

Università Degli Studi Di L'Aquila

Prova di Recupero di **Algoritmi e Strutture Dati con Laboratorio** Sabato 22 Novembre 2008 – Proff. Guido Proietti e Giovanna Melideo

Scrivi i tuoi dati ⇒	Cognome:	Nome:	Matricola:

ESERCIZIO 1 (Teoria): Domande a risposta multipla

Premessa: Questa parté è costituita da 10 domande a risposta multipla. Per ciascuna domanda vengono fornite 4 risposte, di cui soltanto una è corretta. Per rispondere utilizzare la griglia annessa, barrando con una \times la casella corrispondente alla risposta prescelta. È consentito omettere la risposta. In caso di errore, contornare con un cerchietto la \times erroneamente apposta (ovvero, in questo modo \otimes) e rifare la \times sulla nuova risposta prescelta. Se una domanda presenta più di una risposta, verrà considerata omessa. Per tutti i quesiti verrà attribuito un identico punteggio, e cioè: risposta esatta 3 punti, risposta omessa 0 punti, risposta sbagliata -1 punto. Il voto relativo a questa parte è ottenuto sommando i punti ottenuti e normalizzando su base 30. Se tale somma è negativa, verrà assegnato 0.

1. Detto F_n l'n-esimo numero della sequenza di Fibonacci, e detta $\phi=1,618\ldots$ la sezione aurea, quale delle seguenti relazioni asintotiche è vera?

a) $F_n = \Theta(2^n)$ *b) $F_n = \Omega(\phi^n)$ c) $F_n = o(\phi^n)$ d) $F_n = \omega(\phi^n)$

- 2. L'algoritmo di ordinamento crescente Insertion Sort applicato ad una sequenza di input di 6 elementi ordinata in modo decrescente esegue un numero di confronti tra elementi pari a: a) 5 b) 24 c) 6 *d) 15
- 3. L'altezza dell'albero di decisione associato all'algoritmo QUICKSORT è:

a) $\Theta(n \log n)$ b) $\Omega(n!)$ c) $O(n \log n)$ * d) $\Omega(n^2)$

- 4. L'algoritmo Heapify(A) per la costruzione di un heap applicato ad A = [3, 5, 4, 6, 7] restituisce: a) A = [7, 6, 5, 3, 4] b) A = [7, 6, 3, 4, 5] c) A = [7, 5, 6, 4, 3] *d) A = [7, 6, 4, 3, 5]
- 5. In un albero AVL di n elementi, l'inserimento di un elemento, nel caso peggiore, può sbilanciare un numero di nodi dell'ordine di: *a) $\Theta(\log n)$ b) $\Theta(n)$ c) 1 d) $\Theta(1)$
- 6. In una tavola ad accesso diretto di dimensione m con un fattore di carico $\alpha=1\%$, l'inserimento di un elemento di un dizionario di n elementi costa:

a) $\Theta(m)$ b) $\Omega(n)$ c) $\Theta(\log n)$ *d) $\Theta(1)$ b 4

7. La visita in ampiezza del grafo $a = \frac{2}{8} \frac{2}{5} \frac{3}{7}$ eseguita partendo dal nodo $d = \frac{1}{1}$ può visitare i nodi nella sequenza:

a) dbeac b) debca *c) dbaec d) dbeca

- 8. Dato un grafo pesato e completo con n vertici, l'algoritmo di Dijkstra realizzato con un heap binario costa: *a) $\Theta(n^2 \log n)$ b) $\Theta(m+n \log n)$ c) $\Theta(n^2)$ d) $O(n \log n)$
- 9. Usando gli alberi QuickUnion e l'euristica dell'unione pesata by size, il problema della gestione di n insiemi disgiunti sottoposti ad n-1 Union ed m Find può essere risolto in: a) $\Theta(n)$ b) $\Theta(m)$ c) $\Theta(m^2)$ *d) $O(m+n\log n)$
- 10. Dato un grafo pesato con n vertici ed m archi, l'algoritmo di Kruskal esegue un numero di operazioni UNION(u, v) pari a: a) $\Theta(m)$ *b) $\Theta(n)$ c) $\Theta(m \log n)$ d) $\Theta(\log n)$

Griglia Risposte

	Domanda									
Risposta	1	2	3	4	5	6	7	8	9	10
a										
b										
С										
d										

ESERCIZIO 2 (Laboratorio): Giovanna!