

Università degli Studi dell'Aquila

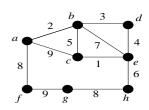
Prova di recupero di Algoritmi e Strutture Dati

Martedì 27 Gennaio 2009 – Prof. Guido Proietti

Scrivi i tuoi dati \Longrightarrow	Cognome:	Nome:	Matricola:	PUNTI
ESERCIZIO 1	Risposte Esatte:	Risposte Omesse:	Risposte Errate:	

ESERCIZIO 1 (25 punti): Domande a risposta multipla

Premessa: Questa parte è costituita da 20 domande a risposta multipla. Per ciascuna domanda vengono fornite 4 risposte, di cui soltanto una è corretta. Per rispondere utilizzare la griglia annessa, barrando con una \times la casella corrispondente alla risposta prescelta. È consentito omettere la risposta. In caso di errore, contornare con un cerchietto la \times erroneamente apposta (ovvero, in questo modo \otimes) e rifare la \times sulla nuova risposta prescelta. Se una domanda presenta più di una risposta, verrà considerata omessa. Per tutti i quesiti verrà attribuito un identico punteggio, e cioè: risposta esatta 3 punti, risposta omessa 0 punti, risposta sbagliata -1 punto. Il voto relativo a questa parte è ottenuto sommando i punti ottenuti e normalizzando su base 25. Se tale somma è negativa, verrà assegnato 0.


- 1. L'algoritmo più efficiente per il calcolo dell' n-esimo numero della sequenza di Fibonacci ha complessità a) $\Omega(n)$ b) $\Theta(n)$ *c) $O(\log n)$ d) $\Theta(n \log n)$
- 2. L'algoritmo Insertion Sort, nel caso medio costa: a) O(n) b) $\omega(n^2)$ *c) $\Omega(n^2)$ d) $\Theta(n)$
- 3. Se $f(n) = \Omega(g(n))$ e $g(n) = \Omega(h(n))$, allora: a) $h(n) = \Omega(f(n))$ *b) $f(n) = \Omega(h(n))$ c) $f(n) = \Theta(h(n))$ d) $f(n) = \omega(h(n))$
- 4. Il numero di foglie dell'albero di decisione associato al problema dell'ordinamento di n elementi è: a) $\Theta(n \log n)$ b) $\omega(n!)$ c) $O(n \log n)$ * d) $\Omega(n!)$
- 5. Dato un problema con una delimitazione inferiore alla complessità temporale pari a $\Omega(f(n))$, un algoritmo per la sua risoluzione non può avere tempo di esecuzione g(n) pari a:

 a) $g(n) = \Theta(f(n))$ *b) g(n) = o(f(n)) c) $g(n) = \omega(f(n))$ d) g(n) = O(f(n))
- 6. A quale delle seguenti classi non appartiene la complessità dell'algoritmo MERGE SORT: a) * $o(n \log n)$ b) $\Omega(n)$ c) $O(n^2)$ d) $\Theta(n \log n)$
- 7. Nel caso medio, assumendo che le istanze siano equidistribuite, la ricerca di un elemento in un insieme non ordinato di n elementi richiede un numero di confronti pari a: a) n b) (n-1)/2 *c) (n+1)/2 d) 1
- 8. Durante l'esecuzione del QUICKSORT, applicando la procedura di partizione in loco al vettore [23, 42, 7, 93, 15, 1, 27], con perno l'elemento 23, si ottiene
 - *a) [15, 1, 7, 23, 93, 42, 27] b) [7, 1, 15, 23, 93, 42, 27] c) [1, 7, 15, 23, 42, 93, 27] d) [1, 7, 15, 23, 27, 42, 93]
- 9. Qual è la complessità temporale dell'algoritmo Bucket Sort applicato ad un array A di n elementi in cui l'elemento massimo è pari a $n^4 + \log n$?
 - a) $\Theta(n+k)$ b) $\Theta(n)$ *c) $O(n^4)$ d) $\Theta(n \log n)$
- 10. Un heap binario di altezza 3 contiene:
 - a) esattamente 15 elementi b) almeno 16 elementi c) al più 7 elementi *d) tra 8 e 15 elementi
- 11. Una coda di priorità realizzata con una lista non ordinata supporta l'estrazione del massimo in: a) $\Theta(\log n)$ b) $O(\log n)$ c) $\Theta(1)$ *d) $\Theta(n)$
- 12. Dato un albero binario di ricerca di n elementi ed altezza h, l'inserimento di un elemento restituisce un albero avente al massimo altezza: *a) h+1 b) $\Theta(\log h)$ c) $\Theta(\log n)$ d) h
- 13. In un albero AVL di n elementi, l'inserimento di un elemento nel caso peggiore induce un numero di rotazioni pari a: a) 0 *b) 2 c) $\Theta(\log n)$ d) 1
- 14. Siano X e Y due stringhe di lunghezza m ed n. Qual è la complessità dell'algoritmo per la determinazione della distanza tra X e Y basato sulla tecnica della programmazione dinamica?
- *a) O(mn) b) O(n) c) O(m+n) d) O(m)15. Quanti archi contiene il sottografo indotto da $\{a,c,e\}$ nel seguente grafo? a) 0 *b) 1 c) 2 d) 3
- 16. La visita in ampiezza dell'albero di cui alla Domanda 15 eseguita partendo dal nodo c restituisce un BFS di altezza: a) 1 **b) 2 c) 3 d) 4
- 17. L'algoritmo di Bellman e Ford applicato ad un grafo pesato con un numero di archi $m = \Theta(n^2)$, ha complessità: a) $\Theta(n^2)$ b) $\Theta(n+m)$ *c) $\Theta(n^3)$ d) $O(m \log n)$
- 18. Dato un grafo pesato G = (V, E) con n vertici ed m > n archi, e presi 2 vertici u, v, trovare il cammino minimo tra u e v applicando l'algoritmo di Dijkstra che usa l'heap binario costa:
 a) $\Theta(n)$ b) $\Theta(m)$ c) $\Theta(1)$ *d) $\Theta(m \log n)$
- 19. Usando gli alberi QuickUnion e l'euristica dell'unione pesata by size, il problema della gestione di n insiemi disgiunti sottoposti ad n-1 Union ed $m=n^2$ Find può essere risolto in:

 a) $\Theta(n)$ b) $\Theta(n+m)$ c) $\Theta(n^2)$ *d) $O(n^2 \log n)$
- 20. Dato un grafo connesso con n vertici ed m archi, l'algoritmo di Kruskal esegue un numero di operazioni Union(u,v) pari a: a) 2m *b) n-1 c) $\Theta(m\log n)$ d) $\Theta(\log n)$

Griglia Risposte

		Domanda																		
Risposta	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
a																				
b																				
c																				
d																				

ESERCIZIO 2 (5 punti) (Da svolgere sul retro della pagina!)

Mostrare l'intera esecuzione, passo per passo, dell'algoritmo di Kruskal sul seguente grafo: