Analisi Matematica 1, Scritto	o 3-A. Durata della prova: 2 ore	10.2.09
Cognome:		
Matricola:	Corso di Laurea:	
Domanda 1	[2+3 punti]	
(i) Dare la definizione di deriva	ata direzionale per una funzione $f: \mathbb{R}^2 \to \mathbb{R}$.	
(ii) Enunciare il Teorema del gr	radiente.	
Risposta		
(i)		
(ii)		
Domanda 2 (i) Enunciare con le opportune (ii) Risolvere per parti l'integra	e ipotesi la formula di integrazione per parti. $\operatorname{de} \int_1^e x \cdot \ln(x) \; dx$	[2+3 punti]
Risposta (i)		
(ii)		
		<u> </u>

-	•	•	-
Eserc	17.	10	

[3 punti]

Sia $f: \mathbb{R} \to \mathbb{R}$ una funzione limitata. Se inoltre f è continua in (0,1), allora

- a esiste $c \in (0,1)$ tale che f(c) = 0
- $|\mathbf{b}|$ f é integrabile in [0,1]
- c f non ammette massimo in (0,1)
- f ammette minimo in [0,1]

Risoluzione

[3 punti]

Esercizio 2

Sia $f(x,y) = \ln\left(\frac{x}{y}\right)$. Allora f_{xy} é

- a 0

- d

Risoluzione

Esercizio 3 [4 punti]

Sia $\sum_{i=1}^{n} a_n$ una serie a termini positivi. Dire quale delle seguenti affermazioni é vera:

- a Se $\sum_{n=1}^{\infty} a_n$ converge allora $\sum_{n=1}^{\infty} (1+a_n)$ converge converge converge set $\sum_{n=1}^{\infty} a_n$ diverge allora $\sum_{n=1}^{\infty} \cos(a_n)$ diverge
- b Se $\sum_{n=0}^{\infty} a_n$ converge allora $\sum_{n=0}^{\infty} \ln(1+a_n)$ converge d nessuna delle precedenti é corretta

Risoluzione

Calcolare, se esiste, il limite
$\lim_{x \to 0} \frac{\ln(1+2x)(1+\sin(2x)) - 2x}{1-\cos(x)}$
$x \to 0$ $1 - \cos(x)$
Risoluzione
Esercizio 5
Trovare i punti critici di di $f(x,y) = e^{x^2+4x-y^2}$ e classificarli.
Risoluzione
7

[4 punti]

Esercizio 4

Calcolare gli zeri, estremi locali e asintoti di $f(x) = \frac{x^3}{x^2 - 1}$ e tracciarne un grafico approssimativo.
Risoluzione