Analisi Matematica 1, Scritto 1-B. Durata della prova: 2 ore	
Cognome:	Nome:
Matricola:	Corso di Laurea:
Domanda 1	$[2+3 \mathrm{punti}]$
(i) Dare la definizione di convergenza per una	serie $\sum_{k=0}^{+\infty} a_k$.
(ii) Verificare se la serie $\sum_{n=0}^{+\infty} (-1)^n \cdot \frac{e^{\sin(n)}}{n^2}$ c Risposta (i)	
(ii)	
Domanda 2	$[2+3 \mathrm{punti}]$
(i) Enunciare il teorema degli zeri.	
(ii) Sia $P(x) = \sum_{k=0}^{n} a_k x^k$ un polinomio di grado ammette una radice positiva ed una negati	o pari tale che $a_0 < 0, a_n > 0$. Dimostrare che $P(x)$ va.
Risposta	
(i)	
(ii)	

Esercizio 1		[3 punti
Oato l'insieme	$D = \left\{ \frac{n}{n^2 + 9} : n \in \mathbb{N} \right\}, \text{ allora}$	
	a $\sup = +\infty$, $\inf = 0$ c $\sup = 1/6$, $\inf = 0$	$\begin{array}{ c c }\hline b & \max = 1/6, \ \min = 0\\\hline d & \sup = 1/6, \ \inf = -\infty\end{array}$
Risoluzione		
Esercizio 2	}	[3 punti
La serie $\sum_{n=0}^{\infty} \frac{1}{q^n}$		
Risoluzione		
Esercizio 3	,	[4 punti
Siano f, g due :	funzioni tali che $f+g$ é deri	vabile in $x = 0$. Allora
[a] f e g	g sono derivabili in $x = 0$	b Esiste finito $\lim_{h\to 0} \frac{f(h) - f(0) + g(h) - g(0)}{h}$
c f e g	g sono continue in $x = 0$	d Nessuna delle risposte precedenti é vera
Risoluzione		

Esercizio 4		[4 punti]
Calcolare, se esiste, il limite	$\lim_{x \to 0^+} \frac{x - \sin^2(\sqrt{x}) - \sin^2(x)}{x^2}$	
	$\frac{1111}{x \to 0^+} {}$	
Risoluzione		
Esercizio 5		[4 punti]
Dire se l'integrale improprio \int_1^∞	$(1-\cos(\frac{1}{x})) dx$ converge.	
Risoluzione		
Risoluzione		

Esercizio 6	[4 punt
Studiare la funzione $f(x) = \sqrt{\frac{x^2(x-1)}{x+1}}$ e tracciarne un grafico approssimativo.	
Risoluzione	
ttisoruzione	