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Abstract In this paper we present a self-contained macroscopic description of diffusive
systems interacting with boundary reservoirs and under the action of external fields. The
approach is based on simple postulates which are suggested by a wide class of microscopic
stochastic models where they are satisfied. The description however does not refer in any
way to an underlying microscopic dynamics: the only input required are transport coeffi-
cients as functions of thermodynamic variables, which are experimentally accessible. The
basic postulates are local equilibrium which allows a hydrodynamic description of the evo-
lution, the Einstein relation among the transport coefficients, and a variational principle
defining the out of equilibrium free energy. Associated to the variational principle there is a
Hamilton-Jacobi equation satisfied by the free energy, very useful for concrete calculations.
Correlations over a macroscopic scale are, in our scheme, a generic property of nonequi-
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librium states. Correlation functions of any order can be calculated from the free energy
functional which is generically a non local functional of thermodynamic variables. Special
attention is given to the notion of equilibrium state from the standpoint of nonequilibrium.

Keywords Nonequilibrium processes · Stationary states · Long range correlations

1 Introduction

The main purpose of the present paper is to describe a “physical theory” for a certain class
of thermodynamic systems out of equilibrium, which is founded on and supported by the
analysis of a large family of stochastic microscopic models. Out of equilibrium the variety
of phenomena one can conceive makes it difficult to define general classes of phenomena for
which a unified study is possible. Furthermore the details of the microscopic dynamics play
a far greater role than in equilibrium. Since the first attempts to construct a non equilibrium
thermodynamics, a guiding idea has been that of local equilibrium, which means that locally
on the macroscopic scale it is possible to define thermodynamic variables like density, tem-
perature, chemical potentials . . . which vary smoothly on the same scale. Microscopically
this implies that the system reaches local equilibrium in a time which is short compared
to the times typical of macroscopic evolutions, as described for example by hydrodynamic
equations. There are important cases however where local equilibrium apparently fails like
aging phenomena in disordered systems due to insufficient ergodicity. These will not be
considered in this paper. Also the case in which magnetic fields play a role is not covered by
our analysis.

The simplest nonequilibrium states one can imagine are stationary states of systems in
contact with different reservoirs and/or under the action of external (electric) fields. In such
cases, contrary to equilibrium, there are currents (electrical, heat, matter of various chemical
constitutions . . . ) through the system whose macroscopic behavior is encoded in transport
coefficients like the diffusion coefficient, the conductivity or the mobility.

The ideal would be to approach the study of these states starting from a microscopic dy-
namics of molecules interacting with realistic forces and evolving with Newtonian dynam-
ics. This is beyond the reach of present day mathematical tools and much simpler models
have to be adopted in the reasonable hope that some essential features are adequately cap-
tured. In the last decades stochastic models of interacting particle systems have provided
a very useful laboratory for studying properties of stationary nonequilibrium states. From
the study of these models has emerged a macroscopic theory for nonequilibrium diffusive
systems which can be used as a phenomenological theory.

A basic issue is the definition of nonequilibrium thermodynamic functions. For stochas-
tic lattice gases a natural solution to this problem has been given via a theory of dynamic
large deviations (deviations from hydrodynamic trajectories) and an associated variational
principle leading to a definition of the free energy in terms of transport coefficients.

One of the main differences between equilibrium and nonequilibrium systems, is that out
of equilibrium the free energy is, in general, a non local functional thus implying the exis-
tence of correlations at the macroscopic scale. These correlations have been observed exper-
imentally [11] and appear to be a generic consequence of our variational principle which can
be reformulated as a time independent Hamilton-Jacobi equation for the free energy. This is
a functional derivative equation whose independent arguments are the local thermodynamic
variables and which requires as input the transport coefficients. The presence of long range
correlations for out of equilibrium states had been derived within kinetic theory, see [11]
and reference therein, as well as within fluctuating hydrodynamics, see e.g. [27].
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We believe that the theory we propose is a substantial improvement with respect to the
theory developed long ago by Onsager [23, 24] and then by Onsager-Machlup [25] which
applies to states close to equilibrium, namely for linear evolution equations, and does not re-
ally include the effect of nontrivial boundary reservoirs. In principle, the theory we suggest
should be applicable to real systems, i.e. with nonlinear evolution equations and arbitrary
boundary conditions, where the diffusion is the dominant dynamical mechanism. We em-
phasize however that we assume a linear response with respect to the external applied field.
Of course, the Onsager theory is recovered as first order approximation.

The basic principle of the theory here proposed is a variational principle for the non-
equilibrium thermodynamic functionals. This principle has the following content. Take the
stationary state as the reference state and consider a trajectory leading the system to a new
state. This trajectory can be realized by imposing a suitable additional external field (in ad-
dition to the one already acting on the system). Then compute the work done by this extra
field and minimize it over all possible trajectories leading to the new state. This minimal
work is identified with the variation of the free energy between the reference and the final
state. As well known in thermodynamics, in the case of equilibrium states this definition
agrees with the standard one.

Our treatment is based on an approach developed by the authors in the analysis of fluctu-
ations in stochastic lattice gases [1–7]. For recent overviews on nonequilibrium phenomena
see also [13, 18, 22] and [26] for a different approach which includes a discussion on long
range correlations.

The outline of the paper is the following.
In Sect. 2 we introduce the basic principles for a self-contained macroscopic description

of driven diffusive systems out of equilibrium. These systems are described by local thermo-
dynamic variables which evolve according to (nonlinear) diffusion equations with boundary
conditions and/or external fields which force the system out of equilibrium. We emphasize
that such evolution equations have the structure of conservation laws. The possibility of
such description is of course based on the assumption of local equilibrium. We then formu-
late mathematically the above mentioned variational principle for the nonequilibrium free
energy and characterize the optimal trajectory. As we already remarked, our approach gives
the usual equilibrium free energy when we consider an equilibrium state. In this connection,
we remark that the optimal trajectory provides a dynamical alternative to the usual prescrip-
tion of equilibrium thermodynamics to calculate the free energy variation via a quasi static
transformation.

In Sect. 3 we discuss the notion of equilibrium from the standpoint of nonequilibrium
under the assumptions formulated is Sect. 2. In particular we introduce the notion of macro-
scopic reversibility and discuss its relationship, actually equivalence, to thermodynamic
equilibrium. An important outcome of our analysis is that the correct definition of equi-
librium, for the driven diffusive systems here considered, is the vanishing of the currents.
Nonetheless, in presence of external (electric) fields and boundary reservoirs an equilibrium
state can be highly inhomogeneous. An example of such a situation is provided by sedimen-
tation equilibrium in gravitational and centrifugal fields. In spite of this, the free energy is
a local function of the state variables and coincides locally with the equilibrium free energy
in absence of external fields and boundary driving. In particular there are no macroscopic
correlations.

In Sect. 4 we derive from the Hamilton-Jacobi equation the generic existence of long
range correlations in nonequilibrium states and we discuss the conditions on the transport
coefficients for their appearance in the two point correlation function. We also establish a
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simple criterion to determine whether density fluctuations are positively or negatively corre-
lated. Finally, from the Hamilton-Jacobi equation, by expanding around the stationary state,
we derive a recursive equation for the correlation functions of any order.

In Appendix we discuss a specific example, the ABC model [10, 14] which does not
satisfy all the assumptions formulated in Sect. 2. In fact the ABC model has the peculiarity to
be a reversible system with a nonlocal free energy. We show nonetheless that this free energy
can be easily derived from the Hamilton-Jacobi equation. This model has been brought to
our attention by D. Mukamel and J.L. Lebowitz.

2 Macroscopic Systems out of Equilibrium

We here introduce the thermodynamic description for out of equilibrium driven diffusive
systems which are characterized by conservation laws. For simplicity of notation, we restrict
to the case of a single conservation law, e.g. the conservation of the mass. The system is in
contact with boundary reservoirs, characterized by their chemical potential λ0, and under
the action of an external field E. We denote by � ⊂ R

d the region occupied by the system,
by x the macroscopic space coordinates and by t the time. We next state our basic axioms
and their main implications.

1. The macroscopic state is completely described by the local density ρ = ρ(t, x) and the
associated current j = j (t, x).

2. The macroscopic evolution is given by the continuity equation

∂tρ + ∇ · j = 0 (2.1)

together with the constitutive equation

j = J (ρ) = −D(ρ)∇ρ + χ(ρ)E (2.2)

where the diffusion coefficient D(ρ) and the mobility χ(ρ) are d × d positive matrices.
The transport coefficients D and χ satisfy the local Einstein relation

D(ρ) = χ(ρ)f ′′
0 (ρ) (2.3)

where f0 is the equilibrium free energy of the homogeneous system. The equations (2.1)–
(2.2) have to be supplemented by the appropriate boundary conditions on ∂� due to the
interaction with the external reservoirs. Recalling that λ0(x), x ∈ ∂�, is the chemical
potential of the external reservoirs, these boundary conditions are

f ′
0

(
ρ(x)

) = λ0(x), x ∈ ∂� (2.4)

We denote by ρ̄ = ρ̄(x), x ∈ �, the stationary solution, assumed to be unique, of (2.1),
(2.2), and (2.4).

In postulating the constitutive equation (2.2) we assumed a linear response with respect
to the external field E and the thermodynamic forces. On the other hand the transport coef-
ficients D and χ are allowed to depend on the density ρ. In the case the system has more
than one component, say n, the diffusion coefficient D and the mobility become nd × nd

matrices. Moreover, in view of Onsager reciprocity, the matrix χ is symmetric both in the
space and in the component indices while D is symmetric only in the space indices. In such
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a case the local Einstein relation (2.3) is D = χR where Rij = ∂ρi
∂ρj

f0 does not depend on
the space indices. In the context of stochastic lattice gases, (2.1) and (2.2) describe the evo-
lution of the empirical density in the diffusive scaling limit, see e.g. [6, 19, 28]; the validity
of the local Einstein relationship (2.3) can be deduced from the local detailed balance of the
underlying microscopic dynamics, see e.g. [28]. However, as we will see later, (2.3) it is also
a consequence of the locality of the free energy and our third postulate once equilibrium is
characterized within our theory.

To state the third postulate, we need some preliminaries. Consider a time dependent
variation F = F(t, x) of the external field so that the total applied field is E + F . The
local current then becomes j = JF (ρ) = J (ρ) + χ(ρ)F . Given a time interval [T1, T2], we
compute the energy necessary to create the extra current JF − J and drive the system along
the corresponding trajectory:

L[T1,T2](F ) =
∫ T2

T1

dt
〈[
JF (ρF ) − J (ρF )

] · F 〉 =
∫ T2

T1

dt
〈
F · χ(ρF )F

〉
(2.5)

where · is the scalar product in R
d , 〈·〉 is the integration over �, and ρF is the solution of

the continuity equation with current j = JF (ρ).
We define a cost functional on the set of space time trajectories as follows. Given a

trajectory ρ̂ = ρ̂(t, x), t ∈ [T1, T2], x ∈ �, we set

I[T1,T2](ρ̂) = 1

4
inf

F :ρF =ρ̂

L[T1,T2](F ) (2.6)

namely we minimize over the variations F of the applied field which produce the trajec-
tory ρ̂. The introduction of this functional in the context of fluid dynamics equations appears
to be new. The functional I (with the factor 1/4) has a precise statistical interpretation within
the context of stochastic lattice gases: it gives the asymptotics, as the number of degrees of
freedom diverges, of the probability of observing a space time fluctuation of the empirical
density [1, 2, 5, 19, 20]. Note indeed that if ρ̂ solves the hydrodynamic equation (2.1), (2.2),
(2.4) its cost vanishes. We shall explain below the choice of the factor 1/4 in (2.6).

We next show that the optimal F in (2.6) is given by F = ∇� where � : [T1, T2] ×
� → R is the unique solution to the Poisson equation

−∇ · [χ(ρ̂)∇�
] = ∂t ρ̂ + ∇ · J (ρ̂)

which vanishes at the boundary of � for any t ∈ [T1, T2]. Indeed, by writing F = ∇� + F̃

for each t ∈ [T1, T2] we have the orthogonal decomposition

〈
F · χ(ρ̂)F

〉 = 〈∇� · χ(ρ̂)∇�
〉 + 〈

F̃ · χ(ρ̂)F̃
〉

where we used that ∂t ρ̂ + ∇ · JF (ρ̂) = 0. The above equation clearly shows that F̃ = 0 is
the optimal choice. Hence

I[T1,T2](ρ̂) = 1

4

∫ T2

T1

dt
〈[

∂t ρ̂ + ∇ · J (ρ̂)
]
K(ρ̂)−1

[
∂t ρ̂ + ∇ · J (ρ̂)

]〉
(2.7)

where the positive operator K(ρ̂) is defined on functions u : � → R vanishing at the bound-
ary ∂� by K(ρ̂)u = −∇ · (χ(ρ̂)∇u).
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Our third postulate then characterizes the free energy F (ρ) of the system with a density
profile ρ = ρ(x), x ∈ �, as the minimal cost to reach, starting from the stationary profile ρ̄,
the density profile ρ, in an infinitely long time interval.

3. The nonequilibrium free energy of the system is

F (ρ) = inf
ρ̂:ρ̂(−∞)=ρ̄

ρ̂(0)=ρ

I[−∞,0](ρ̂) (2.8)

As we shall see later, this is in fact proportional to the total work done by the optimal ex-
ternal field F along the optimal time evolution to reach the density profile ρ. The functional
F has a precise statistical interpretation within the context of (non equilibrium) station-
ary states of stochastic lattice gases: it gives the asymptotics, as the number of degrees of
freedom diverges, of the probability of observing a static fluctuation of the empirical density
[1, 2, 5]. In this sense the functional F is the correct extension of the equilibrium free energy
to non equilibrium thermodynamics.

As shown in [1, 2] the functional F is the maximal solution of the infinite dimensional
Hamilton-Jacobi equation

〈
∇ δF

δρ
· χ(ρ)∇ δF

δρ

〉
−

〈δF
δρ

∇ · J (ρ)
〉
= 0 (2.9)

where, for ρ that satisfies (2.4), δF /δρ vanishes at the boundary of �. At the macroscopic
level this condition reflects the fact that we consider variations of the density that do not
change the boundary values. In the context of stochastic lattice gases, the boundary con-
dition (2.4) is realized by superimposing to the bulk dynamics suitable birth and death
processes at the boundary; the probability of deviations of the empirical density at the bound-
ary is then shown to be super-exponentially small in the scaling limit [2]. Note however that
in the stationary state the density is not fixed at the boundary, i.e. F (ρ) < ∞ even if the
profile ρ = ρ(x) does not satisfy the boundary condition (2.4).

The arbitrary additive constant on the maximal solution of (2.9) is determined by the
condition F (ρ̄) = 0. By maximal solution we mean that any solution to (2.9) (satisfying
F(ρ̄) = 0) is a lower bound for F , as defined in (2.8). This bound is sharp. Indeed, by con-
sidering the functional in (2.7) as an action functional in variables ρ̂ and ∂t ρ̂ and performing
a Legendre transform, the associated Hamiltonian is

H(ρ,�) =
〈
∇� · χ(ρ)∇�

〉
+

〈
∇� · J (ρ)

〉
(2.10)

where the momentum � vanishes at the boundary of �. By noticing that the stationary
solution of the hydrodynamic equation corresponds to the equilibrium point (ρ̄,0) of the
system with Hamiltonian H and H(ρ̄,0) = 0, the equation (2.9) is the Hamilton-Jacobi
equation H(ρ, δF /δρ) = 0.

The optimal trajectory ρ∗ for the variational problem (2.8) is characterized as follows.
Let

J ∗(ρ) = −2χ(ρ)∇ δF
δρ

− J (ρ) (2.11)

then ρ∗ is the time reversal of the solution to

∂tρ + ∇ · J ∗(ρ) = ∂tρ + ∇ ·
{
D(ρ)∇ρ − χ(ρ)

[
E + 2∇ δF

δρ

]}
= 0 (2.12)
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with the boundary condition (2.4). We refer to [1, 2, 5] for the microscopic interpretation of
J ∗ in terms of the time reversed dynamics. In particular, the optimal external field F forcing
the system on the time evolution ρ∗(t) is so that JF (ρ) = −J ∗(ρ), namely

F = 2∇ δF
δρ

(2.13)

This characterization of ρ∗ is obtained as follows. Let F be the maximal solution of the
Hamilton-Jacobi equation and J ∗ as in (2.11). Fix a time interval [T1, T2] and a path ρ̂(t),
t ∈ [T1, T2]. We claim that

I[T1,T2](ρ̂) = F
(
ρ̂(T2)

) − F
(
ρ̂(T1)

)

+ 1

4

∫ T2

T1

dt
〈[

∂t ρ̂ − ∇ · J ∗(ρ̂)
]
K(ρ̂)−1

[
∂t ρ̂ − ∇ · J ∗(ρ̂)

]〉
(2.14)

as can be shown by a direct computation using (2.7), the Hamilton-Jacobi equation (2.9) and
the definition (2.11) of J ∗. From the identity (2.14) we immediately deduce that the optimal
path for the variational problem (2.8) is the time reversal of the solution to (2.12).

The classical thermodynamic setting considers only spatially homogeneous system in
which ρ does not depend on x. In this case the variation of the free energy between ρ̄ and ρ

is the minimal work required to drive the system from ρ̄ to ρ, which is realized by a quasi
static transformation, see e.g. [21]. For an equilibrium inhomogeneous density profile ρ,
by a quasi static transformation we understand the following: pick a macroscopic point x

and consider a macroscopically small volume around x, perform quasi static transformation
from ρ̄(x) to ρ(x), repeat independently for all x and sum the results. Of course, if the
system is in contact with a reservoir also the contribution describing the interaction with the
reservoir has to be included.

We next show that according to definition (2.8), the free energy F (ρ) is proportional to
the work done by the optimal external field F on the system along the optimal trajectory ρ∗.
We emphasize that this is not a quasi static transformation in the above sense, but it is the
solution of the hydrodynamic equation perturbed by the optimal external field. As we shall
discuss later, the definition (2.8) of the free energy (with the factor 1/4 in (2.6)) agrees with
the thermodynamic one for equilibrium states, but in general, due to presence of long range
correlations, the variation obtained along a quasi static transformation as defined above gives
a different result.

Indeed, since ρ∗ is the time reversal of the solution to (2.12), using (2.13) we deduce

F (ρ) − F (ρ̄) =
∫ 0

−∞
dt

〈δF
δρ

, ∂tρ
∗
〉

=
∫ 0

−∞
dt

〈δF
δρ

,∇ · J ∗(ρ∗)
〉
= 1

2

∫ 0

−∞
dt

〈
(−J ∗(ρ∗)) · F

〉

Namely, the variation F (ρ) − F (ρ̄) is proportional the work done by the external field F

along the optimal trajectory ρ∗. The factor 1/2 above is connected to our definition of the
transport coefficients and the associated Einstein relation (2.3).

As shown in the next section, equilibrium states are characterized by J = J ∗. In this case
the optimal path for the variational problem (2.8) is the time reversal of the solution to the
original hydrodynamic equation (2.1)–(2.2). In [2] we called such a symmetry property the
Onsager-Machlup time reversal symmetry.
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3 Characterizations of Equilibrium States

We define the system to be in equilibrium if and only if the current in the stationary profile
ρ̄ vanishes, i.e. J (ρ̄) = 0. A particular case is that of a homogeneous equilibrium state,
obtained by setting the external field E = 0 and choosing a constant chemical potential at the
boundary, i.e. λ0(x) = λ̄. Let ρ̄ = const. be the equilibrium density, i.e. ρ̄ solves λ̄ = f ′

0(ρ̄).
It is then readily seen that the functional F defined in (2.8) is given by

F (ρ) =
∫

�

dx
{
f0

(
ρ(x)

) − f0(ρ̄) − λ̄
[
ρ(x) − ρ̄

]}
(3.1)

in which the first difference is the variation of the free energy f0 while the second term is
due to the interaction with the reservoirs. The variational definition (2.8) of the functional F
gives, when applied to equilibrium states, the variation of the equilibrium free energy (3.1).
This shows that the choice of the factor 1/4 in (2.6) is appropriate.

We next show that also for a non homogeneous equilibrium, characterized by a non
constant stationary profile ρ̄(x) such that J (ρ̄) = 0 the free energy functional F can be
explicitly computed. Let

f (ρ, x) =
∫ ρ

ρ̄(x)

dr

∫ r

ρ̄(x)

dr ′f ′′
0 (r ′) = f0(ρ) − f0(ρ̄(x)) − f ′

0

(
ρ̄(x)

)[
ρ − ρ̄(x)

]

we claim that the maximal solution of the Hamilton-Jacobi equation is

F (ρ) =
∫

�

dxf
(
ρ(x), x

)
(3.2)

Indeed

δF
δρ(x)

= f ′
0(ρ(x)) − f ′

0(ρ̄(x)) (3.3)

so that, by an integration by parts,

〈
∇[

f ′
0(ρ) − f ′

0(ρ̄)
] · χ(ρ)∇[

f ′
0(ρ) − f ′

0(ρ̄)
]〉

+
〈[

f ′
0(ρ) − f ′

0(ρ̄)
]∇ ·

[
D(ρ)∇ρ − χ(ρ)E

]〉

=
〈
∇[

f ′
0(ρ) − f ′

0(ρ̄)
] · χ(ρ)

[
∇f ′

0(ρ̄) − E
]〉

= 0

where we used (2.3) and ∇f ′
0(ρ̄) − E = −χ(ρ̄)−1J (ρ̄) = 0. Therefore the functional F

in (3.2) satisfies the Hamilton-Jacobi equation (2.9). To show it is the maximal solution,
recalling (2.7), simple computations show that

I[T1,T2](ρ̂) = F
(
ρ̂(T2)

) − F
(
ρ̂(T1)

)

+ 1

4

∫ T2

T1

dt
〈[

∂t ρ̂ − ∇ · J (ρ̂)
]
K(ρ̂)−1

[
∂t ρ̂ − ∇ · J (ρ̂)

]〉
(3.4)

which clearly implies the maximality of F .
We emphasize that the above argument depends crucially on the structure (2.2) of the cur-

rent and on validity of the local Einstein relation (2.3). In Appendix we discuss the example
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of the ABC model [10, 14] in which these conditions are not met and the free energy is not
a local functional even if J (ρ̄) = 0. Another example is given by the anisotropic zero-range
process [9, 29] for which—as discussed in [29]—the local Einstein relation is violated.

We next show that the condition J (ρ̄) = 0 is equivalent to either one of the following
statements.

– There exists a function λ : � → R such that

E(x) = ∇λ(x), x ∈ �, λ(x) = λ0(x), x ∈ ∂� (3.5)

– The system is macroscopically reversible in the sense that for each profile ρ we have
J ∗(ρ) = J (ρ).

We emphasize that the notion of macroscopic reversibility does not imply that an un-
derlying microscopic model satisfies the detailed balance condition. Indeed, as it has been
shown by explicit examples [15–17], there are non reversible microscopic models which are
macroscopically reversible.

We start by showing that J (ρ̄) = 0 if and only if (3.5) holds. From the local Einstein
relation (2.3) and J (ρ̄) = 0 we deduce

E(x) = f ′′
0

(
ρ̄(x)

)∇ρ̄(x) = ∇f ′
0(ρ̄(x))

hence (3.5). Conversely, let the external field E be such that (3.5) holds. Since f ′′
0 is positive

the function f ′
0 is invertible and we can define ρ̄(x) = (f ′

0)
−1(λ(x)). The profile ρ̄ satisfies

(2.4) as well as J (ρ̄) = 0, consequently also ∇ · J (ρ̄) = 0 so that it is the unique stationary
profile.

We next show that J (ρ̄) = 0 if and only if J (ρ) = J ∗(ρ). By evaluating the Hamilton-
Jacobi equation for ρ = ρ̄ we deduce ∇[δF (ρ̄)/δρ] = 0. From (2.11) we then get J (ρ̄) = 0.
To show the converse implication, note that if J (ρ̄) = 0 then F is given by (3.2). We deduce

χ(ρ)∇ δF
δρ

= D(ρ)∇ρ − χ(ρ)E = −J (ρ)

hence, recalling (2.2) and (2.11), J (ρ) = J ∗(ρ).
We also note that macroscopic reversibility J (ρ) = J ∗(ρ) implies the invariance

of the Hamiltonian H in (2.10) under the time reversal symmetry, see [2], (ρ,�) �→
(ρ, δF /δρ − �), where F is the maximal solution of the Hamilton-Jacobi equation (2.9).
As remarked before, macroscopic reversibility implies the Onsager-Machlup time reversal
symmetry, on the other hand we shall give at the end of this section an example of a non-
equilibrium system for which such a symmetry holds. Hence macroscopic reversibility is a
stronger condition.

So far we have assumed the local Einstein relation and we have shown that—for equilib-
rium systems—it implies (3.2). Conversely, we now show that macroscopic reversibility and
(3.2) imply the local Einstein relation (2.3). By writing explicitly J (ρ) = J ∗(ρ) we obtain

−[
χ(ρ)R(ρ) − D(ρ)

]∇ρ + χ(ρ)
[
R(ρ̄) − χ−1(ρ̄)D(ρ̄)

]∇ρ̄ = 0 (3.6)

where R is the second derivative of f0 in the case of one-component systems while Rij =
∂ρi

∂ρj
f0 for multi-component systems. In (3.6) we used, besides (3.2), J (ρ̄) = 0 to elimi-

nate E. Note that J (ρ̄) = 0 follows from the Hamilton-Jacobi equation and J (ρ) = J ∗(ρ)

without further assumptions. Since ρ and ∇ρ are arbitrary the local Einstein relation
D = χR follows from (3.6).
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We have defined the macroscopic reversibility as the identity between the currents J (ρ)

and J ∗(ρ). We emphasize that this is not equivalent to the identity between ∇ · J (ρ) and
∇ · J ∗(ρ). Indeed, we next give an example of a non reversible system, i.e. with J (ρ̄) �= 0,
such that the optimal trajectory for the variational problem (2.8) is the time reversal of the
solution to the hydrodynamic equation (2.1),(2.2), and (2.4).

Let � = [0,1], D(ρ) = χ(ρ) = 1, λ0(0) = λ0(1) = λ̄, and a constant external field
E �= 0. In this case hydrodynamic evolution of the density is given by the heat equation
independently of the field E. The stationary profile is ρ̄ = λ̄, the associated current is
J (ρ̄) = E �= 0. By a computation analogous to the one leading to (3.4), we easily get that

F (ρ) = 1

2

∫ 1

0
dx

[
ρ(x) − ρ̄

]2

and the optimal trajectory for the variational problem (2.8) is the time reversal of the solution
to the heat equation. On the other hand J (ρ) = −∇ρ + E while J ∗(ρ) = −∇ρ − E.

We remark that, even if the free energy F is a non local functional, the equality J (ρ) =
J ∗(ρ) implies that the thermodynamic force ∇δF /δρ is local. Moreover, the Hamilton-
Jacobi equation reduces to the statement

J (ρ) = −χ(ρ)∇ δF
δρ

(ρ) (3.7)

This identity, viewed as a special case of (2.11), represents the general form—for reversible
systems—of the relationship between currents and thermodynamic forces. It holds both
when the free energy is local and nonlocal. For reversible systems it is therefore enough
to integrate (3.7) to compute the free energy. An example of such a situation with a nonlocal
free energy, illustrated in Appendix, is provided by the ABC model on a ring with equal
densities [10, 14].

4 Correlation Functions

In classical equilibrium thermodynamics the second derivatives of the thermodynamic po-
tentials like the free energy are response coefficients like the compressibility. In a statistical
mechanics framework they are identified with the Fourier transform evaluated at zero of
correlation functions of the underlying Gibbs measure. Analogous interpretation is given to
the higher order derivatives.

As we defined the (nonequilibrium) free energy as a functional on the set of density
profiles, we can obtain the (nonequilibrium) density correlations functions of arbitrary order
in terms of the functional derivatives of F . In general the functional F cannot be written
in a closed form, but—by a suitable perturbation theory on the Hamilton-Jacobi equation
(2.9)—we can derive such correlations functions. In this section we first discuss the two-
point correlation and establish a criterion to decide whether the density fluctuations are
positively or negatively correlated. Then, we deduce a recursive equation for the correlation
function of any order.

We remark that we are concerned only with macroscopic correlations which are a generic
feature of nonequilibrium models. Microscopic correlations which decay as a summable
power law disappear at the macroscopic level.

We introduce the pressure functional as the Legendre transform of free energy F

G(h) = sup
ρ

{〈hρ〉 − F (ρ)
}
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By Legendre duality we have the change of variable formulae h = δF
δρ

, ρ = δG
δh

, so that the
Hamilton-Jacobi equation (2.9) can then be rewritten in terms of G as

〈
∇h · χ

(δG
δh

)
∇h

〉
−

〈
∇h · D

(δG
δh

)
∇ δG

δh
−χ

(δG
δh

)
E

〉
= 0 (4.1)

where h vanishes at the boundary of �. As for equilibrium systems, G is the generating
functional of the correlation functions. In particular by defining

C(x, y) = δ2 G(h)

δh(x)δh(y)

∣∣
∣
h=0

we have, since F has a minimum at ρ̄,

G(h) = 〈h, ρ̄〉 + 1

2
〈h,Ch〉 + o(h2)

or equivalently

F (ρ) = 1

2
〈(ρ − ρ̄),C−1(ρ − ρ̄)〉 + o((ρ − ρ̄)2)

By expanding the Hamilton-Jacobi equation (4.1) to the second order in h, and using that
δG/δh(x) = ρ̄(x) + Ch(x) + o(h2), we get the following equation for C

〈
∇h ·

[
χ(ρ̄)∇h − ∇(D(ρ̄)Ch) + χ ′(ρ̄)(Ch)E

]〉
= 0 (4.2)

We now make the change of variable

C(x, y) = Ceq(x)δ(x − y) + B(x, y)

where Ceq(x) is the equilibrium covariance. By using (2.3) we deduce that

Ceq(x) = D−1(ρ̄(x))χ(ρ̄(x))

Equation (4.2) for the correlation function then gives the following equation for B

L†B(x, y) = α(x)δ(x − y) (4.3)

where L† is the formal adjoint of the elliptic operator L = Lx +Ly given by, using the usual
convention that repeated indices are summed,

Lx = Dij (ρ̄(x))∂xi
∂xj

+ χ ′
ij (ρ̄(x))Ej (x)∂xi

(4.4)

and

α(x) = ∂xi

[
χ ′

ij

(
ρ̄(x)

)
D−1

jk

(
ρ̄(x)

)
J̄k(x)

]

where we recall J̄ = J (ρ̄) = −D(ρ̄(x))∇ρ̄(x) + χ(ρ̄(x))E(x) is the macroscopic current
in the stationary profile.

In agreement with the discussion in Sect. 3, for equilibrium systems J̄ = 0 so that we
have α = 0, hence B = 0, namely there are no long range correlations and C(x, y) =
Ceq(x)δ(x − y). Moreover, since L is an elliptic operator (i.e. it has a negative kernel),
the sign of B is determined by the sign of α: if α(x) ≥ 0,∀x, then B(x, y) ≤ 0,∀x, y, while
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if α(x) ≤ 0,∀x, then B(x, y) ≥ 0,∀x, y. For example, consider the following special case.
The system is one-dimensional, d = 1, the diffusion coefficient is constant, i.e. D(ρ) = D0,
the mobility χ(ρ) is a quadratic function of ρ, and there is no external field, E = 0. Then

B(x, y) = − 1

2D0
χ ′′(∇ρ̄)2
−1(x, y) (4.5)

where 
−1(x, y) is the Green function of the Dirichlet Laplacian. Two remarkable models,
the symmetric exclusion process, where χ(ρ) = ρ(1 − ρ), and the KMP process, where
χ(ρ) = ρ2, meet the above conditions. Then (4.5) shows that their correlations have opposite
signs.

We next derive, using the Hamilton-Jacobi equation (4.1), a recursive formula for the n-
point correlation function Cn(x1, . . . , xn). This is defined in terms of the pressure functional
G as

Cn(x1, . . . , xn) = δnG
δh(x1) · · · δh(xn)

∣
∣∣
h=0

(4.6)

so that C1(x) = ρ̄(x) and C2 is the two-point correlation function discussed above. Note
that for equilibrium systems the free energy is given by (3.2), hence we have no long range
correlations and the n-point correlation function is

Cn,eq(x1, . . . , xn) = cn(ρ̄(x1))δ(x1 − x2) · · · δ(x1 − xn) (4.7)

where cn(ρ̄) = dn

dxn (f ′
0)

−1(x)|x=f ′
0(ρ̄).

By expanding the functional derivative of G we get

δG(h)

δh(x1)
= ρ̄(x1) +

∑

n≥1

1

n! Gn(h;x1) (4.8)

where

Gn(h;x1) =
∫

�

dx2 · · ·dxn+1h(x2) · · ·h(xn+1)Cn+1(x1, x2, . . . , xn+1) (4.9)

If we consider the terms of order hn+1 in the Hamilton-Jacobi equation (4.1) we get, using
(4.8) and after some algebraic manipulations,

〈

∇h ·
[

∑

i1,i2,...≥0∑
k kik=n−1

1

i1!(1!)i1 i2!(2!)i2 · · ·χ
(
∑

k ik)(ρ̄)(G1)
i1(G2)

i2 · · ·∇h

−
∑

i1,i2,...≥0∑
k kik=n

1

i1!(1!)i1 i2!(2!)i2 · · ·∇
(
D(

∑
k ik−1)(ρ̄)(G1)

i1(G2)
i2 · · ·

)

+
∑

i1,i2,...≥0∑
k kik=n

1

i1!(1!)i1 i2!(2!)i2 · · ·χ
(
∑

k ik)(ρ̄)(G1)
i1(G2)

i2 · · ·E
]〉

= 0

where, for f given by either χ or D, the notation f (k) stands for the k-th derivative of f .
Since the above identity holds for every function h vanishing at the boundary of �, we

get from it a recursive formula for the n-point correlation functions which generalizes (4.3).
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We start by introducing some notation. For n ≥ 1, we let L†
n+1 be the formal adjoint of

the operator Ln+1 = ∑n+1
k=1 Lxk

, where Lx is defined in (4.4). Given functions f and g in
n + 1 and m + 1 variables respectively, their 1st shuffle product f #1g is, by definition, the
following function in m + n + 1 variables

f #1g(x1, . . . , xm+n+1)

= 1

(m + n)!
∑

π

f (x1, xπ2 , . . . , xπn+1)g(x1, xπn+2 , . . . , xπm+n+1)

where the sum is over all permutations of the indices {2,3, . . . ,m + n + 1}. Clearly #1 is a
commutative associative product, and f #1g is symmetric in the variables x2, . . . , xm+n+2.
Furthermore, given a function f in n variables, we denote by f sym its symmetrization,
namely

f sym(x1, . . . , xn) = 1

n!
∑

π∈Sn

f (xπ1 , . . . , xπn)

Given a sequence �ι = (i1, i2, i3, . . .) of non negative integers with only finitely many non
zero entries, we also denote

(�ι ) = i1 + i2 + · · · =
∑

k

ik

N(�ι ) = i1 + 2i2 + · · · =
∑

k

kik

K(�ι ) = i1!(1!)i1 i2!(2!)i2 · · · =
∏

k

ik!(k!)ik

Finally, for �ι with N(�ι ) = n, we let

C�ι(x1, . . . , xn+1) = (
C

#1i1
2 #1C

#1i2
3 #1 · · · )(x1, x2, . . . , xn+1)

Then the recursive equation satisfied by the n + 1-point correlation function reads

1

(n + 1)! L†
n+1Cn+1(x1, x2, . . . , xn+1)

=
{

∑

�ι
N(�ι )=n−1

1

K(�ι )∇x1 ·
(
χ((�ι ))(ρ̄(x1))C�ι(x1, . . . , xn)∇x1δ(x1 − xn+1)

)

−
∑

�ι
N(�ι )=n,in=0

1

K(�ι )∇x1 · ∇x1

(
D((�ι )−1)(ρ̄(x1))C�ι(x1, . . . , xn+1)

)

+
∑

�ι
N(�ι )=n,in=0

1

K(�ι )∇x1 ·
(
χ((�ι ))(ρ̄(x1))C�ι(x1, . . . , xn+1)E(x1)

)}sym

(4.10)

It is easy to check that, for n = 1, equation (4.10) reduces to (4.3). Moreover, in the case of
equilibrium states the solution to (4.10) is (4.7). We refer to [2, §4.5] for the application to
the boundary driven simple exclusion process.
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Appendix: The ABC Model

We here consider—both from a microscopic and macroscopic point of view—a model with
two conservation laws. Given an integer N ≥ 1 let ZN = {1, . . . ,N} be the discrete ring
with N sites so that N + 1 ≡ 1. The microscopic space state is given by �N = {A,B,C}ZN

so that at each site x ∈ ZN the occupation variable, denoted by ηx , take values in the set
{A,B,C}; one may think that A,B stand for two different species of particles and C for an
empty site. Note that this state space takes into account an exclusion condition: at each site
there is at most one species of particles.

We first consider a weakly asymmetric dynamics that fits in the framework discussed
in Sect. 2 that is defined by choosing the following transition rates. If the occupation
variables across the bond {x, x + 1} are (ξ, ζ ), they are exchanged to (ζ, ξ) with rate
cE
x,x+1 = exp{(Eξ − Eζ )/(2N)} for fixed constant external fields EA,EB,EC . This choice

satisfies the so-called local detailed balance condition that, in general, requires the weakly
asymmetric rates cE

x,x+1 to satisfy

cE
x,x+1(η

x,x+1) = cE
x,x+1(η) exp

{
∇x,x+1

[
H(η) − 1

N

∑

x

(
EAx1A(ηx) + EBx1B(ηx)

+ ECx1C(ηx)
)]}

(A.1)

where ηx,x+1 is the configuration obtained from η by exchanging the occupation variables in
x and x + 1, ∇x,x+1f (η) = f (ηx,x+1) − f (η), and H(η) is the energy of the configuration
η, which is constant in this model.

Following [12, 19, 20], the hydrodynamic equations for the densities of A and B particles
are given by

∂t

(
ρA

ρB

)
= 


(
ρA

ρB

)
− ∇ ·

(
ρA(1 − ρA) −ρAρB

−ρAρB ρB(1 − ρB)

)(
EA − EC

EB − EC

)
(A.2)

of course the density of C particles is then ρC = 1 − ρA − ρB .
The functional I[T1,T2] in (2.7) with D = 1 and mobility

χ(ρA,ρB) =
(

ρA(1 − ρA) −ρAρB

−ρAρB ρB(1 − ρB)

)
(A.3)

is the dynamical large functional associated to this model. The free energy is the maximal
solution of the Hamilton-Jacobi equation (2.9) which can be easily computed. Namely,

F 0
mA,mB

(ρA,ρB) =
∫

dx
[
ρA log

ρA

mA

+ ρB log
ρB

mB

+ (1 − ρA − ρB) log
1 − ρA − ρB

1 − mA − mB

]
(A.4)
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where
∫

dxρA = mA and
∫

dxρB = mB . If EA, EB and EC are not all equal, this model is
a nonequilibrium model nevertheless, in view of the periodic boundary conditions, its free
energy is independent of the external field; see [6, §3.4].

We next discuss a different choice of the weakly asymmetric perturbation which, as we
shall see, does not fit in the scheme discussed in Sect. 2. This choice is the one referred
to in the literature [10, 14] as the ABC model. The transition rates are the following. If
the occupation variables across the bond {x, x + 1} are (ξ, ζ ), they are exchanged to (ζ, ξ)

with rate exp{V (ξ, η)/N} where V (A,B) = V (B,C) = V (C,A) = −β/2 and V (B,A) =
V (C,B) = V (A,C) = β/2 for some β > 0. Therefore the A-particles prefer to jump to the
left of the B-particles but to the right of the C-particles while the B-particles prefer to jump
to the left of the C-particles, i.e. the preferred sequence is ABC and its cyclic permutations.
These rates do not satisfy the local detailed balance (A.1).

Again by the methods developed in [12, 19, 20], the hydrodynamic equations are

∂t

(
ρA

ρB

)
+ ∇ ·

(
JA(ρA,ρB)

JB(ρA,ρB)

)
= 0 (A.5)

where

J (ρA,ρB) =
(

JA(ρA,ρB)

JB(ρA,ρB)

)
=

(−∇ρA + βρA(1 − 2ρB − ρA)

−∇ρB + βρB(2ρA + ρB − 1)

)
(A.6)

The asymmetric term in the hydrodynamic equation (A.5) is not of the form ∇ · (χ(ρ)E) as
in (2.1)–(2.3). Hence the results obtained in Sect. 3 do not apply.

The appropriate cost functional is however still given by (2.7) with J as in (A.6) and χ

as in (A.3). The solution of the Hamilton-Jacobi equation (2.9) then gives the free energy. In
the case of equal densities

∫
dxρA = ∫

dxρB = 1/3, a straightforward computation shows
that for any positive β the solution is given by the functional

F β
1
3 , 1

3
(ρA,ρB) = F 0

1
3 , 1

3
(ρA,ρB) + β

∫ 1

0
dx

∫ 1

0
dyy

{
ρA(x)ρB(x + y)

+ ρB(x)[1 − ρA(x + y) − ρB(x + y)]
+ [1 − ρA(x) − ρB(x)]ρA(x + y)

}
+ κ (A.7)

where F 0
1
3 , 1

3
is the functional in (A.4) with mA = mB = 1/3 and κ is the appropriate normal-

ization constant. This result has been already obtained in [10] by direct computations from
the invariant measure. Indeed, in this case, the ABC model is microscopically reversible
and the invariant measure can be computed explicitly. From a macroscopic point of view,
the reversibility of the model is expressed as the identity, which holds in the case of equal
densities, J (ρ) = J ∗(ρ). Hence, as discussed at the end of Sect. 3, the free energy (A.7) can
also be macroscopically derived by integrating (3.7).

We mention the recent preprint [8], of which we became aware after the completion of
this work, in which the nonequilibrium free energy of the ABC model is also computed from
the variational principle (2.8).
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