Università degli Studi di L'Aquila
Algorithms for Distributed Systems: Mid-term Evaluation
Wednesday, November 23rd, 2011 - Prof. Guido Proietti

Write your data \Longrightarrow	Last name:	First name:	ID number:	Points
EXERCISE 1				
EXERCISE 2				
EXERCISE 3				
TOTAL				

EXERCISE 1: Multiple-choice questions (10 points)
Remark: Only one choice is correct. Use the enclosed grid to select your choice. A correct answer will provide you with 3 points, while a wrong answer will charge you with a -1 penalization. The final result will be given by summing up all the obtained points (0 for a missing answer), by normalizing on a 10 base.

1. In a non-anonymous MPS, processors:
a) know the total number of processors b) are all identical c) do not know the total number of processors *d) have distinct ids
2. In which of the following cases the leader election problem cannot be solved:
a) asynchronous, non-anonymous and uniform ring b) synchronous, non-anonymous and non-uniform ring c) asynchronous, non-anonymous and non-uniform ring $\quad{ }^{*}$ d) synchronous, anonymous and non-uniform ring
3. In the Hirshberger-Sinclair algorithm, the number of messages in phase i is at most:
a) $4 \cdot 2^{i-1} \cdot \frac{n}{2^{i-1}+1}$
*b) $2^{i+2} \cdot \frac{n}{2^{i-1}+1}$
c) n
d) $4 \cdot 2^{i} \cdot \frac{n}{2^{i+1}+1}$
4. In the synchronous version of the Prim algorithm, the number of rounds in phase i is at most:
a) $3 n$
b) $O(1)$
*c) $O(n)$
d) $\Theta(\log n)$
5. In the GHS algorithm, the number of messages passing through an edge not belonging to the minimum spanning tree is:
a) $\Theta(\log n)$
*b) $O(1)$
c) $\Theta(n)$
d) $\Theta(n \log n)$
6. The randomized algorithm for finding a maximal independent set of a graph with n nodes of degree d, with probability at least $1-1 / n$, ends within a number of phases in the order of:
a) $O(\log n)$
b) $O(1)$
c) $O(d)$
*d) $O(d \log n)$
7. Let be given a synchronous n-processor system, with at most f benign failures. Assume that all non-faulty processors have input x, while the minimum input among the faulty processors is $y<x$. Then, which of the following output is non-admissible for the consensus algorithm consisting of $f+1$ round?
a) x
b) $y \quad{ }^{*}$ c) $z<y$
d) $y<z<x$
8. If Byzantine processors do not send any message during the execution, what is the message complexity of the Phase King f-resilient algorithm?
a) $\Theta(n)$
*b) $\Theta\left(n^{2} f\right)$
c) $\Theta\left(n^{2}\right)$
d) $\Theta(n f)$
9. Let be given a synchronous system of 17 processors, out of which at most 4 can be Byzantine. What is the minimum number of messages received by a non-faulty processor in a phase of the Phase King 4-resilient algorithm?
a) 14
*b) 13
c) 17
d) 0
10. In the exponential-tree f-resilient algorithm, the number of messages sent during the last round is:
a) $O\left(n^{2}\right)$
*b) $O\left(n^{f+2}\right)$
c) $O(1)$
d) $\Theta(n)$

	Question									
Choice	1	2	3	4	5	6	7	8	9	10
a										
b										
c										
d										

EXERCISE 2: Open questions (10 points)
Remark: Select at your choice one out of the following two questions, and address it exhaustively.

1. Describe and analyze the synchronous version of the Prim algorithm.
2. Describe and analyze the randomized synchronous algorithm for computing a maximal independent set.

EXERCISE 3: Algorithm (10 points: 5 for the correctness, 3 for the efficiency, and 2 for the analysis)
Design an algorithm for the consensus problems, by assuming that the underlying clique-system contains 10 processors, out of which at most 2 are Byzantine, and by modifying the validity assumption as follows: if all the non-faulty processors have the same integer number as input, then the output must be the smallest odd number greater than that input.

