Università degli Studi di L'Aquila
Algorithms for Distributed Systems: Mid-term Evaluation
Wednesday, November 28th, 2012 - Prof. Guido Proietti

Write your data \Longrightarrow	Last name:	First name:	ID number:	Points
EXERCISE 1				
EXERCISE 2				
EXERCISE 3				
TOTAL				

EXERCISE 1: Multiple-choice questions (10 points)
Remark: Only one choice is correct. Use the enclosed grid to select your choice. A correct answer will provide you with 3 points, while a wrong answer will charge you with a -1 penalization. The final result will be given by summing up all the obtained points (0 for a missing answer), by normalizing on a 10 base.

1. In which of the following cases the leader election problem cannot be solved:
a) asynchronous, non anonymous and
non anonymous and non uniform ring *d) synchronous, anonymous and uniform ring
2. What is the probability that id i makes exactly k steps in the Chang 8 Roberts algorithm, assuming that ids are in [1..n]?
a) $P(i, k)=\frac{\binom{n-1}{k-1}}{\binom{i-1}{k-1}} \frac{n-i}{k}$
b) $P(i, k)=\frac{\binom{i-1}{k-1}}{\binom{n-1}{k-1}} \frac{n-1}{n-k}$
c) $P(i, k)=\frac{\binom{n-1}{k-1}}{\binom{i-1}{k-1}} \frac{n-i}{n-k}$
*d) $P(i, k)=\frac{\binom{i-1}{k-1}}{\binom{n-1}{k-1}} \frac{n-i}{n-k} ;$
3. The most efficient leader election algorithm for a synchronous ring with n processors, non-anonymous and uniform, with minimum id m, has a number of rounds of:
a) $\Theta(n \cdot m)$
b) it does not exist
${ }^{*}$ c) $\Theta\left(n \cdot 2^{m}\right)$
d) $\Theta(n)$
4. In the synchronous GHS algorithm on n processors, the number of New Fragment messages sent by a node during a phase is:
a) n
b) $O(1)$
*) $O(n)$
d) $\Theta(\log n)$
5. In the asynchronous GHS algorithm on n processors, the maximum number of absorptions is:
a) $n-1$
*b) $n-2$
c) n
d) $\lceil n / 2\rceil$
6. The randomized algorithm for finding a maximal independent set running on a clique graph with n nodes, with high probability ends within a number of rounds in the order of:
a) $O(\log n)$
b) $O(1)$
c) $O(n)$
*d) $O(n \log n)$
7. Let be given a synchronous n-processor system, with at most $n-1$ benign failures. Assume that all the processors have a same input x, and that no processor crashes. Then, how many messages are sent during the execution of the consensus algorithm consisting of n rounds?
a) n^{3}
b) $n \quad{ }^{*}$ c) n^{2}
d) $n(n-1)$
8. Let be given a synchronous system of 13 processors, out of which at most 3 are Byzantine. In the Phase King 3-resilient algorithm, assume that Byzantine processors are never kings. What is the minimum total number of messages sent during the whole execution?
a) 39
b) 429
*c) 568
d) 0
9. In the exponential-tree f-resilient algorithm with n processors, assume that half of the processors has input 0 , and the other half has input 1. Then, the output is:
a) default value ${ }^{*}$,
b) either 0,1 , or ${ }^{} *$,
c) 0
d) 1
10. In the bakery algorithm with n processors, a processor in the entry section that has already chosen its number, before entering the critical section can be preceded by at most the following number of processors:
a) 0
*b) $n-1$
c) k, with k constant
d) 1

Answer Grid

	Question										
Choice	1	2	3	4	5	6	7	8	9	10	
a											
b											
c											
d											

EXERCISE 2: Open questions (10 points)
Remark: Select at your choice one out of the following two questions, and address it exhaustively.

1. Describe and analyze the King's phase algorithm.
2. Describe and analyze the bakery algorithm.

EXERCISE 3: Algorithm (10 points: 5 for the correctness, 3 for the efficiency, and 2 for the analysis)
Design an algorithm for a synchronous MPS $G=(V, E)$, with synchronous start, which ends with the following outputs: 1 for each processor p_{i} such that p_{i} is on a triangle in G, namely there exist p_{j} and p_{k} such that p_{i}, p_{j} and p_{k} are mutually adjacent in G, and 0 otherwise (i.e., p_{i} is not on a triangle in G).

