Functional Analysis in Applied Mathematics and Engineering: Final exam: part 1 - 03/02/2017

- (i) Let (K, d) be a compact metric space and let C(K) be the linear space of continuous functions f : K → R.
 - (a) Define the $\|\cdot\|_{\infty}$ norm on C(K). [1]
 - (b) Let $\mathcal{F} \subset C(K)$. Define the notion of equicontinuity for \mathcal{F} . [1]
 - (c) Let $\mathcal{F} \subset C(K)$ be bounded and equicontinuous. Prove that \mathcal{F} is precompact in the normed space $(C(K), \|\cdot\|_{\infty})$. [5]

[2]

- (ii) State (without proof) the contraction mapping theorem.
- (iii) For any $n \in \mathbb{N}$, let $f_n : [0, \infty) \to \mathbb{R}$ be the sequence of functions defined by

$$f_n(x) = nxe^{-nx}$$

- (a) Show that $f_n \to 0$ pointwise in $[0, \infty)$ as $n \to +\infty$. [3]
- (b) Is $\{f_n\}_n$ uniformly convergent on $[0, \infty)$? Justify your answer in detail. [3]
- (2) (i) Given a measurable function $f : \mathbb{R}^d \to [0, +\infty]$, provide the definition of the Lebesgue integral of f. [2]
 - (ii) State (without proof) Beppo Levi's theorem. [2]
 - (iii) Let $p \in [1, +\infty)$. By invoking various results proven in the course, prove that compactly supported continuous functions on \mathbb{R}^d are dense in $L^p(\mathbb{R}^d)$. [5]
 - (iv) For any $n \in \mathbb{N}$, let $f_n : [0,1] \to \mathbb{R}$ be the sequence of functions defined by

$$f_n(x) = \frac{1}{1 + n\sqrt{x}}.$$

- (a) Prove that $f_n \to 0$ in $L^1([0,1])$ as $n \to +\infty$. [3]
- (b) Is $f_n \to 0$ in $L^{\infty}([0,1])$? Justify your answer. [3]