

Università Degli Studi Di L'Aquila

Prova Intermedia di **Algoritmi e Strutture Dati con Laboratorio** Sabato 22 Novembre 2008 – Proff. Guido Proietti e Giovanna Melideo

Scrivi i tuoi dati \Longrightarrow	Cognome:	Nome:	Matricola:

ESERCIZIO 1 (Teoria): Domande a risposta multipla

Premessa: Questa parté è costituita da 10 domande a risposta multipla. Per ciascuna domanda vengono fornite 4 risposte, di cui soltanto una è corretta. Per rispondere utilizzare la griglia annessa, barrando con una \times la casella corrispondente alla risposta prescelta. È consentito omettere la risposta. In caso di errore, contornare con un cerchietto la \times erroneamente apposta (ovvero, in questo modo \otimes) e rifare la \times sulla nuova risposta prescelta. Se una domanda presenta più di una risposta, verrà considerata omessa. Per tutti i quesiti verrà attribuito un identico punteggio, e cioè: risposta esatta 3 punti, risposta omessa 0 punti, risposta sbagliata -1 punto. Il voto relativo a questa parte è ottenuto sommando i punti ottenuti e normalizzando su base 30. Se tale somma è negativa, verrà assegnato 0.

- 1. Detto F_n l'n-esimo numero della sequenza di Fibonacci, e detta $\phi=1,618\dots$ la sezione aurea, quale delle seguenti relazioni asintotiche è vera?
 - a) $F_n = \Theta(2^n)$ *b) $F_n = \Omega(\phi^n)$ c) $F_n = o(\phi^n)$ d) $F_n = \omega(\phi^n)$
- 2. Quale delle seguenti implicazioni è falsa:

a)
$$f(n) = \Theta(g(n)) \Rightarrow \hat{f}(n) = O(g(n))$$
 *b) $f(n) = O(g(n)) \Rightarrow f(n) = o(g(n))$ c) $f(n) = \Theta(g(n)) \Rightarrow g(n) = \Omega(f(n))$ d) $f(n) = o(g(n)) \Rightarrow g(n) = \omega(f(n))$

- 3. L'algoritmo di ordinamento crescente Insertion Sort applicato ad una sequenza di input di 6 elementi ordinata in modo decrescente esegue un numero di confronti tra elementi pari a: a) 5 b) 24 c) 6 *d) 15
- 4. Siano f(n) e g(n) i costi dell'algoritmo Insertion Sort nel caso medio e Selection Sort in quello migliore, rispettivamente. Quale delle seguenti relazioni asintotiche è falsa:
 - *a) f(n) = o(g(n)) b) $f(n) = \Theta(g(n))$ c) f(n) = O(g(n)) d) $f(n) = \Omega(g(n))$
- 5. L'altezza dell'albero di decisione associato all'algoritmo QUICKSORT è:
 - a) $\Theta(n \log n)$ b) $\Omega(n!)$ c) $O(n \log n)$ * d) $\Omega(n^2)$
- 6. Qual è la complessità spaziale dell'algoritmo INTEGER SORT applicato ad un array A di n elementi in cui $A[i]=2i^2+i$ per i=1,...,n?
 - a) $\Theta(n^3)$ b) $\Theta(n)$ *c) $O(n^2)$ d) $\Theta(n \log n)$
- 7. L'algoritmo Heapify(A) per la costruzione di un heap applicato ad A = [3, 5, 4, 6, 7] restituisce:
 - a) A = [7, 6, 5, 3, 4] b) A = [7, 6, 3, 4, 5] c) A = [7, 5, 6, 4, 3] *d) A = [7, 6, 4, 3, 5]
- 8. Sia H_1 un heap binomiale di 15 elementi, e sia H_2 un heap binomiale di 13 elementi. Da quali alberi binomiali è formato l'heap binomiale ottenuto dalla fusione di H_1 e H_2 ?
 - a) $\{B_5\}$ *b) $\{B_2, B_3, B_4\}$ c) $\{B_0, B_1, B_2, B_3, B_0, B_2, B_3\}$ d) $\{B_{28}\}$
- 9. In un albero AVL di n elementi, l'inserimento di un elemento, nel caso peggiore, può sbilanciare un numero di nodi dell'ordine di:

 *a) $\Theta(\log n)$ b) $\Theta(n)$ c) 1 d) $\Theta(1)$
- 10. In una tavola ad accesso diretto di dimensione m con un fattore di carico $\alpha = 1\%$, l'inserimento di un elemento di un dizionario di n elementi costa:
 - a) $\Theta(m)$ b) $\Omega(n)$ c) $\Theta(\log n)$ *d) $\Theta(1)$

Griglia Risposte

	Domanda									
Risposta	1	2	3	4	5	6	7	8	9	10
a										
b										
С										
d										

ESERCIZIO 2 (Laboratorio): Giovanna!