Analisi Matematica 1, Scritto 1-B. Durata	della prova: 2 ore	8.1.08
Cognome:	Nome:	
Matricola:	Corso di Laurea:	. . Di
Domanda 1	$[2+3 \; \mathrm{punti}]$	D2 E1
(i) Dare la definizione di punto di accumulazione per un insieme $D \subseteq \mathbb{R}$.		E2 E3
(ii) Dare la definizione di limite $\lim_{x\to x_0} f(x) = l$ per una funzione $f: \mathbb{R} \to \mathbb{R}$ e $x_0, l \in \mathbb{R}$.		E4 E5
Risposta		E6 Σ
(i)		
(ii)		
Domanda 2		[2+3 punti]
(i) Dare la definizione di derivata parziale risp	etto alla variabile y per una funzione f :	$\mathbb{R}^2 \to \mathbb{R}$.
(ii) Enunciare il teorema di Fermat per funzion	ni di più variabili.	
Risposta		
(i)		
(ii)		

Esercizio 1 [3 punti]

Sia $f:[0,+\infty)\to\mathbb{R}$ tale che esistono a,b>0 per cui |f(x)|< a per ogni x>b. Allora

$$\boxed{\mathbf{a}} \quad \lim_{x \to +\infty} f(x) = a$$

$$\lim_{x \to +\infty} f(x) = 0$$

$$\fbox{c}$$
 f è limitata

$$\begin{array}{|c|c|} \hline \mathbf{b} & \lim_{x \to +\infty} f(x) = 0 \\ \hline \mathbf{d} & \lim_{x \to 0^+} f(x) = 0 \\ \end{array}$$

Risol	luzione

Esercizio 2 [3 punti]

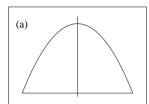
Sia $a_n = \sin\left(\frac{\pi}{2} + n\pi\right) \cdot \left(1 - \frac{1}{n}\right)$. Allora

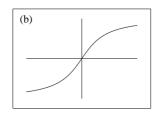
- a $(a_n)_{n\in\mathbb{N}}$ è convergente
- b $(a_n)_{n\in\mathbb{N}}$ non è limitata

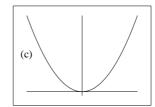
 $\boxed{\mathbf{c}} \quad \lim_{n \to +\infty} a_n = -1$

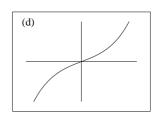
 $\boxed{\mathbf{d}} \quad a_{2n} > \frac{1}{2} \text{ definitivamente}$

Risoluzione


Esercizio 3 [4 punti]


Calcolare il limite


$$\lim_{x \to 0} \frac{\cos(x) + \ln(1 + x^2) - e^x + x}{x \cdot (1 - \cos(x))}$$


\mathbf{Riso}	luzione

Sia $f: \mathbb{R} \to \mathbb{R}$ derivabile tale che $f'(x) = \cos(x^2)$. Allora parte del grafico di f è

D:1	-:
KISO	luzione

Esercizio 5 [4 punti]

Calcolare l'integrale definito $\int_0^{\frac{\pi}{2}} \sin^3(x) \cdot \cos^2(x) dx$.

Risoluzione

Esercizio 6	[4 punti]
Trovare i punti critici della funzione $f: \mathbb{R}^2 \to \mathbb{R}, f(x,y) = x^2 + y^2 + 4xy^2$ e classificarli.	
Trovare i punti critici dena iunzione $j: \mathbb{R} \to \mathbb{R}, j(x,y) = x + y + 4xy$ e ciassincarii.	
Risoluzione	