Università degli Studi dell'Aquila
Algorithms for Distributed Systems: Mid-term Evaluation
Wednesday, November 27th, 2013 - Prof. Guido Proietti

Write your data \Longrightarrow	Last name:	First name:	ID number:	Points
EXERCISE 1				
EXERCISE 2				
EXERCISE 3				
TOTAL				

EXERCISE 1: Multiple-choice questions (10 points)
Remark: Only one choice is correct. Use the enclosed grid to select your choice. A correct answer will make you gain 3 points, while a wrong answer will charge you with a -1 penalization. The final result will be given by summing up all the obtained points (0 for a missing answer), by normalizing on a 10 base.

1. Let $f(n)$ and $g(n)$ denote the message complexity of the Chang 8 Roberts algorithm in the best and in the worst case, respectively. Which of the following asymptotic relations is wrong?
*a) $f(n)=\Theta(g(n) \cdot n)$
*b) $f(n)=\Theta(g(n))$
c) $f(n)=o(g(n))$
d) $f(n)=O(g(n))$
2. Let $f(n)$ and $g(n)$ denote the message complexity of the Chang ε Roberts and the Hirshberger \mathcal{E} Sinclair algorithm in the average and in the worst case, respectively. Which of the following asymptotic relations is correct?
a) $f(n)=\Theta(g(n) \cdot \log n)$
*b) $f(n)=\Theta(g(n))$
c) $f(n)=o(g(n))$
d) $f(n)=\omega(g(n))$
3. Let us consider the leader election algorithm we studied for a synchronous ring with n processors, non-anonymous and uniform. Let the minimum id in the ring be equal to 2^{n}. Then, the algorithm has a number of rounds of:
a) $\Theta\left(2^{n}\right)$
b) $O(1)$
*c) $\Theta\left(n \cdot 2^{n}\right)$
d) $\Theta(n)$
4. Let us consider the first round of the synchronous version of the Prim algorithm on n processors. Then, in the worst case, how many messages will be sent in such a round?
a) n
b) $n-1 \quad{ }^{*}$ c) $O(1)$
d) no message is sent
5. Let us consider the first phase of the synchronous version of the $G H S$ algorithm on n processors. Then, in the worst case, how many rounds the phase consists of?
a) exactly n
b) $O(1)$
*c) $\Theta(n)$
d) $O(\log n)$
6. Let $f(n)$ and $g(n)$ denote the message complexity of the asynchronous version of the Prim and the GHS algorithm, respectively, when executed on a sparse graph, i.e., with $m=\Theta(n)$. Which of the following asymptotic relations is correct?
a) $f(n)=\Theta(g(n) \cdot n)$
b) $f(n)=\Theta(g(n))$
c) $f(n)=o(g(n)) \quad$ *d) $f(n)=\omega(g(n))$
7. The randomized algorithm for finding a maximal independent set running on a graph with n nodes and with degree $d=O(1)$, with high probability ends within a number of rounds in the order of:
*a) $O(\log n)$
b) $O(1)$
c) $O(n)$
d) $O(n \log n)$
8. Let be given a synchronous n-processor system, with at most 1 crash failure. Assume that all the processors have a different input. Then, how many messages are totally sent during the execution of the 1-resilient to crash failures consensus algorithm?
*a) $\Theta\left(n^{3}\right)$
b) $\Theta\left(n^{2}\right)$
c) $\Theta(n)$
d) $\Theta(1)$
9. Let be given a synchronous n-processor system, with at most 1 Byzantine failure. Assume that all the processors have a same input. Then, how many messages are totally sent during the execution of the 1-resilient King's algorithm?
a) $\Theta\left(n^{3}\right)$
*b) $\Theta\left(n^{2}\right)$
c) $\Theta(n)$
d) $\Theta(1)$
10. In the exponential-tree algorithm with n processors, how many messages are sent during round d ?
a) $O(n)$
b) $O\left(n^{2}\right)$
c) $O\left(n^{d}\right)$
*d) $O\left(n^{d+1}\right)$
Answer Grid

	Question									
Choice	1	2	3	4	5	6	7	8	9	10
a										
b										
c										
d										

EXERCISE 2: Open questions (10 points)

Remark: Select at your choice one out of the following two questions, and address it exhaustively.

1. Describe and analyze the Chang \mathcal{E} Roberts algorithm.
2. Prove that there is no 1-resilient to Byzantine failures algorithm for 3 processors.

EXERCISE 3: Algorithm (10 points: 5 for the correctness, 3 for the efficiency, and 2 for the analysis)
Design an algorithm for a non-uniform, non-anonymous, synchronous MPS $G=(V, E)$, with synchronous start, which computes for each processor the length of the longest cycle in G the processor belongs to (assume that rounds are of send-receive-compute type).

