Domanda 1

[3+2 punti]

- (i) Dare la definizione di derivata direzionale per una funzione $f:\mathbb{R}^2 \to \mathbb{R}$.
- (ii) Enunciare il Teorema del gradiente.

Risposta

	- 0	0	0	0	A
(i)	·C/2	Lon	nto	6-1	4
(1)-		•	1		-

(ii)_

Domanda 2

[2+3 punti]

- (i) Enunciare il teorema di derivabilità della funzione inversa.
- (ii) Calcolare $(f^{-1})'(y)$ per y = 1 ove $f(x) = x^3 + 2x + 1$.

Risposta

(ii) $(f^{-1})^{1}(y) = \frac{1}{f^{1}(x)} = \frac{1}{3x^{2}+2}$ dove y = f(x).

$$(f^{-1})(1) = \frac{1}{f'(0)} = \frac{1}{3}$$

Sia $A \subseteq \mathbb{R}$ e sia $f: A \to \mathbb{R}$ continua. Allora quale delle seguenti affermazioni é vera

- a se A é limitato, f(A) é limitato
- se A é un intervallo chiuso e limitato, f(A) é un intervallo chiuso e limitato
- c se A é un intervallo aperto, $f(A) = (\inf_A f, \sup_A f)$
- d $f(A) \subseteq (\inf_A f, \sup_A f)$.

Risoluzione

è sem per il tenema di Weierstraße il teorema dei valori in termedi.

Esercizio 2

[3 punti]

Sia $a_n \sim b_n$ per $n \to \infty$ e $\lim_{n \to +\infty} c_n = 1$. Allora per $n \to +\infty$

$$\lim_{n \to +\infty} (c_n)^{a_n} = 1$$

$$\boxed{b} \quad a_n + b_n \sim 2a_n$$

$$\boxed{\mathbf{c}} \ a_n^{b_n c_n} \sim a_n^{b_n}$$

$$\boxed{\mathbf{a}} \quad \lim_{n \to +\infty} (c_n)^{a_n} = 1 \qquad \boxed{\mathbf{b}} \quad a_n + b_n \sim 2a_n \qquad \boxed{\mathbf{c}} \quad a_n^{b_n c_n} \sim a_n^{b_n} \qquad \boxed{\mathbf{a}} \quad a_n^2 b_n \sim c_n^2 a_n b_n^2$$

Risoluzione

Da lim cn = 1 sepre cn 2 (n-1+00). Quindi ps

il principio di sost. sepre an. bn = 1? anan bn ven an bn

ven an bn

choto)

Esercizio 3

[3 punti]

Dato $E = \left\{ \frac{n+2}{n^2+1} : n = 0, 1, 2, 3, \ldots \right\}$, allora

$$a \inf E = 0$$
, $\sup E = +\infty$

$$\boxed{\mathbf{b}} \quad \inf E = 0, \, \max E = 2$$

$$[c] \inf E = -\infty, \sup E = 2$$

d inf
$$E = 0$$
, sup $E = \frac{3}{2}$

Risoluzione

g. Combo 2-A.

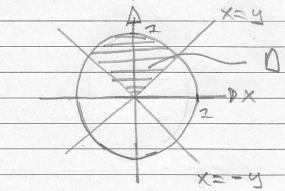
Esercizio 4		[:h(x)		[4 punti]
Calcolare	$\lim_{x \to 0} \sqrt{\frac{1 + e^{-x^2}}{x^2}}$	$\frac{-2\cos(x)}{\sin^2(x)}$	x4	
Risoluzione Dobbiamo Sviluppo	e il sume	abre pho	al 40 ord	ine:
· e = 1+++ = +	=o(f') = Pe	-x= 1-x2+	x4 tolx4	
· 2·63(x)= 2(1	- X + X+	+ o(x 4) = 2	$-x_{5} + \frac{15}{x_{4}}$	tock &
=P 4+ex²-20	= (2 ~ 5	-12) x4+	$-7+x^{7}-$ $o(x^{4})=\frac{5}{12}$	$x^4 + o(x^4)$
= 1 h(x)~ 5/12 x4 =	712 (x-00)	12		
= 0 lin h(x) = 7	12			
Esercizio 5				[4 punti]
Provare attraverso il principio di	induzione che $2n$	$+1 < n^2$ per ogni n	≥ 3 .	
Risoluzione				
cfr. (Copilo 2	- A.		

Esercizio 6

[5 punti]

Disegnare il dominio $D=\left\{(x,y)\in\mathbb{R}^2:\,x^2+y^2\leq 1,\,-y\leq x\leq y\right\}$ e calcolare $\iint_D y\;dx\;dy.$

Risoluzione



Despuesso in coordinate poloni diverta

0'={(2,2) | 0 = 8 = 1, T/4 = 2 = 9/4 Ti}

= [0,1] x [1/4, 31/4]. Quinhi

2 31/4

I= [] 8.5m(28).8 dalde

= \int 2 dg. \int \sin (29) d28

 $= \left(\frac{2^3}{3}\right)^{\frac{1}{2}} \cdot \left(-\cos(2k)\right)^{\frac{3\pi}{4}}$

 $= \frac{1}{3} \cdot \left(-\cos\left(\frac{3\pi}{4}\right) + \cos\left(\frac{\pi}{4}\right) \right)$

= 3.(-(-12) + 12) = 12