j) = Nj \log \left(\frac{Nj + \sqrt{(Nj)^2 + \lambda^2}}{\lambda} \right) - \sqrt{(Nj)^2 + \lambda^2} + \lambda$$

Scaling limit

In the diffusive rescaling $\lambda = \lambda_N = \alpha N^2$

$$\lim_{N \to +\infty} \Gamma_N(j) = \frac{j^2}{2\alpha}$$

In the scaling limit you have current j at time T if $W_T \sim Tj$

Potential applications

- current fluctuations for particle systems (TASEP yesterday); in principle also not one dimensional
- LDP for total activity of costrained lattice gases

Zero range model

Zero range model

LDP for the current through one bond of one dimensional boundary driven Z.R.

In the realm of configuration space

$$\begin{split} &I(Q,\mu) = \sum_{\eta \in \Lambda_N} \left[\Phi\Big(Q(\eta,\eta^{1,-}),\mu(\eta)g(\eta(1))\Big) + \Phi\Big(Q(\eta,\eta^{1,+}),\mu(\eta)A\Big) \\ &+ \sum_{x=1}^{N-1} \Phi\Big(Q(\eta,\eta^{x,x+1}),\mu(\eta)g(\eta(x))\Big) + \sum_{x=2}^{N} \Phi\Big(Q(\eta,\eta^{x,x-1}),\mu(\eta)g(\eta(x))\Big) \\ &+ \Phi\Big(Q(\eta,\eta^{N,+}),\mu(\eta)B\Big) + \Phi\Big(Q(\eta,\eta^{N,-}),\mu(\eta)g(\eta(N))\Big) \right] \end{split}$$

Projection

The flow Q on the configuration space can be projected to a flow on the simple physical space where particles move (one dimensional lattice)

$$\widetilde{Q}(x, x+1) = \sum_{\eta} Q(\eta, \eta^{x,x+1})$$

and then

$$\widetilde{j}(x,x+1) = \widetilde{Q}(x,x+1) - \widetilde{Q}(x+1,x)$$

An exact formula

LDP for the current through a bond

$$\Gamma(\widetilde{j}) = \inf_{\mathcal{A}_{\widetilde{j}}} I(\mu, Q)$$

exact but difficult

A restricted problem

If $Q(\eta, \eta') = \mu(\eta) r(\eta, \eta')$ then μ is invariant for $r \Longleftrightarrow Q$ is divergence free

We restrict to zero range perturbations of the original dynamics

$$Q(\eta, \eta') = \mu(\eta) r(\eta, \eta') e^{\gamma(\eta') - \gamma(\eta) \pm \lambda}$$

where

$$\gamma(\eta) = \sum_{x} \lambda(x) \eta(x)$$
, λ parameters

Then

$$\mu(\eta) = \prod_{x} \frac{\phi(x)^{\eta(x)}}{Z(\phi(x))g(\eta(x))!}$$

with

$$\phi(x)e^{\lambda(x+1)-\lambda(x)+\lambda} - \phi(x+1)e^{\lambda(x)-\lambda(x+1)-\lambda} = \widetilde{j}$$

A simplified functional

Inserting (μ, Q) of this form in $I(\mu, Q)$, after some algebra and

$$\sum_{\eta} \mu(\eta)g(\eta(x)) = \phi(x)$$

Sum on configuration space \Longrightarrow sum on real space

$$\frac{\tilde{j}}{2} \left(\sum_{x=0}^{N} \log \frac{\tilde{j} + \sqrt{\tilde{j}^2 + 4\phi(x)\phi(x+1)}}{\sqrt{\tilde{j}^2 + 4\phi(x)\phi(x+1)} - \tilde{j}} + \log \frac{\beta}{\alpha} \right) + A + B - \frac{1}{2} \left(\sqrt{\tilde{j}^2 + 4B\phi_N} + \sqrt{\tilde{j}^2 + 4A\phi_1} \right).$$

Minimizing the simplified problem

The parameters ϕ have no constraint, taking ∇_{ϕ} the stationary equations are

$$4\phi(x) = \sqrt{\tilde{j}^2 + 4\phi(x-1)\phi(x)} + \sqrt{\tilde{j}^2 + 4\phi(x)\phi(x+1)}, x = 1, \dots, N$$

Magically $\phi(x) = a + bx + cx^2$ with $b^2 - 4ac = \tilde{j}$ solves!! As $N \to +\infty$, with suitable rescaling \Longrightarrow a kind of Riemannian sums converging to the corresponding continuum value of MFT

The continuum problem

MFT predicts LDP for time averaged current

$$\frac{1}{4}\inf \int_0^1 \frac{\left(\tilde{j} + G'(\rho)\nabla\rho\right)^2}{G(\rho(u))} du. \tag{1}$$

The infimum is over all density profiles such that $G(\rho(0)) = \alpha$ and $G(\rho(1)) = \beta$. G(x) is determined by the dynamics. If we call $\varphi(u) := G(\rho(u))$ we get

$$\frac{1}{4}\inf \int_0^1 \frac{\left(\tilde{j} + \varphi'(u)\right)^2}{\varphi(u)} du, \qquad (2)$$

where φ is such that $\varphi(0) = \alpha$ and $\varphi(1) = \beta$. The corresponding Euler-Lagrange equation has solution $a + bx + cx^2$

Partial orders and networks

 \leq partial order relation on $V, x \leq y$

partial order \Leftrightarrow oriented acyclic graph

An oriented acyclic graph contains no oriented cycles

Hasse diagrams

 \exists minimal network describing a partial order (Hasse diagram, transitive reduction)

Stochastic monotonicity

 \leq induces a partial order relation \leq on probability measures

$$\boxed{\mu_1 \preceq \mu_2}$$
 if and only if $\boxed{\mathbb{E}_{\mu_1}(f) \leq \mathbb{E}_{\mu_2}(f)}$

for any function f increasing $(f(x) \le f(y))$ when $x \le y$

Couplings

 ρ a probability measure on $V\times V$ is a coupling between μ_1 and μ_2 if

$$\begin{cases} \sum_{y} \rho(x, y) = \mu_1(x) \\ \sum_{x} \rho(x, y) = \mu_2(y) \end{cases}$$

 ρ is compatible w.r.t. \leq if

$$\rho\Big(\left\{(x,y)\,:x\leq y\right\}\Big)=1$$

Strassen Theorem

The following statements are equivalent

- $\mu_1 \leq \mu_2$
- \exists a compatible coupling ρ between μ_1 and μ_2

<u>Intuition on the second issue</u>: mass can be transported respecting the partial order

Strassen Theorem revisited

This intuition can be made precise

The following items are equivalent

- $\mu_1 \leq \mu_2$
- \exists a compatible coupling ρ between μ_1 and μ_2
- \exists a flow Q on the Hasse diagram such that div $Q = \mu_1 \mu_2$

Finitely decomposable flows

Q is finitely decomposable if it can be written as $Q = \sum_n q_n I_{\gamma_n}$; γ_n self avoiding paths and $q_n \geq 0$ such that $\sum_n q_n < +\infty$

Sufficient condition: If Q has zero flux towards ∞

$$\lim_{n \to +\infty} \sum_{x \in V_v, y \notin V_n} Q(x, y) = 0$$

 $(V_n \text{ invading sequence})$ then it is finitely decomposable.

Strassen Theorem revisited (infinite case)

The following items are equivalent

- $\mu_1 \leq \mu_2$
- \exists a compatible coupling ρ between μ_1 and μ_2
- \exists a finitely decomposable flow Q such that div $Q = \mu_1 \mu_2$

Constructive proof: algorithms $Q \Longrightarrow \rho$

An example

Integer lattice \mathbb{Z}

 $\operatorname{div} Q = \mu_1 - \mu_2$ has one parameter family of solutions

$$Q(x.x+1) = \sum_{y=-\infty}^{x} (\mu_1(y) - \mu_2(y)) + c$$

Finitely decomposable $\iff c = 0$

$$Q(x.x+1) = \sum_{y=-\infty}^{x} (\mu_1(y) - \mu_2(y)) = F_1(x) - F_2(x) \ge 0$$

