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Abstract. This paper deals with the derivation of entropy solutions to Cauchy problems for a class of scalar

conservation laws with space-density depending fluxes from systems of deterministic particles of follow-the-

leader type. We consider fluxes which are product of a function of the density v(ρ) and a function of the
space variable φ(x). We cover four distinct cases in terms of the sign of φ, including cases in which the latter

is not constant. The convergence result relies on a local maximum principle and on a uniform BV estimate
for the approximating density.

1. Introduction4

The approximation of nonlinear transport equations via follow-the-leader type schemes has attracted a lot5

of attention in the recent years. As a paradigm, consider Lighthill-Whitham-Richards’ equation for traffic6

flow [21, 23]7

ρt + (ρv(ρ))x = 0, (1)

where ρ is the density of vehicles and ρ 7→ v(ρ) is a decreasing function modelling the Eulerian velocity of8

vehicles. As it is well known, in this model instantaneous response to the distance to the preceding vehicle is9

assumed by neglecting drivers’ reaction time, whereas other models [2] take the latter into account. However,10

(1) is considered as a reliable model in several situations, for instance with low densities, see e.g. the recent11

book [24] and the references therein. Both approaches in [21, 23] and [2] treat the density of cars as a12

continuum, that is as a medium that can be divided into particles of arbitrary small mass without changing13

the physical nature of the system. On the other hand, the intrinsic nature of traffic flow is that of a discrete14

system of agents, each one of non trivial mass. Neglecting the driver’s time reaction while adapting the15

speed to the distance to the preceding vehicle, the simplest (and most reasonable) law for the dynamics of16

n+ 1 drivers is provided by the follow-the-leader system17 ẋi(t) = v

(
`

xi+1(t)− xi(t)

)
, for i ∈ {0, . . . , n− 1},

ẋn(t) = vmax = v(0),
(2)

where x0(t) < . . . < xn(t) denote the positions of the n + 1 vehicles at time t, v is a given non-negative,18

non-increasing function on [0,+∞) with finite value vmax at 0 and ` is the (one-dimensional) mass of each19

vehicle. Typically, a maximum density ρmax is prescribed in the model in order to avoid collisions, and the20

velocity v satisfies v(ρmax) = 0. The vehicle xn, called ‘leader’, travels with maximum speed as no vehicles21

are ahead of it. The finite dimensional dynamical system (2) is usually coupled with n+ 1 initial conditions22

xi(0) = x̄i, i = 0, . . . , n.23

In a more general framework in which the dependence on ρ in the velocity term v in (1) includes possible24

diffusion terms, or external force fields, or nonlocal interaction terms, several results are available in the25

literature. We provide here a partial list of results. A probabilistic approach based on exclusion processes26

was developed in several works, we mention here [13, 14, 20]. When diffusion terms are included, we mention27

here the milestone results in [16, 27]. System (2) is a typical example of deterministic particle system, in28

that no stochastic effects are considered and the position of each particle is exactly computable for all times29

t ≥ 0. A first attempt to detect diffusion effect via deterministic particles is due to [26]. The result in [15]30

extends this approach to nonlinear diffusions. A relevant recent result also involving external potentials is31

contained in [22]. Deterministic particle limits are also relevant in the literature of the modelling of swarming32

phenomena, see e.g. [5] and the references therein.33
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We observe at this stage that the quantity `
xi+1(t)−xi(t) in (2) has the physical dimension of a one-1

dimensional density. Hence, the equation in (2) for i < n can be considered as a Lagrangian discrete2

counterpart of the continuity equation (1). This motivates the mathematical interest for (2) as a possible3

many-particle approximation of (1), that is in the limit as n → +∞. While this fact has been largely4

known in the literature in the spirit of a ‘formal limit’, the result in [12] proved it as a rigorous result.5

More precisely, the result in [12] can be be stated as follows: take an arbitrary continuum initial condition6

ρ ∈ L1(R)∩L∞(R) with compact support, and consider a suitable atomization of ρ0, for instance a set of n+17

particles x̄0, . . . , x̄n ∈ R with the property that
´ x̄i+1

x̄i
ρ0(x)dx = 1/n for all i = 0, . . . , n − 1. Now, consider8

the (unique) solution to (2) with initial condition x̄i, i = 0, . . . , n and the discrete piecewise reconstruction9

of the particles’ density10

ρn(x, t) =

n−1∑
i=0

1

n(xi+1(t)− xi(t))
1[xi(t),xi+1(t))(x). (3)

Then, ρn converges in L1
loc(R × R+) as n → +∞ to the unique entropy solution (in the sense of Kružkov11

[19]) ρ of the scalar conservation law (1) with initial datum ρ. Such result was later extended to a larger12

class of initial conditions in [9].13

Said results provide an abstract validation of the continuum approach (1) as a good approximation of the14

discrete model (2). In particular, the emergence of typical patterns such as rarefaction waves and shocks -15

that are easily computable in (1) - is established as a phenomenon that occurs also in the discrete setting in16

a ‘coarse-grained’ sense, that in the proper scaling regime in which the domain is large enough to include a17

very large number of vehicles and the total mass of the vehicles is normalized. We stress that said patterns18

are not detectable analytically in (2) for finite n. Moreover, this set of results is relevant also from the19

numerical point of view, as it allows to follow the movement of each vehicle unlike standard approaches such20

as classical Godunov type methods. Finally, these results hold without prescribing the initial condition to21

be far from the vacuum state (a restriction which would contradict the fact that the inertia-free approach of22

(1) is more suitable for low densities). We mention at this stage that the literature contains several results23

about the derivation of the second order ARZ model via deterministic follow-the-leader systems, see e.g.24

[1, 3].25

Although traffic flow is a motivating example to justify (1) as a many-particle limit for (2), the results in26

[12, 9] hold under more general assumptions on the velocity map v: it suffices to assume that v is monotone27

(decreasing or increasing) and the monotonicity of v determines the proper upwind direction for the discrete28

density on the right-hand side of (2) (an increasing velocity v requires the use of the backward density29

`
xi(t)−xi−1(t) ). Indeed, this deterministic particle approach to solving nonlinear continuity equations was30

later on extended to other models. In [11] the same approach was used to approximate solutions to (1) on a31

bounded domain with Dirichlet type conditions. In [10] a suitable modification of (2) was proven to converge32

in the many-particle limit to weak solutions to the Hughes model for pedestrian movements in one space33

dimension. Finally, a nonlocal version of (1) was considered in [8] as the many-particle limit of a suitable34

variant of (2) considering nonlocal interactions with all particles.35

The present paper contributes to this line of research by considering the case of a scalar conservation law36

with space-dependent flux37

ρt +
(
ρv(ρ)φ(x)

)
x

= 0, (4)

where v is monotone and φ is a given external drift term depending on the position x. Besides being well38

motivated in the modelling context of traffic flow - for example in situations in which the speed of the39

vehicles is also affected by external factors (such as temporary road maintenance, or sudden turns or rises)40

- the equation (4) has a pretty wide range of potential applications in sedimentation processes [4], flow of41

glaciers [17], formation of Bose-Einstein condensates [28]. For a more general description of the applications42

of nonlinear scalar conservation laws we refer to [7] and the references therein.43

Similarly to the approach of [12] and later results, we will assume throughout this paper that v : [0,+∞)→44

[0,+∞) is monotone non-increasing and non-negative, with v(0) < +∞. A symmetric result could be stated45

in case of a non-decreasing v, we shall omit the details. As for the potential φ, we consider four cases:46

(P1) φ(x) ≥ 0 for all x ∈ R (forward movement);47

(P2) φ(x) ≤ 0 for all x ∈ R (backward movement);48
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(P3) xφ(x) ≥ 0 for all x ∈ R (repulsive movement);1

(P4) xφ(x) ≤ 0 for all x ∈ R (attractive movement).2

We refer to section 2 for the precise statement of all assumptions on v and φ. For each of the above four3

cases we shall provide an ad-hoc many-particle approximation result in the spirit of (2). For example, case4

(P1) requires the use of the forward follow-the-leader scheme5 ẋi(t) = v

(
`

xi+1(t)− xi(t)

)
φ(xi(t)), for i = 0, . . . , n− 1,

ẋn(t) = v(0)φ(xn(t)).
(5)

The distinction between case (P1) and case (P2) is relevant in that it implies a change in the upwind direction6

of the scheme. More in detail, if φ ≤ 0 then all particles are subject to a drift directed towards the negative7

direction. Hence, it is reasonable to assume that each particle adjusts its speed by considering the distance8

to its left nearest neighbor, and the leftmost particle will be the leader travelling with v = v(0). In case (P3),9

the drift direction changes at the origin x = 0, with a positive direction on x ≥ 0 (non-negative φ) and a10

negative one on x ≤ 0 (non-positive φ). We shall refer to this case as repulsive movement, since it implies a11

drift of all particles away from the origin. Two leaders (leftmost and rightmost particle) will travel with speed12

v = v(0). Symmetrically, in case (P4) particles move towards the positive (negative respectively) direction13

on x ≤ 0 (on x ≥ 0 respectively). This implies that no actual ‘leader’ exists in the sense of the previous14

cases, and particles adapt their speed with respect to the relative position with their right (left respectively)15

nearest neighbor on x ≤ 0 (on x ≥ 0 respectively). This situation implies an attractive movement towards16

the origin, a phenomenon that could potentially imply collision between the two particles nearest to the17

origin in a finite time. To see this, consider the example v(ρ) = (1 + ρ)−1, φ(x) = −|x|α with α ∈ (0, 1).18

Setting two particles at initial positions −x0, x0 with x0 > 0, one can easily show that the two particles19

−x(t) and x(t) obeying20

ẋ(t) = φ(x(t))v

(
`

2x(t)

)
, x(0) = x0,

reach the origin in a finite time. Other significant examples originate in the continuum setting in the study21

of Bose-Einstein condensates, see [6], with φ(x) = −x and v(ρ) = ρ2, in which the finite time blow-up in22

L∞ of the density is proven. In order to bypass this problem, we shall require an additional assumption23

for case (P4), namely that the velocity map v(ρ) vanishes at some prescribed maximal density value Rmax24

and is equal to zero on [Rmax,+∞). Such assumption is reasonable in contexts such as traffic flow in a25

single lane, in which overtaking of vehicles is not allowed. Cases (P3) and (P4) are paradigmatic of sign26

changing φ: more general situations in which φ changes sign at more than one point can be treated via minor27

modifications with the strategy outlined above, we omit the details for simplicity.28

In all the aforementioned four cases we are able to prove a convergence result in the spirit of [12]: given an29

initial condition ρ̄ ∈ L∞(R)∩BV (R) non-negative and with compact support, we atomize ρ̄ by a set of n+130

particles x̄0, . . . , x̄n, we consider the piecewise constant density ρn as in (3) with x0(t), . . . , xn(t) solution to31

a suitable follow-the-leader scheme ((5) in case (P1) as an example) with initial datum x̄0, . . . , x̄n, and prove32

that ρn converges locally in L1
x,t towards the unique entropy solution to (4) with ρ̄ as initial condition. Such33

result requires as crucial steps:34

• A local maximum principle showing that ‖ρn‖L∞(R) is uniformly bounded with respect to n on35

arbitrary time intervals [0, T ];36

• BV compactness estimates;37

• Consistency with the definition of entropy solutions (in the Kružkov’s sense [19]) in the n → +∞38

limit.39

Such a strategy requires an L1∩L∞ setting. This is why we cannot consider case (P4) in presence of blow-up40

or concentration phenomena. This issue will be tackled in a future paper.41

The paper is structured as follows. In section 2 we define our four approximation schemes and prove their42

main properties, including the maximum principle for all of them. We highlight that cases (P1)-(P2)-(P3)43

feature a maximum principle in terms of the initial L∞ norm, whereas in case (P4) the uniform bound44

for ρn is provided in terms of the maximal density Rmax. In section 3 we prove the needed uniform BV45

estimate, as well as an equicontinuity property with respect to the Wasserstein distance that provide local46
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L1 compactness in space and time. Finally, in section 4 we state and prove our main result in Theorem 4.1,1

that collects the convergence of the scheme in all four cases.2

2. Statement of the problem and maximum principles3

Let us consider the following Cauchy problem for a one-dimensional conservation law4 {
ρt +

(
ρv(ρ)φ(x)

)
x

= 0, x ∈ R, t > 0,

ρ(x, 0) = ρ(x), x ∈ R,
(6)

where we assume that the function v and the initial datum ρ satisfy respectively5

(V) v ∈ C1(R+) is a non-negative function with v′(ρ) ≤ 0 and v(0) := vmax < +∞;6

(I) ρ ∈ L∞(R) ∩BV (R) is a non-negative, compactly supported function.7

Concerning the potential φ, we shall deal with four different cases8

(P1) φ(x) ≥ 0 for all x ∈ R (forward movement);9

(P2) φ(x) ≤ 0 for all x ∈ R (backward movement);10

(P3) xφ(x) ≥ 0 for all x ∈ R (repulsive movement);11

(P4) xφ(x) ≤ 0 for all x ∈ R (attractive movement).12

In all these cases, we assume the basic condition13

(P) φ ∈W 2,∞(R)14

and in the last one we add the following condition on the function v15

(V∗) There exists Rmax > 0 such that R := ||ρ||L∞(R) ≤ Rmax, v(ρ) > 0 for ρ < Rmax and v(ρ) ≡ 0 for16

ρ ≥ Rmax.17

For the sake of simplicity, we suppose that the initial mass is normalised, that is18

||ρ||L1(R) = 1.

Moreover, let us denote with19

[xmin, xmax] = Conv(supp(ρ))

the convex hull of the support of ρ.20

Our next goal is to provide an initial condition for the follow-the-leader systems. To perform this task,
we split the interval [xmin, xmax] into n sub-intervals having equal mass `n := 1/n. So, for a fixed n ∈ N
sufficiently large, we set xn0 := xmin, xnn := xmax and we define recursively

xni := sup

{
x ∈ R :

ˆ x

xni−1

ρ(x)dx < `n

}
for i ∈ {1, . . . , n− 1}.

From the previous definition we immediately have that xn0 < xn1 < · · · < xnn and21

ˆ xni

xni−1

ρ(x)dx = `n for i ∈ {1, . . . , n− 1}. (7)

Next we introduce the follow-the-leader systems describing the evolution of the n+ 1 particles with initial
positions xni , i = 0, . . . , n. The definition of the particle system depends on the cases (P1)-(P4) introduced
above, hence we should introduce four different approximation schemes, nevertheless, as we will see in a
moment, the latter two are strictly related to the former two. Cases (P1) and (P2) are the simplest ones,
as the constant sign of φ does not affect the monotonicity of the velocity field v(ρ)φ(x). Consistently with
the homogeneous case [12], when φ is non-negative the velocity field decreases with respect to the density ρ.
Therefore, in case (P1) the follow-the-leader scheme should consider a forward finite-difference approximation
of the density. Symmetrically, (P2) implies a backward approximation. Therefore, with the notation

Rni (t) :=
`n

xni+1(t)− xni (t)
, t ≥ 0, i ∈ {0, . . . , n− 1},
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in case (P1) we use the ODE system1 
ẋni (t) = v(Rni (t))φ(xni (t)), for i ∈ {0, . . . , n− 1},
ẋnn(t) = vmaxφ(xnn(t)),

xni (0) = xni , for i ∈ {0, . . . , n}
(8)

and in case (P2) we use2 
ẋni (t) = v(Rni−1(t))φ(xni (t)), for i ∈ {1, . . . , n},
ẋn0 (t) = vmaxφ(xn0 (t)),

xni (0) = xni , for i ∈ {0, . . . , n}.
(9)

For cases (P3) and (P4) we consider a sort of combination of the previous two cases. With the notation

kn := max
{
i ∈ {0, . . . , n} : xni ≤ 0

}
,

the ODE system in case (P3) is3 

ẋni (t) = v(Rni−1(t))φ(xni (t)), for i ∈ {1, . . . , kn},
ẋni (t) = v(Rni (t))φ(xni (t)), for i ∈ {kn + 1, . . . , n− 1},
ẋn0 (t) = vmaxφ(xn0 (t)),

ẋnn(t) = vmaxφ(xnn(t)),

xni (0) = xni , for i ∈ {0, . . . , n},

(10)

whereas in case (P4) we use4 
ẋni (t) = v(Rni (t))φ(xni (t)), for i ∈ {0, . . . , kn},
ẋni (t) = v(Rni−1(t))φ(xni (t)), for i ∈ {kn + 1, . . . , n},
xni (0) = xni , for i ∈ {0, . . . , n}.

(11)

For the sequel, we define the quantities

L := vmax||φ||L∞(R) and L′ := vmax||φ′||L∞(R),

which are, thanks to assumption (P), two positive constant and, moreover, we drop the n-dependence for5

simplicity, whenever there is no ambiguity.6

We remark that the Lipschitz conditions on v and φ ensure the local existence and uniqueness of solution7

to (8), (9), (10) and (11). In order to safeguard global existence, we need to prove three properties:8

a) particles have a finite position and velocity on bounded time intervals,9

b) particles always move in the same direction in (10) and (11),10

c) particles never collide, consequently they always maintain the same order.11

Remark 2.1 (Finite position and velocity on bounded time intervals). In all the four cases we have that12

the respective solution satisfies, for t ≥ 0 and i ∈ {0, . . . , n},13

|xni (t)| < +∞ and |ẋni (t)| ≤ L < +∞. (12)

Indeed, due to assumption (P) and (V) we immediately get |ẋi(t)| ≤ L for all t ≥ 0. Furthermore, integrating
the ODE defining the evolution of xi(t), it follows that

|xi(t)| =
∣∣∣∣xi +

ˆ t

0

ẋi(s)ds

∣∣∣∣ ≤ |xi|+ ˆ t

0

|ẋi(s)|ds ≤ |xi|+ Lt < +∞.

Remark 2.2 (Upper bound for the distance of two consecutive particles). In all the four cases there exists14

a positive constant c, depending only on φ and v, such that the corresponding solution satisfies15

xni+1(t)− xni (t) ≤ xmax − xmin + ct for t ≥ 0, i ∈ {0, . . . , n− 1}, (13)

indeed the previous remark implies that

|xi+1(t)− xi(t)|=
∣∣∣∣xi+1 − xi +

ˆ t

0

(
ẋi+1(s)− ẋi(s)

)
ds

∣∣∣∣≤ xmax − xmin + 2Lt.
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Now we prove the following technical result regarding cases (P3)-(P4).1

Proposition 2.1 (Preservation of the particles’ sign in cases (P3)-(P4)). Assume (V), (I) and (P) are
satisfied and, moreover, assume (V∗) is satisfied in case (P4). Then, as long as the solution to (10) and
(11) exists, we have

xi(t) ≤ 0 for t ≥ 0, i ∈ {0, . . . , kn} and xi(t) ≥ 0 for t ≥ 0, i ∈ {kn + 1, . . . , n}.

Proof. Concerning the case (P3), let us show the property for a fixed i ∈ {0, . . . , kn} (for the remaining
indices we can follow a symmetric reasoning): we have to prove that t∗ := inf{t ≥ 0 : xni (t) > 0} = +∞.
Since xi ≤ 0, then ẋi(0) = v(Ri(0))φ(xi) ≤ 0 and hence by continuity there exists T1 > 0 such that xi(t) ≤ 0
for all t < T1. It follows that ẋi(t) ≤ 0 for all t < T1 and thus

xi(T1) = xi +

ˆ T1

0

ẋi(s)ds ≤ xi ≤ 0.

Reasoning as before, we have the existence of a time T2 > T1 such that xi(t) ≤ 0 for all t < T2 and hence,2

since we can repeat this argument arbitrarily, we get t∗ = +∞ as we claimed.3

As for the case (P4), let us consider as before only the indices i ∈ {0, . . . , kn}. Then xi < 0 for i < kn,
while xkn can be either negative or zero and, in the latter case, we remark that ẋkn(0) = 0, so by continuity
there exists T1 > 0 such that xkn(t) = 0 for all t < T1. Therefore ẋkn(t) = 0 for all t < T1, so we get

xkn(T1) = xkn +

ˆ T1

0

ẋkn(s)ds = xkn = 0

and hence, arguing as before, by continuity we have that xkn(t) = 0 for all t ≥ 0. As a consequence, we can
assume without restriction that xi < 0 and, under this assumption, by continuity there exists T > 0 such
that xi(t) ≤ 0 for all t ≤ T . Suppose now by contradiction the existence of two times T ≤ t1 < t2 such that
xi(t) ≤ 0 for t ≤ t1, xi(t) = 0 for t = t1 and xi(t) > 0 for t1 < t ≤ t2. Then we have ẋi(t) ≤ 0 for t1 < t ≤ t2
and hence

xi(t) = xi(t1) +

ˆ t

t1

ẋi(s)ds ≤ xi(t1) = 0 for t1 < t ≤ t2,

which is a contradiction. �4

The next proposition ensures that particles never collide in all the four cases: this gives the global existence5

of the solution for (8), (9), (10) and (11).6

Proposition 2.2 (Discrete maximum principle). Assume that (V), (I) and (P) are satisfied.7

• If one of (P1), (P2) or (P3) holds, then the respective solution to (8), (9) and (10) satisfies8

xni+1(t)− xni (t) ≥ `n

R
e−L

′t for t ≥ 0, i ∈ {0, . . . , n− 1}. (14)

• If (V∗) and (P4) hold, then the solution to (11) satisfies9

xni+1(t)− xni (t) ≥ `n
Rmax

for t ≥ 0, i ∈ {0, . . . , n− 1}. (15)

Proof. We first observe that the statement is true for t = 0, indeed by (7) and (I) we have

xi+1 − xi ≥
`n

R
≥ `n
Rmax

for all i ∈ {0, . . . , n− 1}.

Now we should consider the four cases separately, but we are going to exploit in all the cases a recursive10

argument with suitable differences.11

Let us suppose (P1) holds and let us take as basis of our recursive argument the index i = n − 1. Since
the first order Taylor’s expansion of φ at xn−1(t) is given by

φ(xn(t)) = φ(xn−1(t)) + φ′(x̃(t))(xn(t)− xn−1(t))
6



for some x̃(t) ∈
(
xn−1(t), xn(t)

)
, then it follows that

d

dt

[
xn(t)− xn−1(t)

]
=vmaxφ(xn(t))− v(Rn−1(t))φ(xn−1(t))

=
(
vmax − v(Rn−1(t))

)
φ(xn−1(t)) + vmaxφ

′(x̃(t))
(
xn(t)− xn−1(t)

)
≥vmaxφ

′(x̃(t))
(
xn(t)− xn−1(t)

)
.

Therefore, applying Gronwall lemma, we get that

xn(t)− xn−1(t) ≥
(
xn − xn−1

)
e
´ t
0
vmaxφ

′(x̃(s))ds ≥ `n

R
e
´ t
0
vmaxφ

′(x̃(s))ds

and finally, since the assumption (P) implies that φ′ is bounded, from the previous inequality we easily get
(14) for i = n− 1.
Concerning the remaining indices, we argue by contradiction and assume (without restriction) the existence
of an index j ∈ {0, . . . , n− 2} and of two times 0 ≤ t1 < t2 satisfying

xi+1(t)− xi(t) ≥
`n

R
e−L

′t for t ≥ 0, i ∈ {j + 1, . . . , n− 1}

and1

xj+1(t)− xj(t)


≥ `n

R
e−L

′t for t < t1,

= `n
R
e−L

′t1 for t = t1,

< `n
R
e−L

′t for t1 < t ≤ t2.
(16)

Using as before the first order Taylor’s expansion of φ at xj(t), it holds2

d

dt

[
xj+1(t)− xj(t)

]
=v(Rj+1(t))φ(xj+1(t))− v(Rj(t))φ(xj(t))

=
(
v(Rj+1(t))− v(Rj(t))

)
φ(xj(t)) + v(Rj+1(t))φ′(x̃(t))

(
xj+1(t)− xj(t)

) (17)

for some x̃(t) ∈
(
xj(t), xj+1(t)

)
. On the other hand, from the contradictory assumption it follows that

Rj+1(t) ≤ ReL
′t < Rj(t)

and hence that
v(Rj(t)) ≤ v

(
ReL

′t
)
≤ v(Rj+1(t))

for all t1 < t ≤ t2. Using these estimates in (17), for all t1 < t ≤ t2 we get that

d

dt

[
xj+1(t)− xj(t)

]
≥ v(Rj+1(t))φ′(x̃(t))

(
xj+1(t)− xj(t)

)
and finally, using again Gronwall lemma on the time interval (t1, t) with t ≤ t2, it follows that

xj+1(t)− xj(t) ≥
(
xj+1(t1)− xj(t1)

)
e
´ t
t1
v(Rj+1(s))φ′(x̃(s))ds ≥ `n

R
e−L

′t,

which contradicts (16), since t1 < t ≤ t2.3

Concerning case (P2), we can reason in a symmetric way, taking the index i = 0 as basis of the recursive4

argument and assuming the existence of a ’first index j’ at which the statement fails on a certain time5

interval (we omit the details).6

In case (P3) holds, the proof of (14) for i ∈ {0, . . . , kn − 1} and i ∈ {kn + 1, . . . , n} is straightforward,
indeed we can simply apply (rearranging the indices properly) the same arguments used in cases (P2) and
(P1) respectively. Turning to the remaining case i = kn, we first remark that

v(Rkn−1(t)) ≥ v(ReL
′t) and v(Rkn+1(t)) ≥ v(ReL

′t) for all t ≥ 0,

since (14) is valid for i = kn − 1 and i = kn + 1. As a consequence we have

d

dt

[
xkn+1(t)−xkn(t)

]
=v(Rkn+1(t))φ(xkn+1(t))− v(Rkn−1(t))φ(xkn(t))≥v(ReL

′t)
(
φ(xkn+1(t))− φ(xkn(t))

)
and, using the first order Taylor’s expansion of φ, it follows that

d

dt

[
xkn+1(t)− xkn(t)

]
≥ v(ReL

′t)φ′(x̃(t))
(
xkn+1(t)− xkn(t)

)
7



for some x̃(t) ∈
(
xkn(t), xkn+1(t)

)
. Finally, applying again Gronwall lemma we get

xkn+1(t)− xkn(t) ≥
(
xkn+1 − xkn

)
e
´ t
0
v(ReLs)φ′(x̃(s))ds ≥ `n

R
e−L

′t

and this concludes the proof for case (P3).1

In case (P4), we prove (15) using a different recursive argument with respect to the previous cases. Let
us first consider the indices i ∈ {0, . . . , kn − 1}, let us take as base case the index i = kn − 1 and suppose by
contradiction the existence of 0 ≤ t1 < t2 such that

xkn(t)− xkn−1(t)


≥ `n

Rmax
for t < t1,

= `n
Rmax

for t = t1,

< `n
Rmax

for t1 < t ≤ t2.

Integrating the ODE in (11), for all t1 < t ≤ t2 it follows that

xkn(t)− xkn−1(t) =xkn(t1)− xkn−1(t1) +

ˆ t

t1

[
v(Rkn(s))φ(xkn(s))− v(Rkn−1(s))φ(xkn−1(s))

]
ds,

where, due to the contradictory assumption, we have that Rkn−1(s) > Rmax and this implies, together with
(V∗), that v(Rkn−1(s)) = 0. Hence we get, for t1 < t ≤ t2, that

ˆ t

t1

[
v(Rkn(s))φ(xkn(s))− v(Rkn−1(s))φ(xkn−1(s))

]
ds =

ˆ t

t1

v(Rkn(s))φ(xkn(s))ds ≥ 0

and so it follows that

xkn(t)− xkn−1(t) ≥ xkn(t1)− xkn−1(t1) =
`n

Rmax
,

which is a contradiction. For the remaining indices i ∈ {0, . . . , kn − 2}, we can repeat a recursive argument
similar to case (P1), while the validity of (15) for i ∈ {kn + 1, . . . , n − 1} can be proved in a symmetric
way with respect to the previous indices: it is sufficient to take as base case the index i = kn + 1 and then
proceeding by contradiction (the details are left to the reader). As a consequence, it remains to show (15)
for i = kn and for this purpose we argue again by contradiction, supposing the existence of 0 ≤ t1 < t2 such
that

xkn+1(t)− xkn(t)


≥ `n

Rmax
for t < t1,

= `n
Rmax

for t = t1,

< `n
Rmax

for t1 < t ≤ t2.

On the other hand, for all t1 < t ≤ t2 it holds that

xkn+1(t)− xkn(t) = xkn+1(t1)− xkn(t1) +

ˆ t

t1

v(Rkn(s))
[
φ(xkn+1(s))− φ(xkn(s))

]
ds,

where the contradictory assumption implies that Rkn(s) > Rmax and hence, due to (V∗), that v(Rkn(s)) = 0
for all t1 < t ≤ t2. From this it follows that

xkn+1(t)− xkn(t) = xkn+1(t1)− xkn(t1) =
`n

Rmax
for t1 < t ≤ t2,

which is a contradiction and this concludes the proof for case (P4). �2

Remark 2.3. The exponential rate in (14) is not optimal: using the same strategy, we can indeed prove
that

xi+1(t)− xi(t) ≥
`n

R
evmaxφ

′
inf t if φ′inf := inf

x∈R
φ′(x) ≤ 0

and

xi+1(t)− xi(t) ≥
`n

R
evminφ

′
inf t if φ′inf ≥ 0, with vmin := min

η∈R+
v(η).
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Remark 2.4. The discrete maximum principle proved above allows us to improve the upper bound for the1

distance of two consecutive particles exposed in remark 2.2 which becomes, for t ≥ 0 and i ∈ {0, . . . , n− 1},2

xni+1(t)− xni (t) ≤ xnn(t)− xn0 (t) ≤ xmax − xmin + ct, (18)

where c is the same as in remark 2.2, unless in case (P4) where c = 0. More precisely, since xi+1(t)−xi(t) ≥ 0
for all t ≥ 0 and i ∈ {0, . . . , n− 1}, then it holds

xi+1(t)− xi(t) ≤ xn(t)− x0(t) for t ≥ 0, i ∈ {0, . . . , n− 1},

and so we get

xi+1(t)− xi(t) ≤ xmax − xmin +

ˆ t

0

(
ẋn(s)− ẋ0(s)

)
ds for t ≥ 0, i ∈ {0, . . . , n− 1}.

Finally, the fact that c = 0 in case (P4) is a consequence of the attractive movement of the two particles at3

the endpoints of the support.4

Remark 2.5. We can slightly weaken our assumption (P) in three of the cases examined, indeed it is5

sufficient to take φ ∈ W 2,∞([xmin,+∞)) in case of forward movement, φ ∈ W 2,∞((−∞, xmax]) in case of6

backward movement and φ ∈W 2,∞([xmin, xmax]) in case of attractive movement.7

According to our construction and the previous propositions and remarks, the evolution of the n + 18

particles xi(t) is well defined for all t ≥ 0, hence we can introduce a time-depending piecewise constant9

density on the interval [x0(t), xn(t)]. Therefore, we set10

ρn(x, t) :=

n−1∑
i=0

Ri(t)1[xi(t),xi+1(t))(x) =

n−1∑
i=0

`n
xi+1(t)− xi(t)

1[xi(t),xi+1(t))(x). (19)

3. BV estimate, time continuity and compactness11

We first show a uniform control of the total variation of ρn which plays a key role in the proof of the12

convergence of our particle scheme. In the sequel, since we are interested on large values of n ∈ N, without13

loss of generality we suppose n sufficiently large such that 2 ≤ kn ≤ n− 3.14

Proposition 3.1. Assume (V), (I) and (P) are satisfied and, moreover, assume (V∗) is satisfied in case15

(P4). If one of (P1), (P2), (P3) or (P4) holds, then there exist three positive constants α, β and γ,16

independent on n, such that17

TV[ρn(·, t)] ≤ αe[βt(1+t)+γeL
′t] for all t ≥ 0. (20)

Proof. We start observing that

TV[ρn(·, t)] = R0(t) +Rn−1(t) +

n−2∑
i=0

|Ri(t)−Ri+1(t)|.

Defining for brevity

µ0(t) := 1 + sign
(
R0(t)−R1(t)

)
,

µn−1(t) := 1− sign
(
Rn−2(t)−Rn−1(t)

)
,

µi(t) := sign
(
Ri(t)−Ri+1(t)

)
− sign

(
Ri−1(t)−Ri(t)

)
for i = 1, . . . , n− 2,

ωi(t) := sign
(
Ri(t)−Ri+1(t)

)
for i = 0, . . . , n− 1,

we get

TV[ρn(·, t)] = µ0(t)R0(t) + µn−1(t)Rn−1(t) +

n−2∑
i=1

µi(t)Ri(t)

and
d

dt
TV[ρn(·, t)] := A(t) +B(t) + C(t),

9



with

A(t) := µ0(t)Ṙ0(t), B(t) := µn−1(t)Ṙn−1(t) and C(t) :=

n−2∑
i=1

µi(t)Ṙi(t).

Now we need to determine an upper bound for the functions A(t), B(t), C(t) and we should treat as before1

the four cases separately.2

Let us consider the first case (P1). For A(t) and B(t) we have, due to (P) and (14), the following three
sub-cases:

A(t)


= 0 if R0(t) < R1(t),

≤ L′ReL′t if R0(t) = R1(t),

≤ 2L′ReL
′t if R0(t) > R1(t),

and B(t)


= 0 if R0(t) < R1(t),

≤ L′ReL′t if R0(t) = R1(t),

≤ 2L′ReL
′t if R0(t) > R1(t).

Regarding the sum C(t), we notice that, using (8) and the definition of Ṙi(t), we can split it as

C(t) :=

n−2∑
i=1

Ii(t) +

n−2∑
i=1

µi(t)Ri(t)IIi(t),

where

Ii(t) := µi(t)
Ri(t)

2

`n
φ(xi+1(t))

[
v(Ri(t))− v(Ri+1(t))

]
and IIi(t) :=

Ri(t)

`n
v(Ri(t))

[
φ(xi(t))− φ(xi+1(t))

]
.

Furthermore we remark that each Ii(t) is non-positive, indeed we have that3

(1) If Ri−1(t) > Ri(t) > Ri+1(t) or Ri+1(t) > Ri(t) > Ri−i(t) or Ri+1(t) = Ri(t) = Ri−i(t), then4

µi(t) = 0 and so Ii(t) = 0;5

(2) If Ri(t) > Ri+1(t) and Ri(t) > Ri−i(t), then µi(t) = 2, v(Ri(t)) ≤ v(Ri+1(t)) and hence

Ii(t) = 2
Ri(t)

2

`n
φ(xi+1(t))

[
v(Ri(t))− v(Ri+1(t))

]
≤ 0;

(3) If Ri(t) < Ri+1(t) and Ri(t) < Ri−i(t), then µi(t) = −2, v(Ri+1(t)) ≤ v(Ri(t)) and so

Ii(t) = −2
Ri(t)

2

`n
φ(xi+1(t))

[
v(Ri(t))− v(Ri+1(t))

]
≤ 0.

Therefore it follows that6

C(t) ≤
n−2∑
i=1

ωi(t)Ri(t)IIi(t)−
n−3∑
i=0

ωi(t)Ri+1(t)IIi+1(t)

=

n−2∑
i=0

ωi(t)
[
Ri(t)IIi(t)−Ri+1(t)IIi+1(t)

]
− ω0(t)R0(t)II0(t) + ωn−2(t)Rn−1(t)IIn−1(t),

(21)

where, since the assumption (P) implies∣∣IIi(t)∣∣ =
Ri(t)

`n
v(Ri(t))

∣∣φ(xi(t))− φ(xi+1(t))
∣∣ ≤ L′ for i ∈ {0, . . . , n− 1},

then it holds ∣∣−ω0(t)R0(t)II0(t)
∣∣ ≤ L′ReL′t and

∣∣ωn−2(t)Rn−1(t)IIn−1(t)
∣∣ ≤ L′ReL′t.

Moreover, we can rewrite the sum in the right-hand side of (21) as

n−2∑
i=0

ωi(t)
[
Ri(t)IIi(t)−Ri+1(t)IIi+1(t)

]
=

n−2∑
i=0

ωi(t)Ri(t)
(
IIi(t)−IIi+1(t)

)
+

n−2∑
i=0

ωi(t)IIi+1(t)
(
Ri(t)−Ri+1(t)

)
,

where we immediately remark that

n−2∑
i=0

ωi(t)IIi+1(t)
(
Ri(t)−Ri+1(t)

)
=

n−2∑
i=0

IIi+1(t)|Ri(t)−Ri+1(t)| ≤ L′TV[ρn(·, t)].

10



Turning to the remaining sum, from the second order Taylor’s expansion of φ at xi+1(t), we get

φ(xi(t)) = φ(xi+1(t))− φ′(xi+1(t))
(
xi+1(t)− xi(t)

)
+
φ
′′
(x̃i,i+1(t))

2

(
xi+1(t)− xi(t)

)2
and

φ(xi+2(t)) =φ(xi+1(t)) + φ′(xi+1(t))
(
xi+2(t)− xi+1(t)

)
+
φ
′′
(ỹi+1,i+2(t))

2

(
xi+2(t)− xi+1(t)

)2
for some x̃i,i+1(t) ∈

(
xi(t), xi+1(t)

)
and ỹi+1,i+2(t) ∈

(
xi+1(t), xi+2(t)

)
. Hence we can rewrite the sum as

n−2∑
i=0

ωi(t)Ri(t)
(
IIi(t)−IIi+1(t)

)
:= D1(t) +D2(t) +D3(t),

with

D1(t) :=

n−2∑
i=0

ωi(t)Ri(t)φ
′(xi+1(t))

[
v(Ri+1(t))− v(Ri(t))

]
,

D2(t) :=
n−2∑
i=0

ωi(t)
Ri(t)

2

2`n
φ′′(x̃i,i+1(t))v(Ri(t))

(
xi+1(t)− xi(t)

)2
and

D3(t) :=

n−2∑
i=0

ωi(t)
Ri(t)Ri+1(t)

2`n
φ′′(x̃i+1,i+2(t))v(Ri+1(t))

(
xi+2(t)− xi+1(t)

)2
.

We first notice that D2(t) satisfies

D2(t) =
`n
2

n−2∑
i=0

ωi(t)φ
′′(x̃i,i+1(t))v(Ri(t)) ≤ vmax||φ′′||L∞(R).

Concerning D1(t), since the Lagrange mean value theorem implies

D1(t) = −
n−2∑
i=0

|Ri(t)−Ri+1(t)|Ri(t)φ′(xi+1(t))v′(ρ̃i,i+1,i+2(t))

for some ρ̃i,i+1,i+2(t) in the interval (Ri(t), Ri+1(t)) or (Ri+1(t), Ri(t)), then from (14) it follows that

D1(t) ≤ ||φ′||L∞(R)||v′||L∞(R+)Re
L′t

n−2∑
i=0

|Ri(t)−Ri+1(t)| ≤ ||φ′||L∞(R)||v′||L∞(R+)Re
L′t TV[ρ(·, t)].

Turning to the last sum D3(t), defining for brevity

γi(t) :=
φ′′(x̃i,i+1(t))

2`n
v(Ri)

(
xi+1(t)− xi(t)

)2
for i ∈ {1, . . . , n− 1},

we can rewrite D3(t) as

D3(t) =

n−2∑
i=0

ωi(t)Ri+1(t)2γi+1(t) +

n−2∑
i=0

ωi(t)
(
Ri(t)−Ri+1(t)

)
Ri+1(t)γi+1(t) := D1

3(t) +D2
3(t),

where D1
3(t) satisfies the same inequality as D2(t), while (13) implies that

D2
3(t) =

1

2

n−2∑
i=0

|Ri(t)−Ri+1(t)|φ′′(x̃i+1,i+2(t))v(Ri+1(t))
(
xi+2(t)− xi+1(t)

)
≤ ||φ′′||L∞(R)vmax

(
xmax − xmin + 2Lt

) n−2∑
i=0

∣∣Ri(t)−Ri+1(t)
∣∣

≤ ||φ′′||L∞(R)vmax

(
xmax − xmin + 2Lt

)
TV[ρ(·, t)].
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Putting together all the previous estimates, we finally get the following differential inequality1

d

dt
TV[ρn(·, t)] ≤ c1 + c2e

L′t +
(
c3 + c4t+ c5e

L′t
)

TV[ρn(·, t)] for all t ≥ 0, (22)

where ci, i = 1, . . . , 5, are five positive constants depending only on φ, v and ρ.2

In case (P2) we can proceed in a symmetric way and we get also here (22) (the details are omitted).3

Turning to case (P3), we first remark that the bounds for A(t) and B(t) are the same already pointed out4

in cases (P2) and (P1) respectively. Regarding C(t), we split this sum as5

C(t) =

kn−1∑
i=1

µi(t)Ṙi(t) +

n−2∑
i=kn+1

µi(t)Ṙi(t) + µkn(t)Ṙkn(t) := C1(t) + C2(t) + C3(t), (23)

where C1(t) and C2(t) can be estimated, rearranging the indices properly, using the same reasoning as in6

cases (P2) and (P1) respectively, while for C3(t) we need to consider three different sub-cases:7

(1) If Rkn−1(t) > Rkn(t) > Rkn+1(t) or Rkn+1(t) > Rkn(t) > Rkn−1(t) or Rkn+1(t) = Rkn(t) =8

Rkn−1(t), then µkn(t) = 0 and hence C3(t) = 0;9

(2) If Rkn(t) > Rkn−1(t) and Rkn(t) > Rkn+1(t), then µkn(t) = 2 and so, since φ(xkn(t)) ≤ 0 and
φ(xkn+1(t)) ≥ 0, it holds

C3(t) = 2
Rkn(t)2

`n

[
v(Rkn−1(t))φ(xkn(t))− v(Rkn+1(t))φ(xkn+1(t))

]
≤ 0;

(3) If Rkn(t) < Rkn−1(t) and Rkn(t) < Rkn+1(t), then it follows µkn(t) = −2, v(Rkn−1(t)) ≤ v(Rkn(t)),
v(Rkn+1(t)) ≤ v(Rkn(t)) and therefore, since φ(xkn(t)) ≤ 0 and φ(xkn+1(t)) ≥ 0, we get

C3(t) = 2
Rkn(t)2

`n

[
v(Rkn+1(t))φ(xkn+1(t))− v(Rkn−1(t))φ(xkn(t))

]
≤ 2L′ReL

′t.

As a consequence, we hence have that (22) is valid also in case (P3).10

In the last case (P4), we can estimate A(t) and B(t) in the same way as in cases (P1) and (P2) respectively,

substituting ReL
′t with Rmax whenever it appears. Concerning C(t), we can rewrite this sum using the same

splitting (23) seen in case (P3), where C3(t) now satisfies C3(t) ≤ 2L′Rmax. For C1(t) and C2(t), rearranging

the indices properly and substituting again ReL
′t with Rmax, we can follow the same reasoning as in cases

(P1) and (P2) respectively: in this way, we obtain all the previous estimates with a slight difference only on
the term D2

3(t). For this sum it holds, due to remark 2.4, that

D2
3(t) =

1

2

n−2∑
i=0

|Ri(t)−Ri+1(t)|φ′′(x̃i+1,i+2(t))v(Ri+1(t))
(
xi+2(t)− xi+1(t)

)
≤ ||φ′′||L∞(R)vmax(xmax − xmin)

n−2∑
i=0

|Ri(t)−Ri+1(t)|

≤ ||φ′′||L∞(R)vmax(xmax − xmin) TV[ρ(·, t)]

and therefore we have that (22) is valid in this case with c4 = c5 = 0.11

Applying now Gronwall lemma to (22), we get12

TV[ρn(·, t)] ≤TV[ρn(·, 0)]e
´ t
0

(c3+c4τ+c5e
L′τ )dτ +

ˆ t

0

(c1 + c2e
−L′s)e

´ t
s

(c3+c4τ+c5e
L′τ )dτds, (24)

where, since (7) and the mean value theorem imply

Ri(0) =
`n

xi+1 − xi
=

 xi+1

xi

ρ(x)dx = ρ(zi) for some zi ∈ (xi, xi+1),

then the total variation of ρn(·, 0) satisfies

TV[ρn(·, 0)] = R0(0) +Rn−1(0) +

n−2∑
i=0

|Ri(0)−Ri+1(0)| = ρ(z0) + ρ(zn−1) +

n−2∑
i=0

|ρ(zi)− ρ(zi+1)| ≤ TV[ρ].
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Moreover, after a simple calculation it follows that

e
´ t
0

(c3+c4τ+c5e
L′τ )dτ ≤ e[c̃1t(1+t)+c̃2e

L′t]

and ˆ t

0

(c1 + c2e
L′s)e

´ t
s

(c3+c4τ+c5e
L′τ )dτds ≤ c̃3e[c̃4t(1+t)+c̃5e

L′t],

therefore, combining together the previous three estimates in (24), we finally get (20). �1

Remark 3.1. The previous proposition gives us the needed compactness of the sequence {ρn}n∈N with respect2

to space. Concerning the time variable, we are not able to obtain a L1 uniform continuity estimate which3

would provide a sufficient control on the time oscillation. Nevertheless, we are going to prove a uniform time4

continuity estimate with respect to the 1-Wasserstein distance which is sufficient to get the required strong5

L1 compactness with respect to space and time.6

We now recall the main properties on the one-dimensional 1-Wasserstein metric. Let µ be a probability
measure on R with finite first moment, and let us denote with Xµ the pseudo-inverse of its cumulative
distribution function, that is

Xµ(z) := inf{x ∈ R : µ((−∞, x]) > z} for z ∈ [0, 1].

We first notice that Xµ ∈ L1([0, 1]) (see [29]). Moreover, the 1-Wasserstein distance between two probability7

measures µ and ν on R can be defined as the L1 distance of Xµ and Xν , that is8

W1(µ, ν) := ||Xµ −Xν ||L1([0,1]). (25)

In particular, starting from the definition (19) of ρn, we can explicitly compute the pseudo-inverse function9

Xρn and we get10

Xρn(·,t)(z) =

n−1∑
i=0

[
xi(t) + (z − i`n)Ri(t)

−1
]
1[i`n,(i+1)`n)(z). (26)

After this short preamble, we can prove the uniform time continuity estimate with respect to the 1-11

Wasserstein distance, which is stated in the following12

Proposition 3.2. Assume (V), (I) and (P) are satisfied and, moreover, assume (V∗) is satisfied in case13

(P4). If one of (P1), (P2), (P3) or (P4) holds, then there exists a constant c, dependent only on v and φ,14

such that15

W1

(
ρn(·, t), ρn(·, s)

)
≤ c|t− s| for all t, s > 0. (27)

Proof. Let 0 < s < t fixed. From (25), (26) and the triangular inequality, it follows that

W1

(
ρn(·, t), ρn(·, s)

)
=

n−1∑
i=0

ˆ (i+1)`n

i`n

∣∣xi(t)− xi(s) + (z − i`n)
(
Ri(t)

−1 −Ri(s)−1
)∣∣dz ≤ A(s, t) +B(s, t),

with

A(s, t) :=

n−1∑
i=0

ˆ (i+1)`n

i`n

|xi(t)− xi(s)|dz and B(s, t) :=

n−1∑
i=0

ˆ (i+1)`n

i`n

(z − i`n)
∣∣Ri(t)−1 −Ri(s)−1

∣∣dz.
Now we should estimate A(s, t) and B(s, t) separately. Due to (12), we have that

A(s, t) = `n

n−1∑
i=0

|xi(t)− xi(s)| = `n

n−1∑
i=0

∣∣∣∣ ˆ t

s

ẋi(τ)dτ

∣∣∣∣ ≤ `n n−1∑
i=0

ˆ t

s

|ẋi(τ)|dτ ≤ L(t− s),

while, turning to B(s, t), we first notice that

B(s, t) =

n−1∑
i=0

∣∣Ri(t)−1 −Ri(s)−1
∣∣ˆ (i+1)`n

i`n

(z − i`n)dz =
`2n
2

n−1∑
i=0

∣∣∣∣ˆ t

s

d

dτ
Ri(τ)−1dτ

∣∣∣∣ ≤ `2n
2

n−1∑
i=0

ˆ t

s

∣∣Ṙi(τ)
∣∣

Ri(τ)2
dτ.

13



For clarity we should treat the four cases separately from now on. In case (P1), substituting the definition

of Ṙi(t) we get

B(s, t) ≤ `n
2

n−2∑
i=0

ˆ t

s

∣∣v(Ri+1(τ))φ(xi+1(τ))− v(Ri(τ))φ(xi(τ))
∣∣dτ

+
`n
2

ˆ t

s

∣∣vmaxφ(xn(τ))− v(Rn−1(τ))φ(xn−1(τ))
∣∣dτ

where, for all τ ≥ 0 and i ∈ {0, . . . , n− 2}, it holds∣∣v(Ri+1(τ))φ(xi+1(τ))− v(Ri(τ))φ(xi(τ))
∣∣ ≤ ∣∣v(Ri+1(τ))φ(xi+1(τ))

∣∣ ≤ L
and ∣∣vmaxφ(xn(τ))− v(Rn−1(τ))φ(xn−1(τ))

∣∣ ≤ L.
This implies that B(s, t) ≤ L

2
(t− s) and hence that W1

(
ρn(·, t), ρn(·, s)

)
≤ 3

2
L(t− s), which concludes the1

proof of (27) in case (P1), since the calculation is still valid interchanging s and t.2

In case (P2) we can reason in a symmetric way with respect to the previous case and we get the same3

estimate for B(s, t). The details are left to the reader.4

Turning to case (P3), we remark that Ṙi(τ) has the same expression of cases (P2) and (P1) for i ∈
{0, . . . , kn − 1} and i ∈ {kn + 1, . . . , n− 1} respectively, while

Ṙkn(τ) = −Rkn(τ)2

`n

[
v(Rkn+1(τ))φ(xkn+1(τ))− v(Rkn−1(τ))φ(xkn(τ))

]
.

Since ∣∣v(Rkn+1(τ))φ(xkn+1(τ))− v(Rkn−1(τ))φ(xkn(τ))
∣∣ ≤ 2L,

then it follows that B(s, t) ≤ L(t− s) and hence also in this case (27) holds.5

In the remaining case (P4), we have that Ṙi(τ) has the same expression of cases (P1) and (P2) for
i ∈ {0, . . . , kn − 1} and i ∈ {kn + 1, . . . , n− 1} respectively, while

Ṙkn(τ) = −Rkn(τ)2

`n
v(Rkn(τ))

[
φ(xkn+1(τ))− φ(xkn(τ))

]
.

Since
v(Rkn(τ))

∣∣φ(xkn+1(τ))− φ(xkn(τ))
∣∣ ≤ 2L,

then B(s, t) satisfies the same inequality seen in case (P3) and hence the validity of (27) is proved also in6

case (P4). �7

Before passing to the main result of this paper, we recall a generalised version of Aubin-Lions lemma (see8

[25],[12], [9]) which has a key role in the sequel.9

Theorem 3.1. Let T > 0 fixed, I ⊂ R a bounded open interval (possibly depending on T ), {µn}n∈N a10

sequence in L∞((0, T );L1(R)) such that µn(·, t) ≥ 0 and ||µn(·, t)||L1(R) = 1 for all n ∈ N and t ∈ [0, T ]. If11

(A) supp[µn(·, t)] ⊆ I for all n ∈ N and t ∈ [0, T ],12

(B) sup
n∈N

ˆ T

0

[
||µn(·, t)||L1(I) + TV[µn(·, t); I]

]
dt <∞,13

(C) There exists a constant c independent on n such that W1

(
µn(·, t), µn(·, s)

)
≤ c|t − s| for all s, t ∈14

(0, T ),15

then {µn}n∈N is strongly relatively compact in L1
(
R× [0, T ]

)
.16

Furthermore, let us report an adapted version of the L1 contraction property proved by Karlsen and17

Risebro in [18], which will be crucial in the proof of the uniqueness of the entropy solution to (6).18

Theorem 3.2. Let T > 0 fixed arbitrarily, let f a locally Lipschitz function on R, let ψ ∈ W 1,1
loc (R) ∩ C(R)19

such that ψ,ψ′ ∈ L∞(R) and consider the problem20 {
wt +

(
f(w)ψ(x)

)
x

= 0, x ∈ R, t ∈ (0, T ),

w(x, 0) = w(x), x ∈ R.
(28)
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If u, v ∈ L∞((0, T );BV (R)) are two entropy solutions of (28) with respective initial datum u0 and v0, both
in L1(R) ∩ L∞(R) ∩BV (R), then, for almost every t ∈ (0, T ), it holds

||u(·, t)− v(·, t)||L1(R) ≤ ||u0 − v0||L1(R).

In particular, this implies the existence of at most one entropy solution of (28).1

4. Proof of the main results2

Now we are ready to prove the main result of the paper. For clarity, in the sequel we drop the time3

dependence whenever it is clear from the context.4

Theorem 4.1. Let T > 0 fixed arbitrarily. Assume (V), (I) and (P) are satisfied and, moreover, assume5

(V∗) is satisfied in case (P4). If one of (P1), (P2), (P3) or (P4) holds, then the approximated density6

{ρn}n∈N defined in (19) converges, up to a subsequence, almost everywhere and in L1 on R × [0, T ] to the7

unique entropy solution to the Cauchy problem (6).8

Proof. We first show that {ρn}n∈N converges, up to a subsequence, almost everywhere and in L1 on R×[0, T ].
We notice that the support of ρn(·, t) is contained, for every n ∈ N and t ∈ [0, T ], in the closed interval

J := [a, b] =


[
xmin, xmax + LT

]
in case (P1),[

xmin − LT, xmax

]
in case (P2),[

xmin − LT, xmax + LT
]

in case (P3),[
xmin, xmax

]
in case (P4).

Therefore, taking as I any open interval of the type (a− c, b+ d) with c and d arbitrary positive constants,9

we can apply theorem 3.1, indeed assumption (A) is valid due to the above construction, while assumptions10

(B) and (C) are a direct consequence of propositions 3.1 and 3.2 respectively. As a result, it follows that11

{ρn}n∈N converges, up to a subsequence that we still denote in the sequel with {ρn}n∈N, almost everywhere12

and in L1 on R× [0, T ] to a certain function ρ.13

Now we show that {ρn}n∈N satisfies, for every k ≥ 0 and every non-negative ϕ ∈ C∞c (R× (0, T )),14

lim inf
n→+∞

ˆ T

0

ˆ
R

[
|ρn(x, t)− k|ϕt(x, t) + sign(ρn(x, t)− k)

(
f(ρn(x, t))− f(k)

)
φ(x)ϕx(x, t)

− sign(ρn(x, t)− k)f(k)φ′(x)ϕ(x, t)

]
dxdt ≥ 0,

(29)

where we denote f(η) := ηv(η). Let us omit from now on also the x dependence whenever it is clear from
the context. We first remark that, since supp[ϕ] is compact in R× (0, T ), then it holdsˆ T

0

ˆ
R

[
|ρn − k|ϕt + sign(ρn − k)(f(ρ)− f(k))φϕx − sign(ρn − k)f(k)φ′ϕ

]
dxdt :=A+B + C,

where

A :=

n−1∑
i=0

ˆ T

0

ˆ xi+1

xi

[
|Ri − k|ϕt + sign(Ri − k)(f(Ri)− f(k))φϕx − sign(Ri − k)f(k)φ′ϕ

]
dxdt,

B :=

ˆ T

0

ˆ x0

−∞

[
kϕt + f(k)φϕx + f(k)φ′ϕ

]
dxdt and C :=

ˆ T

0

ˆ +∞

xn

[
kϕt + f(k)φϕx + f(k)φ′ϕ

]
dxdt.

Recalling that
d

dt

ˆ β(t)

α(t)

f(x, t)dx =

ˆ β(t)

α(t)

ft(x, t)dx+ f(β(t), t)β̇(t)− f(α(t), t)α̇(t), it follows that

B = k

ˆ T

0

(ˆ x0

−∞
ϕtdx

)
dt+ kv(k)

ˆ T

0

ˆ x0

−∞
(φϕ)xdxdt = k

ˆ T

0

(
v(k)φ(x0)− ẋ0

)
ϕ(x0)dt

and analogously that

C = k

ˆ T

0

(ˆ +∞

xn

ϕtdx

)
dt+ kv(k)

ˆ T

0

ˆ +∞

xn

(φϕ)xdxdt = k

ˆ T

0

(
ẋn − v(k)φ(xn)

)
ϕ(xn)dt,

15



while we can rewrite A as

A =

n−1∑
i=0

ˆ T

0

ˆ xi+1

xi

[
|Ri − k|ϕt + sign(Ri − k)f(Ri)φϕx − sign(Ri − k)f(k)(φϕ)x

]
dxdt := A1 +A2 +A3,

where

A1 :=

n−1∑
i=0

ˆ T

0

|Ri − k|
(ˆ xi+1

xi

ϕtdx

)
dt, A2 :=

n−1∑
i=0

ˆ T

0

sign(Ri − k)f(Ri)

(ˆ xi+1

xi

φϕxdx

)
dt

and

A3 := −
n−1∑
i=0

ˆ T

0

sign(Ri − k)f(k)
[
φ(xi+1)ϕ(xi+1)− φ(xi)ϕ(xi)

]
dxdt.

Integrating by parts and since supp[ϕ(x, ·)] ⊆ (0, T ) for every x ∈ R, we get that A1 satisfies

A1 =

n−1∑
i=0

ˆ T

0

|Ri − k|
(
d

dt

ˆ xi+1

xi

ϕdx

)
dt−

n−1∑
i=0

ˆ T

0

|Ri − k|ẋi+1ϕ(xi+1)dt+

n−1∑
i=0

ˆ T

0

|Ri − k|ẋiϕ(xi)dt

=−
n−1∑
i=0

ˆ T

0

sign(Ri − k)(Ri − k)ẋi+1ϕ(xi+1)dt−
n−1∑
i=0

ˆ T

0

sign(Ri − k)Ṙi

(ˆ xi+1

xi

ϕdx

)
dt

+

n−1∑
i=0

ˆ T

0

sign(Ri − k)(Ri − k)ẋiϕ(xi)dt,

while A2 has a different expression in the four cases, since we need to approximate the function φ differently1

according to its sign. In particular we have:2

(P1) For case (P1), using the first order Taylor’s expansion of φ at xi in the interval (xi, xi+1), which is3

given, for all x ∈ (xi, xi+1), by4

φ(x) = φ(xi) + φ′(x̃i,i+1)(x− xi) for some x̃i,i+1 ∈ (xi, xi+1), (30)

we can rewrite A2 as

A2 =

n−1∑
i=0

ˆ T

0

sign(Ri − k)Riv(Ri)φ(xi)
(
ϕ(xi+1)− ϕ(xi)

)
dt

+

n−1∑
i=0

ˆ T

0

sign(Ri − k)Riv(Ri)

(ˆ xi+1

xi

φ′(x̃i,i+1)(x− xi)ϕxdx
)
dt.

(P2) In case (P2), we use instead the first order Taylor’s expansions of φ at xi+i, that is5

φ(x) = φ(xi+1) + φ′(ỹi,i+1)(x− xi+1) for some ỹi,i+1 ∈ (xi, xi+1) (31)

and in this way we get that

A2 =

n−1∑
i=0

ˆ T

0

sign(Ri − k)Riv(Ri)φ(xi+1)
(
ϕ(xi+1)− ϕ(xi)

)
dt

+

n−1∑
i=0

ˆ T

0

sign(Ri − k)Riv(Ri)

(ˆ xi+1

xi

φ′(ỹi,i+1)(x− xi+1)ϕxdx

)
dt.
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(P3) For case (P3), we use the Taylor’s expansions (30) and (31) of φ respectively for i ∈ {kn+1, . . . , n−1}
and i ∈ {0, . . . , kn − 1}, in order to have that

A2 =

kn−1∑
i=0

ˆ T

0

sign(Ri − k)Riv(Ri)φ(xi+1)
(
ϕ(xi+1)− ϕ(xi)

)
dt

+

n−1∑
i=kn+1

ˆ T

0

sign(Ri − k)Riv(Ri)φ(xi)
(
ϕ(xi+1)− ϕ(xi)

)
dt

+

ˆ T

0

sign(Rkn − k)Rknv(Rkn)

(ˆ xkn+1

xkn

φϕxdx

)
dt

+

kn−1∑
i=0

ˆ T

0

sign(Ri − k)Riv(Ri)

(ˆ xi+1

xi

φ′(ỹi,i+1)(x− xi+1)ϕxdx

)
dt

+

n−1∑
i=kn+1

ˆ T

0

sign(Ri − k)Riv(Ri)

(ˆ xi+1

xi

φ′(x̃i,i+1)(x− xi)ϕxdx
)
dt.

(P4) In case (P4), we combine again cases (P1) and (P2), namely we use the Taylor’s expansions (30) and
(31) of φ respectively for i ∈ {0, . . . , kn − 1} and i ∈ {kn + 1, . . . , n− 1}. Then it follows that

A2 =

kn−1∑
i=0

ˆ T

0

sign(Ri − k)Riv(Ri)φ(xi)
(
ϕ(xi+1)− ϕ(xi)

)
dt

+

n−1∑
i=kn+1

ˆ T

0

sign(Ri − k)Riv(Ri)φ(xi+1)
(
ϕ(xi+1)− ϕ(xi)

)
dt

+

ˆ T

0

sign(Rkn − k)Rknv(Rkn)

(ˆ xkn+1

xkn

φϕxdx

)
dt

+

kn−1∑
i=0

ˆ T

0

sign(Ri − k)Riv(Ri)

(ˆ xi+1

xi

φ′(x̃i,i+1)(x− xi)ϕxdx
)
dt

+

n−1∑
i=kn+1

ˆ T

0

sign(Ri − k)Riv(Ri)

(ˆ xi+1

xi

φ′(ỹi,i+1)(x− xi+1)ϕxdx

)
dt.

From now on, let us consider the four cases separately. Putting together all the previous identities, we
get that in case (P1) it holds

ˆ T

0

ˆ
R

[
|ρn − k|ϕt + sign(ρn − k)

(
f(ρ)− f(k)

)
φϕx − sign(ρn − k)f(k)φ′ϕ

]
dxdt

=k

ˆ T

0

(
v(k)− v(R0)

)
φ(x0)ϕ(x0)dt+ k

ˆ T

0

(
vmax − v(k)

)
φ(xn)ϕ(xn)dt

+

n−1∑
i=0

ˆ T

0

sign(Ri − k)

[
−Ṙi

(ˆ xi+1

xi

ϕdx

)
− k
[
ẋi − v(k)φ(xi)

]
ϕ(xi)

−
[
Ri(ẋi+1 − ẋi)− k

(
ẋi+1 − v(k)φ(xi+1)

)]
ϕ(xi+1)

]
dt

+

n−1∑
i=0

ˆ T

0

sign(Ri − k)Riv(Ri)

(ˆ xi+1

xi

φ′(x̃i,i+1)(x− xi)ϕxdx
)
dt,

where

−Ri
(
ẋi+1 − ẋi

)
ϕ(xi+1) = −Ri

ẋi+1 − ẋi
xi+1 − xi

(ˆ xi+1

xi

ϕ(xi+1)dx

)
= Ṙi

(ˆ xi+1

xi

ϕ(xi+1)dx

)
.
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Moreover, using the definition of Ṙi(t), the previous identity becomes

ˆ T

0

ˆ
R

[
|ρn − k|ϕt + sign(ρn − k)

(
f(ρ)− f(k)

)
φϕx − sign(ρn − k)f(k)φ′ϕ

]
dxdt :=kD + E1 + E2,

where

D :=

ˆ T

0

(
v(k)− v(R0)

)
φ(x0)ϕ(x0)dt+

ˆ T

0

(
vmax − v(k)

)
φ(xn)ϕ(xn)dt

+

n−1∑
i=0

ˆ T

0

sign(Ri − k)

[[
ẋi+1 − v(k)φ(xi+1)

]
ϕ(xi+1)−

[
ẋi − v(k)φ(xi)

]
ϕ(xi)

]
dt,

E1 :=

n−1∑
i=0

ˆ T

0

sign(Ri − k)Riv(Ri)

(ˆ xi+1

xi

φ′(x̃i,i+1)(x− xi)ϕxdx
)
dt

and

E2 :=

n−1∑
i=0

ˆ T

0

sign(Ri − k)
R2
i

`n
(ẋi+1 − ẋi)

(ˆ xi+1

xi

(
ϕ(x)− ϕ(xi+1)

)
dx

)
dt.

Regarding E1, since ϕ(x, ·) is a Lipschitz function for every x ∈ R and due to (18), we have that1

E1 ≥ −`nL′
n−1∑
i=0

ˆ T

0

∣∣ϕ(xi+1)− ϕ(xi)
∣∣dt ≥ −`nL′Lϕ

ˆ T

0

(xn − x0)dt ≥ −`nL′LϕT

[
xmax − xmin + 2LT

]
,

(32)

while, using again the Lipschitz condition of ϕ and due to (18) and (20), we get that E2 satisfies2

E2 ≥−
n−2∑
i=0

ˆ T

0

R2
i

`n

∣∣v(Ri)φ(xi)− v(Ri+1)φ(xi+1)
∣∣(ˆ xi+1

xi

∣∣ϕ(x)− ϕ(xi+1)
∣∣dx)dt

−
ˆ T

0

R2
n−1

`n

∣∣vmaxφ(xn)− v(Rn−1)φ(xn−1)
∣∣(ˆ xn

xn−1

∣∣ϕ(x)− ϕ(xn)
∣∣dx)dt

≥− `nLϕ

[n−2∑
i=0

ˆ T

0

∣∣v(Ri)φ(xi)− v(Ri+1)φ(xi+1)
∣∣dt+

ˆ T

0

∣∣vmaxφ(xn)− v(Rn−1)φ(xn−1)
∣∣dt]

≥− `nLϕ

[n−2∑
i=0

ˆ T

0

v(Ri)
∣∣φ(xi)− φ(xi+1)

∣∣dt+

n−2∑
i=0

ˆ T

0

φ(xi+1)
∣∣v(Ri)− v(Ri+1)

∣∣dt+ LT

]

≥− `nLϕ

[
L′

ˆ T

0

(xn − x0)dt+ φmax||v′||L∞(R+)

ˆ T

0

n−2∑
i=0

|Ri −Ri+1|dt+ LT

]
≥− `nLϕ

[
L′T

[
xmax − xmin + 2LT

]
+ φmax||v′||L∞(R+)αe

[βT (1+T )+γeL
′T ]T + LT

]
.

(33)

Putting together all the previous estimates, we hence get that E1 + E2 ≥ −c `n for some constant c inde-3

pendent on n and so, since the right-hand side of this inequality tends to zero as n→ +∞, to conclude the4

proof it is sufficient to show that D is non-negative. From a direct calculation we remark that5

n−1∑
i=0

sign(Ri − k)

[[
ẋi+1 − v(k)φ(xi+1)

]
ϕ(xi+1)−

[
ẋi − v(k)φ(xi)

]
ϕ(xi)

]

=

n−1∑
i=1

[
sign(Ri−1 − k)− sign(Ri − k)

](
v(Ri)− v(k)

)
φ(xi)ϕ(xi)

− sign(R0 − k)
(
v(R0)− v(k)

)
φ(x0)ϕ(x0) + sign(Rn−1 − k)

(
vmax − v(k)

)
φ(xn)ϕ(xn),

(34)
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therefore D can be rewritten as

D :=

ˆ T

0

D0dt+

n−1∑
i=1

ˆ T

0

Didt+

ˆ T

0

Dndt,

where

D0 :=
(
1 + sign(R0 − k)

)(
v(k)− v(R0)

)
φ(x0)ϕ(x0), Dn :=

(
1 + sign(Rn−1 − k)

)(
vmax − v(k)

)
φ(xn)ϕ(xn)

and

Di :=
[
sign(Ri−1 − k)− sign(Ri − k)

](
v(Ri)− v(k)

)
φ(xi)ϕ(xi) for i ∈ {1, . . . , n− 1}.

Concerning D0 and Dn, we have two different sub-cases, namely

D0

{
= 0 if R0 ≤ k,
≥ 0 if R0 < k,

and Dn

{
= 0 if Rn−1 < k,

≥ 0 if Rn−1 ≥ k.

Turning to Di with i ∈ {1, . . . , n − 1}, since v is non-increasing and φ, ϕ are non-negative, after a simple
calculation we get that

Di

{
= 0 if Ri−1 > k and Ri > k or Ri−1 < k and Ri < k or Ri = k,

≥ 0 otherwise

and this concludes the proof of (29) in case (P1).1

For case (P2), using instead the first order Taylor’s expansion (31), we can proceed in a symmetric way2

to get the validity of (29) also in this case (the details are left to the reader).3

Let us now consider the case (P3). Proceeding as in the previous cases we getˆ T

0

ˆ
R

[
|ρn − k|ϕt + sign(ρn − k)

(
f(ρ)− f(k)

)
φϕx − sign(ρn − k)f(k)φ′ϕ

]
dxdt := kD + E3

1 + E3
2 + F,

where

D :=

ˆ T

0

(
v(k)− vmax

)
φ(x0)ϕ(x0)dt+

ˆ T

0

(
vmax − v(k)

)
φ(xn)ϕ(xn)dt

+

n−1∑
i=0

ˆ T

0

sign(Ri − k)

[[
ẋi+1 − v(k)φ(xi+1)

]
ϕ(xi+1)−

[
ẋi − v(k)φ(xi)

]
ϕ(xi)

]
dt,

E3
1 :=

kn−1∑
i=0

ˆ T

0

sign(Ri − k)Riv(Ri)

(ˆ xi+1

xi

φ′(ỹi,i+1)(x− xi+1)ϕxdx

)
dt

+

n−1∑
i=kn+1

ˆ T

0

sign(Ri − k)Riv(Ri)

(ˆ xi+1

xi

φ′(x̃i,i+1)(x− xi)ϕxdx
)
dt,

E3
2 :=−

kn−1∑
i=0

ˆ T

0

sign(Ri − k)Ṙi

(ˆ xi+1

xi

(
ϕ− ϕ(xi)

)
dx

)
dt−

n−1∑
i=kn+1

ˆ T

0

sign(Ri − k)Ṙi

(ˆ xi+1

xi

(
ϕ− ϕ(xi+1)

)
dx

)
dt

and

F :=−
ˆ T

0

sign(Rkn − k)Ṙkn

(ˆ xkn+1

xkn

ϕdx

)
dt−

ˆ T

0

sign(Rkn − k)Rkn
[
ẋkn+1ϕ(xkn+1)− ẋknϕ(xkn)

]
dt

+

ˆ T

0

sign(Rkn − k)Rknv(Rkn)

(ˆ xkn+1

xkn

φ(x)ϕx(x)dx

)
dt.

Rearranging the indices properly, we can prove that E3
1 and E3

2 satisfy (32) and (33) respectively. Concerning
F , we first remark that it holds

−Rkn
[
ẋkn+1ϕ(xkn+1)− ẋknϕ(xkn)

]
=−Rkn ẋkn+1

(
ϕ(xkn+1)− ϕ(xkn)

)
−Rknϕ(xkn)(ẋkn+1 − ẋkn)

=−Rkn ẋkn+1

(
ϕ(xkn+1)− ϕ(xkn)

)
+ Ṙkn

(ˆ xkn+1

xkn

ϕ(xkn)dx

)
.
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Moreover, since the first order Taylor’s expansion of φ at 0 in the intervals (xkn , 0) and (0, xkn+1) implies
ˆ xkn+1

xkn

φ(x)ϕx(x)dx =φ(0)
(
ϕ(xkn+1)− ϕ(xkn)

)
+

ˆ 0

xkn

φ′(ỹkn)xϕx(x)dx+

ˆ xkn+1

0

φ′(x̃kn+1)xϕx(x)dx

for some ỹkn ∈ (xkn , 0) and x̃kn+1 ∈ (0, xkn+1), then, using the Lipschitz condition on ϕ and (13), we get

F ≥−
ˆ T

0

|Ṙkn |
(ˆ xkn+1

xkn

∣∣ϕ− ϕ(xkn)
∣∣dx)dt− ˆ T

0

Rkn ẋkn+1

∣∣ϕ(xkn+1)− ϕ(xkn)
∣∣dt

−
ˆ T

0

Rknv(Rkn)|φ(0)|
∣∣ϕ(xkn+1)− ϕ(xkn)

∣∣dt− ˆ T

0

Rknv(Rkn)

∣∣∣∣ˆ 0

xkn

φ′(ỹkn)xϕxdx

∣∣∣∣dt
−
ˆ T

0

Rknv(Rkn)

∣∣∣∣ˆ xkn+1

0

φ′(x̃kn+1)xϕxdx

∣∣∣∣dt
≥− `nLϕT

[
4L+ L′

(
xmax − xmin + 2LT

)]
.

As a consequence it follows that E3
1 + E3

2 + F ≥ −c `n for some constant c independent on n and hence it
remains to prove as before that D is non-negative. From (34) we get that

D =

ˆ T

0

(
1 + sign(R0 − k)

)(
v(k)− vmax

)
φ(x0)ϕ(x0)dt

+

kn∑
i=1

ˆ T

0

[
sign(Ri−1 − k)− sign(Ri − k)

](
v(Ri−1)− v(k)

)
φ(xi)ϕ(xi)dt

+

n−1∑
i=kn+1

ˆ T

0

[
sign(Ri−1 − k)− sign(Ri − k)

](
v(Ri)− v(k)

)
φ(xi)ϕ(xi)dt

+

ˆ T

0

(
1 + sign(Rn−1 − k)

)(
vmax − v(k)

)
φ(xn)ϕ(xn)dt

and this implies that D ≥ 0, since we can estimate each term as we did in the previous cases.1

Turning to the last case (P4), we combine again cases (P1) and (P2), namely we use the Taylor’s expansions
(30) and (31) of φ respectively for i ∈ {0, . . . , kn − 1} and i ∈ {kn + 1, . . . , n− 1}. This implies, arguing as
before, thatˆ T

0

ˆ
R

[
|ρn − k|ϕt + sign(ρn − k)

(
f(ρ)− f(k)

)
φϕx − sign(ρn − k)f(k)φ′ϕ

]
dxdt := kD + E4

1 + E4
2 + F,

where

D :=

ˆ T

0

(
v(k)− v(R0)

)
φ(x0)ϕ(x0)dt+

ˆ T

0

(
v(Rn−1)− v(k)

)
φ(xn)ϕ(xn)dt

+

n−1∑
i=0

ˆ T

0

sign(Ri − k)

[[
ẋi+1 − v(k)φ(xi+1)

]
ϕ(xi+1)−

[
ẋi − v(k)φ(xi)

]
ϕ(xi)

]
dt,

E4
1 :=

kn−1∑
i=0

ˆ T

0

sign(Ri − k)Riv(Ri)

(ˆ xi+1

xi

φ′(x̃i,i+1)(x− xi)ϕxdx
)
dt

+

n−1∑
i=kn+1

ˆ T

0

sign(Ri − k)Riv(Ri)

(ˆ xi+1

xi

φ′(ỹi,i+1)(x− xi+1)ϕxdx

)
dt,

E4
2 :=−

kn−1∑
i=0

ˆ T

0

sign(Ri − k)Ṙi

(ˆ xi+1

xi

(
ϕ− ϕ(xi+1)

)
dx

)
dt−

n−1∑
i=kn+1

ˆ T

0

sign(Ri − k)Ṙi

(ˆ xi+1

xi

(
ϕ− ϕ(xi)

)
dx

)
dt,

while F is the same term defined in case (P3). Arguing as in the previous cases, we can prove that E4
1 and

E4
2 satisfy respectively (32) and (33), so it follows that E4

1 +E4
2 +F ≥ −c `n for some constant c independent
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on n and hence to conclude the proof we need to show as before that D is non-negative. Using again (34)
we get that

D =

ˆ T

0

(
1 + sign(R0 − k)

)(
v(k)− v(R0)

)
φ(x0)ϕ(x0)dt

+

kn∑
i=1

ˆ T

0

[
sign(Ri−1 − k)− sign(Ri − k)

](
v(Ri)− v(k)

)
φ(xi)ϕ(xi)dt

+

n−1∑
i=kn+1

ˆ T

0

[
sign(Ri−1 − k)− sign(Ri − k)

](
v(Ri−1)− v(k)

)
φ(xi)ϕ(xi)dt

+

ˆ T

0

(
1 + sign(Rn−1 − k)

)(
v(Rn−1)− v(k)

)
φ(xn)ϕ(xn)dt

and hence it follows that D ≥ 0 also in this last case, since we can estimate each term as we did before.1

Now it remains to prove that ρ satisfies the entropy condition, that is
ˆ T

0

ˆ
R

[
|ρ(x, t)− k|ϕt(x, t) + sign(ρ(x, t)− k)

(
f(ρ(x, t))− f(k)

)
φ(x)ϕx(x, t)

− sign(ρ(x, t)− k)f(k)φ′(x)ϕ(x, t)

]
dxdt ≥ 0

for every k ≥ 0 and every non-negative ϕ ∈ C∞c (R× (0, T )).
We first notice that the previous inequality is a direct consequence of (29): we need only to show that it is
possible to interchange the limit and the integrals. The convergence of {ρn}n∈N to ρ almost everywhere and
in L1 on R× [0, T ] implies that

lim
n→+∞

ˆ T

0

ˆ
R
|ρn − k|ϕtdxdt =

ˆ T

0

ˆ
R
|ρ− k|ϕtdxdt

and moreover, since f(µ) = sign(µ− k)
(
f(µ)− f(k)

)
is a continuous function, we also have that

lim
n→+∞

ˆ T

0

ˆ
R

sign(ρn − k)
(
f(ρn)− f(k)

)
φϕxdxdt =

ˆ T

0

ˆ
R

sign(ρ− k)
(
f(ρ)− f(k)

)
φϕxdxdt.

Therefore it remains to show that2

lim
n→+∞

ˆ T

0

ˆ
R

sign(ρn − k)f(k)φ′ϕdxdt =

ˆ T

0

ˆ
R

sign(ρ− k)f(k)φ′ϕdxdt, (35)

where, since f(µ) = sign(µ− k) is a discontinuous function, we can’t interchange the limit and the integrals3

directly. To overcome this problem, we need to consider two smooth approximations of the sign function η±ε4

such that5

sign(z)− η+
ε (z) ≥ 0 and sign(z)− η−ε (z) ≤ 0, (36)

for instance

η+
ε (z) :=


−1 for z < 0,
2z
ε − 1 for 0 ≤ z ≤ ε,

1 for z > ε,

and η−ε (z) :=


−1 for z < −ε,
2z
ε + 1 for − ε ≤ z ≤ 0,

1 for z > 0.

Let us denote M := ||φ′||L∞(R) from now on. We first remark that (36) implies

ˆ T

0

ˆ
R
sign(ρn − k)f(k)φ′ϕdxdt =

ˆ T

0

ˆ
R

sign(ρn − k)f(k)(φ′ −M)ϕdxdt+

ˆ T

0

ˆ
R

sign(ρn − k)f(k)Mϕdxdt

≤
ˆ T

0

ˆ
R
η+
ε (ρn − k)f(k)(φ′ −M)ϕdxdt+

ˆ T

0

ˆ
R
η−ε (ρn − k)f(k)Mϕdxdt.

21



On the other hand, from the Lipschitz condition of η±ε and using again the convergence of {ρn}n∈N to ρ, it1

follows that2

lim
n→+∞

ˆ T

0

ˆ
R

[
η+
ε (ρn − k)− η+

ε (ρ− k)
]
f(k)(φ′ −M)ϕdxdt

≤ f(k)||ϕ||L∞(R×[0,T ]) lim
n→+∞

ˆ T

0

ˆ
R
|η+
ε (ρn − k)− η+

ε (ρ− k)||φ′ −M |dxdt

≤ 2f(k)M ||ϕ||L∞(R×[0,T ])Lη+ε
lim

n→+∞

ˆ T

0

ˆ
R
|ρn − ρ|dxdt = 0

(37)

and analogously that3

lim
n→+∞

ˆ T

0

ˆ
R

[
η−ε (ρn − k)− η−ε (ρ− k)

]
f(k)Mϕdxdt

≤ f(k)M ||ϕ||L∞(R×[0,T ]) lim
n→+∞

ˆ T

0

ˆ
R
|η−ε (ρn − k)− η−ε (ρ− k)|dxdt

≤ f(k)M ||ϕ||L∞(R×[0,T ])Lη−ε
lim

n→+∞

ˆ T

0

ˆ
R
|ρn − ρ|dxdt = 0.

(38)

Combining the previous three estimates, we hence get

lim sup
n→+∞

ˆ T

0

ˆ
R

sign(ρn − k)f(k)φ′ϕdxdt ≤
ˆ T

0

ˆ
R

[
η+
ε (ρ− k)(φ′ −M) + η−ε (ρ− k)M

]
f(k)ϕdxdt

and, since it holds[
η+
ε (ρ− k)(φ′ −M) + η−ε (ρ− k)M

]
f(k)ϕ ≤ 3f(k)Mϕ ∈ L1(R× [0, T ]),

then we can apply the dominated convergence theorem and pass to the limit in ε, which implies4

lim sup
n→+∞

ˆ T

0

ˆ
R

sign(ρn − k)f(k)φ′ϕdxdt ≤
ˆ T

0

ˆ
R

sign(ρ− k)f(k)φ′ϕdxdt. (39)

Proceeding in a symmetric way we notice that

ˆ T

0

ˆ
R

sign(ρn − k)f(k)φ′ϕdxdt ≥
ˆ T

0

ˆ
R
η−ε (ρn − k)f(k)(φ′ −M)ϕdxdt

+

ˆ T

0

ˆ
R
η+
ε (ρn − k)f(k)Mϕdxdt

and, using again (37), (38) and since[
η−ε (ρ− k)(φ′ −M) + η+

ε (ρ− k)M
]
f(k)ϕ ≤ 3f(k)Mϕ ∈ L1(R× [0, T ]),

therefore we can apply as before the dominated convergence theorem in ε and we get

lim inf
n→+∞

ˆ T

0

ˆ
R

sign(ρn − k)f(k)φ′ϕdxdt ≥
ˆ T

0

ˆ
R

sign(ρ− k)f(k)φ′ϕdxdt.

Combining (39) with the last inequality, we hence get (35) and this implies that ρ is a weak solution to (6)5

satisfying the entropy condition.6

Finally, to conclude that ρ is the unique entropy solution we notice that ρ ∈ L1(R)∩L∞(R)∩BV (R) due7

to assumption (I), f := ρv(ρ) ∈ Liploc(R+) since v ∈ C1(R+) by assumption (V), ψ := φ is in W 1,1
loc (R)∩C(R)8

and satisfies ψ,ψ ∈ L∞(R) due to assumption (P). As a consequence, we can apply theorem 3.2 and this9

concludes the proof of our main result. �10
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