Cognome	Nome		A.A.
Matricola			
			D1
omanda 1		[5 punti]	D2
(') D 1 1 C · · · 1.	1.	· +∞	E1 E2
(i) Dare la definizione di co $+\infty$	onvergenza di una sei +∞	rie $\sum_{k=0}^{\infty} a_k$.	E3
ii) Se $\sum_{k=0}^{+\infty} a_k$ converge, a	llora la serie $\sum_{k=0}^{\infty} \cos k$	$\mathrm{s}(a_k)$	$\begin{array}{c c} E4 \\ \hline \Sigma \end{array}$
a converge	b diverge $a + \infty$	c è irregolare	d diverge a $-\infty$
(Giustificare la risposta	.)		
•			
isposta			
()			
omanda 2			r=-
			[5 pur
(i) Enunciare il teorema de			
ii) Verificare che la funzion	$e f : \mathbb{R} \to \mathbb{R}, f(x) =$	$x^5 - 2x^3 - 2$ ammette u	no zero nell'intervallo [1,
isposta			
:)			

Firma:.....

Calcolare, se esiste, il limite		
	$\lim_{x \to 0} \frac{e^x - \sin(x) - \cosh(x)}{x^2 \cdot \ln(1+x)}$	
Risoluzione	$x \to 0$ $x^2 \cdot \ln(1+x)$	
Tusorazione		
Esercizio 2		[5 punti]
Calcolare l'integrale definito	$a_{\star}/\overline{\pi}$	
	$\int_0^{\sqrt{\frac{\pi}{2}}} x \cdot \left(\sin(x^2) - 1\right) dx$	
Risoluzione	J_0	
1015010210110		

[5 punti]

Esercizio 1

Esercizio 3	[5 punti]
Calcolare l'equazione della retta tangente al grafico di $f(x) = x \cdot \ln(\frac{1}{x})$ nel punto $x_0 = e$.	
Calculate requazione dena retta tangente ai granco di $f(x) = x \cdot \ln(\frac{\pi}{x})$ nei punto $x_0 = e$.	
Risoluzione	
Tusoidzione	

Esercizio 4 [7 punti]

Trovare il	dominio,	eventuali zer	, asintoti,	intervalli	di mono	tonia e	punti	di	estremo	locale	della
funzione	$f(x) = e^{(x)}$	$(x+\frac{4}{x})$ e tracci	arne un gi	rafico appr	ossimativ	O.					

Risoluzione		