Analisi Matematica 1, Scritto 1-B. Durata della prova: 2 ore		27.1.09
Cognome:	Nome:	
Matricola:	Corso di Laurea:	<u>D1</u>
Domanda 1	$[2+3 \mathrm{punti}]$	D2 E1
(i) Dare la definizione di punto di accumulazione di un insieme $D\subseteq\mathbb{R}.$		E2 E3
(ii) Dare la definizione di $\lim_{x\to 2}f(x)=3$ per una funzione $f:D\subseteq\mathbb{R}\to\mathbb{R}.$ Risposta		E4 E5 E6
(i)		Σ
(ii)		
Domanda 2		[2+3 punti]
(i) Dare la definizione di derivabilitá per u	na funzione $f: \mathbb{R} \to \mathbb{R}$.	
(ii) Calcolare la derivata di $(2x)^{3^x}$.		
Risposta		
(i)		
(ii)		

Esercizio 1	[3 punti]

Sia $f(x) = e^x \cos(x)$. Allora si ha $\alpha f(x) + \beta f'(x) + f''(x) = 0$ per

$$\alpha = 2, \beta = 2$$

$$\boxed{\mathbf{a}} \quad \alpha=2, \, \beta=2 \qquad \qquad \boxed{\mathbf{b}} \quad \alpha=2, \, \beta=-2 \qquad \qquad \boxed{\mathbf{c}} \quad \alpha=-2, \, \beta=2 \qquad \qquad \boxed{\mathbf{d}} \quad \alpha=0, \, \beta=0$$

$$\alpha = -2, \beta = 2$$

$$\boxed{\mathbf{d}} \quad \alpha = 0, \, \beta = 0$$

Risoluzione

Esercizio 2 [3 punti]

Posto $D = \left\{\frac{x+2}{x+1}: \, x \in [0,2)\right\}$, allora

$$\boxed{\mathbf{a}} \max D = 2, \min D = 4/3$$

$$\boxed{\mathbf{b}} \quad \sup D = 2, \text{ inf } D = 4/3$$

d sup
$$D = 3/4$$
, inf $D = 1/2$

Risoluzione

Esercizio 3 [4 punti]

La serie $\sum_{n=1}^{\infty} \frac{x \cdot e^{nx}}{n}$, al variare del parametro $x \in \mathbb{R}$,

- $\boxed{\mathbf{a}}$ converge per ogni $x \in \mathbb{R}$
- $\overline{\mathbf{c}}$ converge per ogni x > 0
- | b | converge per ogni $x \leq 0$
- d non converge mai

Risoluzione

	$\lim_{x \to 0} \frac{6\sin(x) - 6x + x^3}{(1 - \cos(x)) \cdot \sin(x^3)}$	
Risoluzione		
Esercizio 5		[4 punti]
Calcolare	c^2	
	$\int_0^2 (x-2) \cdot 2^x dx$	
Risoluzione		

[4 punti]

Esercizio 4

Calcolare, se esiste, il limite

Esercizio 6	[4 punti]
Trovare i punti critici di $f(x,y) = x^4 - 2x^2 + (2x^2 - 1)y^2$ e classificarli.	
Risoluzione	
	_