Esercizio 1	[3 punti]			
Sia $f \in C^1(a,b)$ tale che f é strettamente monotona e siano $m := \inf_{(a,b)} a_a f$	$f f, M := \sup_{(a,b)} f$. Allora			
a $f'(x) > 0$ per ogni $x \in (a,b)$ b $f:(a,b) \to [m,M]$ é su	ıriettiva			
Risoluzione				
Esercizio 2	[3 punti]			
Sia $a_n = (-1)^n \cdot (1 - e^{-n})$. Allora				
$\boxed{\mathbf{a}} \forall \epsilon > 0 \exists n_0 \in \mathbb{N} \text{ tale che } a_{n_0} - 1 < \epsilon$	b $(a_n)_{n\in\mathbb{N}}$ converge			
$\boxed{\mathbf{c}} \forall \epsilon > 0 \exists n_0 \in \mathbb{N} \text{ tale che } a_n - 1 < \epsilon \text{ per ogni } n < n_0$	$\boxed{\mathbf{d}} \sum_{n=1}^{+\infty} a_n \text{ converge}$			
Risoluzione	76—1			
Esercizio 3	[3 punti]			
La funzione $f(x) = x \cdot \ln\left(1 + \frac{1}{x^{\alpha}}\right)$ é integrabile in senso improprio su	$(1, +\infty)$			
aper $\alpha > 1$ bper $\alpha > 0$ c $\alpha > 2$	d per nessun α			
Risoluzione				
	_			

Carcorare	$\sin(x^2) \cdot \ln^3(1+2x)$	
	$\lim_{x \to 0} \frac{\sin(x^2) \cdot \ln^3(1+2x)}{(e^x - 1) \cdot (1 - \cos(x))^2}$	
Risoluzione		
Esercizio 5		[4 punti]
Trovare sup e inf di $f(x) = \frac{1}{2}$	$\frac{x^2}{\ln^2(x)}$ in $(0, +\infty)$.	
Risoluzione		

[4 punti]

Esercizio 4

Calcolare

Esercizio 6 [5 punti]

Risoluzione					