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Abstract. We review recent results and present new ones on a deterministic follow-the-leader

particle approximation of first and second order models for traffic flow and pedestrian move-

ments. We start by constructing the particle scheme for the first order Lighthill-Whitham-
Richards (LWR) model for traffic flow. The approximation is performed by a set of ODEs

following the position of the vehicles seen as moving particles. The convergence of the scheme

in the many particle limit towards the unique entropy solution of the LWR equation is proven
in the case of the Cauchy problem on the real line. We then extend said approach to the Initial-

Boundary Value Problem (IBVP) with time-varying Dirichlet data on a bounded interval. In

this case we prove that our scheme is convergent strongly in L1 up to a subsequence. We then
review extensions of this approach to the Hughes model for pedestrian movements and to the

second order Aw-Rascle-Zhang (ARZ) model for vehicular traffic. Finally, we complement our
results with numerical simulations. In particular, the simulations performed on the IBVP and

the ARZ model suggest the consistency of the corresponding schemes, which is easy to prove

rigorously in some simple cases.

1. Introduction

The modeling of vehicular traffic flow can be considered as one of the most important challenges
of applied mathematics within the last seventy years. Among its several repercussions on real-world
applications we mention e.g. the development of smart traffic management systems for integrated
applications of communications, control, and information processing technologies to the whole
transport system. Other important resultant benefits are the implementation of complex problem
solving in traffic management and the addressing of practical problems such as reducing congestion
and related costs. These goals can be achieved by optimising the use of transport resources and
infrastructures of the transport system as a whole, by bringing more efficiency in terms of traffic
fluidity, and by providing procedures for system stabilisation.

Several analytical models for vehicular traffic have been developed in the last decades. In
the first instance, they are classified into two main classes: microscopic models - taking into
account each single vehicle - and macroscopic ones - dealing with averaged quantities. We refer to
[12, 13, 62, 65] for a survey of the most commonly used models currently available in the literature.

Recently, the availability of on-line data allows to implementing real-time strategies aiming at
avoiding (or mitigating) congested traffic. To address this task, the development and the appli-
cation of analytical models that are easy-to-use and with a high performance in terms of time
and reliability are essential requirements. In this sense, opposed to direct numerical ‘individual
based’ simulations of large number of interacting vehicles - as typical when dealing with micro-
scopic models - many researchers recommend using macroscopic models for traffic flow. The main
advantages of the macroscopic approach with respect to the microscopic one are

• the model is completely evolutive and is able to rapidly describe traffic situations at every
time;

• the resulting description of queues evolution and of traveling times is accurate as the
position of shock waves can be exactly computed and corresponds to queue tails;

• the macroscopic theory helps developing efficient numerical schemes suitable to describe
very large number of vehicles;

• the model can be easily calibrated, validated and implemented as the number of parameters
is low;
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• the theory allows to state and possibly solve optimal management problems.

The macroscopic variables are the density ρ (number of vehicles per unit length of the road),
the velocity v (space covered per unit time by the vehicles) and the flow f (number of vehicles
per unit time). Clearly, the macroscopic variables are in general functions of time t > 0 and space
x ∈ R. By definition

f = ρ v. (1)

Moreover, the conservation of the number of vehicles along a road with neither entrances nor exits
is expressed by the one dimensional scalar conservation law [18]

ρt + fx = 0. (2)

The system (1), (2) has three unknown variables. Hence a further condition has to be imposed.
There are two main approaches to do it: first and second order models. First order models
introduce a further explicit expression of one of the three unknown variables in terms of the
remaining two. The prototype first order model is the Lighthill, Whitham [54] and Richards [64]
(LWR) model. The basic assumption of LWR is that the velocity of any driver depends on the
density alone

v = V(ρ),

where V ∈ C1([0, ρmax]; [0, vmax]) is non-increasing, with V(ρmax) = 0 and V(0) = vmax > 0, where
ρmax > 0 is the maximal density corresponding to the ‘bumper to bumper’ situation, and vmax is
the maximal speed corresponding to the free road. As a result, the LWR model is given by the
scalar conservation law

ρt + [ρV(ρ)]x = 0. (3)

Second order macroscopic models close the system (1), (2) by adding a further conservation law.
The most celebrated second order macroscopic model is the Aw, Rascle [9] and Zhang [70] (ARZ)
model. Away from the vacuum state ρ = 0, the ARZ model writes

ρt + [ρ v]x = 0, [ρ (v + p(ρ))]t + [ρ (v + p(ρ)) v]x = 0, (4)

where the function p(ρ) is introduced to take into account drivers’ reactions to the state of traffic
in front of them.

The main drawback of the LWR model is the unrealistic behaviour of the drivers adjusting
instantaneously their velocities according to the densities they are experiencing. Moreover, the
graph of a map ρ 7→ [ρV(ρ)] can not represent the cloud of points in the (ρ, f)-plane obtained by
empirical measurements. The ARZ model avoids these drawbacks of the LWR model. However,
the system (4) degenerates into just one equation at the vacuum state ρ = 0. In particular, the
solutions to the ARZ model do not depend continuously on the initial data in any neighbourhood of
ρ = 0. We point out that (1) and (2) are the only accurate physical laws in vehicular traffic theory.
All other equations result from coarse approximations of empirical observations. However, as the
dynamics of any living system are influenced by psychological effects, nobody would expect that
traffic models could reach an accuracy comparable to that attained in other domains of science,
such as thermodynamics or Newtonian physics. Nevertheless, they can have sufficient descriptive
power for the specific application-driven purpose, and they can help understanding non-trivial
phenomena of vehicular traffic.

The use of macroscopic models relies on the continuum assumption, namely on the assumption
that the medium is indefinitely divisible without changing its physical nature. This assumption
is not justifiable in the context of vehicular traffic, but is accepted as a technical hypothesis. In
order to make more clear the continuum hypothesis, the study of the micro-to-continuum limit for
first and second order models has been proposed in [24, 25] and [8, 14] respectively. Our goal is
to address said discrete-to-continuum limit in a rigorous analytic form, both for first and second
order models, by proving that the macroscopic models can be solved as a many particle limit of
discrete (microscopic) ODE-based models.

We sketch here our approach for the LWR model (3), described in detail in Section 2.1. Fix an
initial density ρ̄. Let L

.
= ‖ρ̄‖L1(R) be the total space occupied by the all vehicles (i.e. the total

mass in a ‘continuum PDEs’ language). For a given positive n ∈ N, we split ρ̄ into n platoons
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of ‘possibly fractional’ vehicles, each one of equal length `n
.
= L/n, with the endpoints of each

platoon positioned at x̄i ∈ R, i = 0, . . . , n. The points x̄i are taken as initial condition to the
microscopic Follow-The-Leader (FTL) model for vehicular traffic{

ẋi(t) = V
(

`n
xi+1(t)−xi(t)

)
, i ∈ {0, . . . , n− 1},

ẋn(t) = vmax.
(5)

The points xi(t) are interpreted as moving particles along the real line R. In Lemma 2.1 below
we prove that no collisions occur between the particles, as the distance between two consecutive
particles is bounded from below by `n/ρmax for all times. We then consider the discrete density

ρn(t, x)
.
=

n−1∑
i=0

Rni (t) 1[xi(t),xi+1(t)), Rni (t)
.
=

`n
xi+1(t)− xi(t)

,

and prove that (up to a subsequence) its limit as n→∞ is the entropy solution to the LWR model
(3) in the Oleinik-Kruzhkov sense [53, 60]. The convergence of the particle scheme (5) towards
(3) is proven rigorously in [30], see also the improved results in [31]. We refer to Section 2 for the
details.

The result in [31, 30] can be interpreted as a particle method for the one dimensional scalar
conservation law (3), which can be applied in the context of numerics. Particle methods feature
a long standing history as a numerical method for transport equations, see e.g. [58] and the
references therein. Moreover, several effective numerical schemes for nonlinear conservation laws
are proposed in the literature. We mention the pioneering work of Glimm [42] for systems, and
the Wave-Front Tracking (WFT) algorithm proposed by Dafermos in [27] and improved later
on by Di Perna [34] and Bressan [17], see also [49] and the references therein for more details.
Our approach differs from most of the numerical methods for scalar conservation laws in that
it interprets the microscopic limit as a mean field limit of a system of interacting particles with
nearest neighbour type interaction, in the spirit of interacting particles systems in probability,
kinetic theory, statistical mechanics, mathematical biology, see e.g. [35, 57, 61]. We stress in
particular the fundamental role of many particle exclusion processes in probability, a subject
which has been extensively studied in a vast literature in the past decades, see e.g. [39, 40, 52]
and the references therein. It is worth recalling at this stage that Lions, Perthame and Tadmor
proved in [55] that nonlinear conservation laws can also be solved via kinetic approximation.

Unlike in most of the aforementioned articles, our approach should be regarded as a determinis-
tic particle approximation to the target PDE’s. A pioneering result is the one by Russo [66], which
applies to the linear diffusion equation with the diffusion operator replaced by a nearest neighbour
interaction term, see also later generalizations in [45, 56]. Our approach can be considered in
the spirit of [66], applied to scalar conservation laws. We also mention the paper by Brenier and
Grenier [16], which provides a particle approximation of the pressureless Euler system.

Our approach follow essentially the same strategy in the uniform estimates adopted for the WFT
algorithm, except that a lighter notion of time-continuity is needed involving (a scaled version of)
the 1-Wasserstein distance, see Section 1.1 or [4, 69] for more details. A major advantage in
using the Wasserstein distance relies on its identification with the L1-topology in the space of
pseudo-inverses of cumulative distributions. Such an identification allows to recover formally the
ODE system (5) as the most natural way to approximate (3) via Lagrangian particles. We briefly
sketch it here. Let ρ be the solution to (3) and let

F (t, x)
.
=

ˆ x

−∞
ρ(t, x) dx ∈ [0, L],

be its primitive. The pseudo inverse variable X(t, z)
.
= inf {x ∈ R : F (x) > z}, z ∈ [0, L), formally

satisfies the Lagrangian PDE
Xt(t, z) = V

(
Xz(t, z)

−1
)
.

Now, if we replace the above z-derivative by a forward finite difference

Xz ≈
X(t, z + `n)−X(t, z)

`n
,
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and assume that X is piecewise constant on intervals of length `n, the ODE system (5) is imme-
diately recovered, with the structure

X(t, z) =
∑
i

xi(t)χ[i`n,(i+1)`n)(z).

The use of pseudo-inverse variables and Wasserstein distances in the framework of scalar conser-
vation laws is not totally new, see e.g. [15, 20]. As far as the LWR model is concerned, in [59]
a simplified version of the LWR model is derived by introducing as new variable the cumulative
number of vehicles passing through a location x at time t, see also [7, 28].

A natural question concerning the particle approximation procedure described above is whether
or not it can be applied to recover the solution to the IBVP with Dirichlet boundary condition

ρt + f(ρ)x = 0, x ∈ (0, 1), t ∈ (0, T ),

ρ(0, x) = ρ̄(x), x ∈ (0, 1),

ρ(t, 0) = ρ̄0(t), t ∈ (0, T ),

ρ(t, 1) = ρ̄1(t), t ∈ (0, T ).

(6)

Such a question is addressed for the first time in the present work. Due to the propagation of
the initial and boundary conditions along characteristic lines, it is well known that a concept of
Dirichlet condition for a nonlinear conservation law has to be formulated in a set-valued sense.
The first rigorous definition of entropy solution in this context was provided in [10], in which
existence and uniqueness were proven in the scalar multidimensional case. In the one dimensional
case, a more intuitive notion of solution was provided in [36], where the authors proved that at
least in the scalar case the trace of the solution at the boundary is obtained by solving a Riemann
problem within the trace itself and the boundary datum.

The substantial mismatch between Lagrangian and Eulerian speeds of propagation suggests
that prescribing the behaviour of the particle system (5) near the boundary should not involve
characteristic speeds. Inspired by the extremely simple structure of the FTL system (5), the
boundary dynamics should follow a very natural process, possibly reminiscent of empirical obser-
vation in real contexts (e.g. a toll gate). At the same time, such a dynamics should be able to
capture the above notion of entropy solution for the limiting IBVP for a large number of particles.
Our choice for the definition of the scheme in this case is pretty natural. We sketch it here in the
simple case of constant boundary conditions ρ(t, 0+) = ρ̄0, ρ(t, 1−) = ρ̄1.

Initially n + N + 1 particles of mass `n
.
= n−1 ‖ρ̄‖L1(0,1) are set in x̄−N , . . . , x̄n with x̄−N <

. . . < x̄−1 < x̄0
.
= 0 < x̄1 < . . . < x̄n−1 < x̄n

.
= 1. The entering condition is set by requiring that

x̄i
.
= i `n ρ̄

−1
0 , so that the queuing particles in x < 0 are equidistant and matching the boundary

datum ρ̄0. The exit condition is set by requiring that ẋn = V(ρ̄1). We then let evolve the particles
according to the corresponding version of the FTL scheme (5). After some time, some of the
queuing vehicles will enter the domain [0, 1] and some particle will leave it. In general, in a finite
time the distances between the particles in x < 0 will not match the boundary datum ρ̄0, as well
as the leftmost particle in x ≥ 1 will not necessarily move with velocity V(ρ̄1). For this reason,
we introduce a sufficiently small time step τ > 0 and, at each time k τ , k ∈ N, we rearrange the
particles both in x < 0 and x > 1 so that the resulting densities match the corresponding boundary
data, while on each time interval [k τ, (k+ 1) τ), k ∈ N we let the particles evolve according to the
corresponding version of FTL scheme (5), with ẋn = V(ρ̄1). Let us underline that the number N
(which depends on n) should be prescribed initially depending on the final time T , in a way that
some of the queuing vehicles are still left in x < 0 at time t = T .

In order to extend our approach to time-varying boundary data, we discretise the boundary
conditions with respect to time via a time step τ , solve the particle system in each time interval
with constant boundary data, and then rearrange the particles outside the domain according the
boundary condition at the next time step. We defer to Section 3.1 for more details. We remark
that in case of constant boundary conditions for the continuum equation (3) the rearrangement
of the boundary datum at each time step τ is not necessary as long as no waves hit the boundary
from the interior of the domain. Such a situation also holds in our particle approximation, as we
shall see in the simulations in Section 6.
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We prove rigorously in Section 3 that the above particle scheme converges strongly in L1 to a
limiting density ρ as n → +∞ and τ → 0. Such a result does not require any condition on how
fast (or slow) n should tend to infinity with respect to τ tending to zero. The consistency of the
scheme is provided in simple cases, i.e. either constant initial data or boundary conditions yielding
outgoing characteristic speeds at the boundary. As we explain below in Section 3, the definition
of our approximating scheme is reminiscent of the notion of entropy solution provided in [36], see
Definition 3.1, in which the trace of the solution ρ to (3) at the boundary is required to match the
solution to a suitable Riemann problem. Our scheme actually prescribes a constant datum outside
the domain at each time step, in a way to produce the approximation to a Riemann problem near
the boundary. The simulations we provide in Section 6 support our conjecture that our scheme is
consistent with the notion of entropy solution in the sense of [10, 36].

The deterministic particle approach started in [30] has seen significant extensions to similar
models. A first one has been performed in [29] on the ARZ model (4). Despite the second order
nature of ARZ, the strategy developed in [30] for the first order LWR model (3) applies also in
this case. This reveals that the multi-species nature of the ARZ model is quite relevant in the
dynamics. Our rigorous results only deal with the convergence towards a weak solution. The
problem of the uniqueness of entropy solutions for the ARZ model is quite a hard task. For this
reason we do not address here the consistency of our scheme. Let us point out that our approach
for the ARZ system deeply differs from the one proposed in [8], which essentially works away from
the vacuum state and is implemented via a time discretisation and suitable space-time scaling.
Our result in [29] works near the vacuum state and no scaling is performed. Unlike previous
numerical attempts (e.g. [22]) our method is conservative and is able to cope with the vacuum.
We briefly recall the result of [29] in Section 5 below.

Another extension of our particle approach has been performed in [32] on a one-dimensional
version of the Hughes model [50] for pedestrian movements, see (30) below. In this model, the
movement of a dense human crowd is modelled via a ‘thinking fluid’ approach in which the crowd is
modelled as a continuum medium, with Eulerian velocity computed via a nonlocal constitutive law
of the overall distribution of pedestrians. Such a nonlocal dependence is encoded in the weighted
distance function φ, computed at a quasi-equilibrium regime via a nonlinear running cost function
c(ρ). The function φ may be interpreted as an estimated exit time for a given distribution of
pedestrians. We refer to [11, 65] and the references therein for the mathematical modelling of
human crowds, and to [50, 33, 19, 2, 38, 43, 3, 21] for the rigorous analytical results and numerical
simulations available in the literature on the Hughes model.

A fully satisfactory existence theory for the Hughes model is still missing. A mathematical
theory in this setting was first addressed in [33], in which the eikonal equation was replaced by
two regularised versions involving a Laplacian term. A rigorous mathematical treatment of the
Riemann problems for the Hughes model without any regularization was performed independently
in [2] and [38]. Said result led the basis to tackle the existence theory via a WFT strategy. As
in the paper [3], we prove in [32] the existence of entropy solutions when the initial condition
yields the formation of two distinct groups of pedestrians moving towards the two exits, with the
emergence of a vacuum region in between, persisting until the total evacuation of the domain.
However, differently from [3] where the WFT method is applied, in [32] we develop a FTL particle
approximation, taking advantage of the fact that our assumptions ensure that the Hughes model
can be formulated as a two-sided LWR equations. We refer to [32] and to Section 4.1 below
for the precise formulation of the particle scheme. As a result, we prove that the particle scheme
converges under (essentially) the same conditions for which an existence result for entropy solutions
is available in the literature (with the results in [3] in mind).

This chapter is structured as follows.

• In Section 2 we review the results in [30] and later improvements in [31] about the con-
vergence of the FTL scheme towards entropy solutions to the LWR equation. The main
result is stated in Theorem 2.2.

• In Section 3 we prove our new result concerning the convergence of the FTL scheme for
the IBV problem (6). The main result is collected in Theorem 3.1.
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• In Section 4 we review the results in [32] on the particle approximation of the Hughes
model (30), with the main result stated in Theorem 4.2.

• In Section 5 we review the results in [29] on the ARZ model (4). The main result is stated
in Theorem 5.1.

• In Section 6 we collect all the numerical simulations performed for the particle methods
introduced in all the aforementioned models. In particular we present new simulations
regarding the IBV problem (6).

In the next subsection we recall the basic results on the Wasserstein distance that are used in this
chapter.

1.1. The Wasserstein distances. We collect here the main concepts about one dimensional
Wasserstein distances, see [69] for further details. As already mentioned, we deal with probability
densities with constant mass in time and we need to evaluate their distances at different times in
the Wasserstein sense.

For a fixed mass L > 0, we consider the space

ML
.
=
{
µ Radon measure on R with compact support : µ ≥ 0 and µ(R) = L

}
.

For a given µ ∈ML, we introduce the pseudo-inverse variable Xµ ∈ L1([0, L];R) as

Xµ(z)
.
= inf

{
x ∈ R : µ((−∞, x]) > z

}
. (7)

Clearly, Xµ is non decreasing on [0, L], and locally constant on ‘mass intervals’ on which µ is
concentrated. Xµ may have (increasing) jumps if the support of µ is not connected. By abuse
of notation, in case µ = ρL1 is absolutely continuous with respect to the Lebesgue measure, we
denote its pseudo-inverse variable by Xρ.

For L = 1, the one-dimensional 1-Wasserstein distance between ρ1, ρ2 ∈M1 (defined in terms
of optimal plans in the Monge-Kantorovich problem, see e.g. [69]) can be defined as

W1(ρ1, ρ2)
.
= ‖Xρ1 −Xρ2‖L1([0,1];R).

We introduce the scaled 1-Wasserstein distance between ρ1, ρ2 ∈ML as

WL,1(ρ1, ρ2)
.
= ‖Xρ1 −Xρ2‖L1([0,L];R). (8)

Indeed, a straightforward computation yields WL,1(ρ1, ρ2) = LW1(L−1ρ1, L
−1ρ2). The distance

WL,1 inherits all the topological properties of the 1-Wasserstein distance for probability measures.
In particular, a sequence (ρn)n in ML converges to ρ ∈ ML in WL,1 if and only if for any
ϕ ∈ C0(R;R) growing at most linearly at infinity

lim
n→+∞

ˆ
R
ϕ(x) dρn(x) =

ˆ
R
ϕ(x) dρ(x).

We now state a technical result which will serve in the sequel of the chapter.

Theorem 1.1 (Generalised Aubin-Lions lemma ). Assume (V1). Let T, L > 0, a, b ∈ R be fixed
with a < b. Let (ρn)n be a sequence in L∞((0, T ); L1(R)) with ρn(t, ·) ≥ 0 and ‖ρn(t, ·)‖L1(R) = L
for all n ∈ N and t ∈ [0, T ]. Assume further that

sup
n∈N

[ˆ T

0

[
‖v(ρn(t, ·))‖L1([a,b]) + TV(v(ρn(t, ·)); [a, b])

]
dt

]
< +∞, (H1)

lim
h↓0

[
sup
n∈N

[ˆ T−h

0

WL,1(ρn(t+ h, ·), ρn(t, ·)) dt

]]
= 0. (H2)

Then, (ρn)n is strongly relatively compact in L1([0, T ]× [a, b]).

We refer to the Appendix of [31] for the proof of Theorem 1.1. We will sometimes consider the
following condition:

There exists a constant C > 0 independent of n such that
WL,1(ρn(t, ·), ρn(s, ·)) ≤ C |t− s| for all s, t ∈ (0, T ).

(H2′)
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We point out that (H2′) implies (H2) and that it is assumed in both [31, Theorem 3.5] and [30,
Theorem 3.2].

2. The LWR model

In this section we review the results obtained in [30], later improved in [31], on the Cauchy
problem for the LWR model (3){

ρt + f(ρ)x = 0, (t, x) ∈ R+ × R,
ρ(0, x) = ρ̄(x), x ∈ R,

(9)

where f(ρ)
.
= ρ v(ρ). If ρmax > 0 is the maximal density corresponding to the situation in which

the vehicles are bumper to bumper, and vmax is the maximal speed corresponding to the free road,
then the initial datum ρ̄ and the velocity map v are assumed to satisfy the following conditions:

ρ̄ ∈ L∞ ∩ L1(R; [0, ρmax]), (I1)

v ∈ C1([0, ρmax]; [0, vmax]), v′ < 0, v(0) = vmax, v(ρmax) = 0. (V1)

In some cases we require also one of the following conditions:

ρ̄ ∈ BV(R; [0, ρmax]), (I2)

[0, ρmax] 3 ρ 7→ ρ v′(ρ) ∈ R− is non increasing. (V2)

Example 2.1 (Examples of velocities in vehicular traffic). The prototype for the velocity in vehic-

ular traffic vGS(ρ)
.
= vmax

(
1− ρ

ρmax

)
by Greenshields [47] clearly satisfies the assumptions (V1),

(V2). The same holds for the Pipes-Munjal velocity [63]

vPM (ρ)
.
= vmax

[
1−

(
ρ

ρmax

)α]
, α > 0,

in which the concavity of the flux ρ v(ρ) degenerates at ρ = 0. Further examples of speed-density
relations that satisfy (V1), (V2) are

vGB(ρ)
.
= vmax

[
log

(
ρmax + α

α

)]−1

log

(
ρmax + α

ρ+ α

)
, α > 0,

vU (ρ)
.
= vmax

[
1− e−ρmax

]−1 [
e−ρ − e−ρmax

]
,

that result from a slight modification of that ones proposed by Greenberg [46] and Underwood [68]
respectively.

Definition 2.1. Assume (I1) and (V1). We say that ρ ∈ L∞(R+ ×R) is an entropy solution to
the Cauchy problem (9) if ρ(t, ·)→ ρ̄ in the weak∗ L∞ sense as t ↓ 0 and

¨
R+×R

[
|ρ(t, x)− k|ϕt(t, x) + sign(ρ(t, x)− k)

[
f(ρ(t, x))− f(k)

]
ϕx(t, x)

]
dx dt ≥ 0

for all ϕ ∈ C∞c ((0,+∞)× R) with ϕ ≥ 0 and for all k ≥ 0.

We point out that the above definition is slightly weaker than the definition in [53]. The next
theorem collects the uniqueness result in [53] and its variant in [23].

Theorem 2.1 ([23, 53]). Assume (I1) and (V1). Then there exists a unique entropy solution to
the Cauchy problem (9) in the sense of Definition 2.1.
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2.1. The follow-the-leader scheme and main result. We now introduce rigorously our FTL
approximation scheme for (9). Assume (I1) and (V1). Let

L
.
= ‖ρ̄‖L1(R), R

.
= ‖ρ̄‖L∞(R).

Fix n ∈ N sufficiently large. Let `n
.
= L/n and x̄n1 , . . . , x̄

n
n−1 be defined recursively byx̄

n
1
.
= sup

{
x ∈ R :

´ x
−∞ ρ̄(x) dx < `n

}
,

x̄ni
.
= sup

{
x ∈ R :

´ x
x̄n
i−1

ρ̄(x) dx < `n

}
, i ∈ {2, . . . , n− 1}.

It follows that x̄n1 < x̄n2 < . . . < x̄nn−1 and

ˆ x̄n
1

−∞
ρ̄(x) dx =

ˆ x̄n
i

x̄n
i−1

ρ̄(x) dx =

ˆ +∞

x̄n
n−1

ρ̄(x) dx = `n, i ∈ {2, . . . , n− 1}. (10)

We let the n− 1 particles defined above evolve according to the FTL system
ẋni (t) = v(Rni (t)), i ∈ {1, . . . , n− 2},
ẋnn−1(t) = vmax,

xni (0) = x̄ni , i ∈ {1, . . . , n− 1},
Rni (t)

.
=

`n
xni+1(t)− xni (t)

. (11)

Lemma 2.1 (Discrete maximum principle [30, Lemma 1]). Assume (I1) and (V1). Then, the
solution (xni )n−1

i=1 to (11) satisfies for any t ≥ 0

xni+1(t)− xni (t) ≥ `n/R, i ∈ {1, . . . , n− 2}.

The above lemma ensures that the particles strictly preserve their initial order. Hence the
solution (xni )n−1

i=1 to (11) is well defined.
We introduce two artificial particles xn0 and xnn as follows

xn0 (t)
.
= 2xn1 (t)− xn2 (t), xnn(t)

.
= 2xnn−1(t)− xnn−2(t), (12)

and let Rn0
.
= Rn1 and Rnn−1

.
= Rnn−2. We then set

ρn(t, x)
.
=

n−1∑
i=0

Rni (t) 1[xn
i (t),xn

i+1(t))(x) =

n−1∑
i=0

`n
xni+1(t)− xni (t)

1[xn
i (t),xn

i+1(t))(x). (13)

We notice that ‖ρn(t, ·)‖L1(R) = L, ‖ρn(t, ·)‖L∞(R) ≤ R and that ρn(t, ·) is compactly supported
for all t ≥ 0. For future use we compute

Ṙni (t) = −R
n
i (t)2

`n

[
v(Rni+1(t))− v(Rni (t))

]
, i ∈ {1, . . . , n− 3},

Ṙnn−2(t) = −R
n
n−2(t)2

`n

[
vmax − v(Rnn−2(t))

]
.

(14)

Remark 2.1. In case supp[ρ̄] is bounded either from above or from below, it is possible to improve
the above construction. In the former case, the particle xnn can be set on max{supp[ρ̄]} initially
and let evolve with maximum speed vmax, and the preceding particle xnn−1 let evolve according to
ẋnn−1(t) = v(`n/(x

n
n(t)− xnn−1(t))). In the latter case, the particle xn0 can be set on min{supp[ρ̄]}

initially and let evolve according to ẋn0 (t) = v(`n/(x
n
1 (t) − xn0 (t))). In [30] both these conditions

are required for the initial datum and such construction is applied.

The main result of [31, 30] reads as follows.

Theorem 2.2 ([31, Theorem 2.3], [30, Theorem 3]). Assume (I1) and (V1). Moreover, assume
at least one of the two conditions (I2) and (V2). Then, (ρn)n converges (up to a subsequence)
a.e. and in L1

loc on R+×R to the unique entropy solution to the Cauchy problem (9) in the sense
of Definition 2.1.

We sketch the proof of Theorem 2.2 in the next two subsections. For simplicity, we assume that
ρ̄ is compactly supported and apply the corresponding construction explained in Remark 2.1.
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2.2. Estimates. The result in Lemma 2.1 ensures that ‖ρn(t, ·)‖L∞(R) ≤ R
.
= ‖ρ̄‖L∞(R) for all

t ≥ 0. As usual in the context of scalar conservation laws, a uniform control of the BV norm
is necessary in order to gain enough compactness of the approximating scheme. We achieve
compactness in two distinct ways. The first one is a uniform BV contraction property for (ρn)n,
and it obviously requires (I2).

Proposition 2.1. Assume (I1), (I2) and (V1). Then, the discretized density ρn defined in (13)
satisfies for any t ≥ 0

TV[ρn(t, ·)] ≤ TV[ρn(0, ·)] ≤ TV[ρ̄].

Proof. By (14) and (V1) we have that

d

dt
TV[ρn(t, ·)] =

=
[
1 + sign

(
R1(t)−R2(t)

)]
Ṙ1(t) +

[
1− sign

(
Rn−3(t)−Rn−2(t)

)]
Ṙn−2(t)

+
n−3∑
i=2

[
sign

(
Ri(t)−Ri+1(t)

)
− sign

(
Ri−1(t)−Ri(t)

)]
Ṙi(t)

is not positive. Finally, the estimate TV[ρn(0, ·)] ≤ TV[ρ̄] is a simple exercise. �

The second way to achieve compactness is via the following discrete Oleinik-type inequality.
Here we require (V2) in place of (I2).

Proposition 2.2 ([31, Proposition 3.2]). Assume (I1), (V1) and (V2). Then, (xni )ni=0 satisfies
for any t > 0

ẋni+1(t)− ẋni (t)

xni+1(t)− xni (t)
≤ 1

t
, i ∈ {0, . . . , n− 1}. (15)

Proof. (15) is equivalent to

zi(t)
.
= tRi(t)

[
ẋi+1(t)− ẋi(t)

]
≤ `n for all t > 0, i ∈ {1, . . . , n− 2}.

We prove the above estimate inductively on i by using (14). Since zn−1(0) = 0 and

żn−1 ≤ Rn−1

[
vmax − v(Rn−1)

] [
1− zn−1

`n

]
,

a simple comparison argument shows that zn−1(t)
.
= tRn−1(t)[vmax − v(Rn−1(t))] ≤ `n for all

t ≥ 0. Next we prove that if zi+1(t) ≤ `n for all t ≥ 0 and for some i ∈ {1, . . . , n − 2}, then
zi(t) = tRi(t) [v(Ri+1(t))−v(Ri(t))] ≤ `n for all t ≥ 0. Observe that sign+(zi) = sign+(v(Ri+1)−
v(Ri)) = sign+(Ri − Ri+1) for all i ∈ {1, . . . , n − 3}, where (z)+

.
= max{z, 0}. The inequality

zi+1 ≤ `n and (V2) imply

d

dt
(zi)+ ≤ Ri

[ (
v(Ri+1)− v(Ri)

)
+
− v′(Ri)Ri

] [
1− (zi)+

`n

]
.

We observe that the first squared bracket in the above estimate is nonnegative. Therefore, again
a comparison argument shows that zi(t) ≤ `n for all t ≥ 0. �

Remark 2.2. We point out that for i ∈ {1, . . . , n− 2} the estimate (15) reads

v(Rni+1(t))− v(Rni (t))

xni+1(t)− xni (t)
≤ 1

t
,

which recalls the one-sided Lipschitz condition in [60, 48], which characterises entropy solutions
to (3).

Remark 2.3. The result in Proposition 2.2 implies a uniform bound for (ρn)n in BVloc(R+×R).
In this sense, the L∞ → BV smoothing effect featured by genuinely nonlinear scalar conservation
laws is intrinsically encoded in the particle scheme (11). We omit the details of the proof, and
refer to [31, Proposition 3.3].
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We prove now (H2′), namely we provide a uniform time continuity estimate in the scaled 1-
Wasserstein distance WL,1 defined in (8), which ensures strong L1 compactness with respect to
both space and time.

Proposition 2.3. Assume (I1) and (V1). Then the sequence (ρn)n satisfies (H2′).

Proof. By (13) and (7) we have that

Xρn(t,·)(z) =

n−1∑
i=0

[
xni (t) + (z − i `n)Rni (t)−1

]
1[i`n,(i+1) `n)(z).

For any 0 < s < t, by (8), (14) and (12)

WL,1(ρn(t, ·), ρn(s, ·)) ≤ vmax |t− s|+
n−2∑
i=1

`n
2

ˆ t

s

|v(Rni+1(τ))− v(Rni (τ))| dτ

+
`n
2

ˆ t

s

|vmax − v(Rnn−2(τ))| dτ ≤ vmax |t− s|,

and this concludes the proof. �

2.3. Convergence to entropy solutions. If besides (I1) and (V1) we assume either (I2) or
(V2), then the propositions 2.1 and 2.2 show that (ρn)n satisfies (H1) of Theorem 1.1 on every
time interval [δ, T ] with 0 < δ < T . Proposition 2.3 then implies that (ρn)n satisfies (H2′), hence
also (H2) of Theorem 1.1. Thus, by a simple diagonal argument stretching the time interval [δ, T ]
to (0, T ], we get that (ρn)n converges (up to a subsequence) a.e. and in L1

loc on (0, T )×R. Let ρ
be such limit.

Step 1 : ρ is a weak solution to (9). Let ϕ ∈ C∞c (R+ × R). By (13) we compute¨
R+×R

[
ρn(t, x)ϕt(t, x) + f(ρn(t, x))ϕx(t, x)

]
dx dt+

ˆ
R
ρn(0, x)ϕ(0, x) dx

=

n−1∑
i=0

ˆ
R+

[
−Ṙni (t)

(ˆ xn
i+1(t)

xn
i (t)

ϕ(t, x) dx

)
+Rni (t)

[
ẋni (t)− v(Rni (t))

]
ϕ(t, xni (t))

− Rni (t)2

`n

[
ẋni+1(t)− v(Rni (t))

][ˆ xn
i+1(t)

xn
i (t)

ϕ(t, xni+1(t)) dx

]]
dt.

Assuming that supp[ϕ] ⊂ [δ, T ]× R for some 0 < δ < T , we obtain∣∣∣∣∣
¨

R+×R

[
ρn(t, x)ϕt(t, x) + f(ρn(t, x))ϕx(t, x)

]
dx dt

∣∣∣∣∣
≤ T Lip[ϕ] `n

2

[
vmax + sup

t∈[δ,T ]

TV
(
v(ρn(t, ·)); J(T )

)]
, (♠)

where J(T )
.
=
[
min{supp[ρ̄]} + v(R)T,max{supp[ρ̄]} + vmax T

]
. Hence, by Proposition 2.1 the

right hand side in (♠) tends to zero as n → +∞, and since ρn tends (up to a subsequence) to ρ
a.e., we have that ρ is a weak solution to the Cauchy problem (9) for positive times. By (10) and
the definition of Rni we have that∣∣∣∣ˆ

R

[
ρ̄(x)− ρn(0, x)

]
ϕ(0, x) dx

∣∣∣∣
≤ 2`n ‖ϕ(0, ·)‖L∞(R) +

n−1∑
i=0

∣∣∣∣∣
ˆ x̄n

i+1

x̄n
i

ρ̄(x)

[
ϕ(0, x)−

 x̄n
i+1

x̄n
i

ϕ(0, y) dy

]
dx

∣∣∣∣∣
and clearly the above quantity goes to zero as n→ +∞.
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Step 2 : ρ is an entropy solution to (9). Let ϕ ∈ C∞c (R+ × R) with ϕ ≥ 0 and k ≥ 0. By
(13)

¨
R+×R

[
|ρ(t, x)− k|ϕt(t, x) + sign(ρ(t, x)− k)

[
f(ρ(t, x))− f(k)

]
ϕx(t, x)

]
dx dt

= k

ˆ
R+

[[
v(k)− ẋn0 (t)

]
ϕ(t, xn0 (t))−

[
v(k)− ẋnn(t)

]
ϕ(t, xnn(t))

]
dt

+

n−1∑
i=0

ˆ
R+

sign(Rni (t)− k)

[
−Ṙni (t)

(ˆ xn
i+1(t)

xn
i (t)

ϕ(t, x) dx

)
−
[
Rni (t)

[
ẋni+1(t)− v(Rni (t))

]
− k
[
ẋni+1(t)− v(k)

]]
ϕ(t, xni+1(t))

+
[
Rni (t)

[
ẋni (t)− v(Rni (t))

]
− k
[
ẋni (t)− v(k)

]]
ϕ(t, xni (t))

]
dt.

Now we use the equations (14) and (11) as follows. Assuming that supp[ϕ] ⊂ [δ, T ] × R for
some 0 < δ < T , we obtain

¨
R+×R

[
|ρ(t, x)− k|ϕt(t, x) + sign(ρ(t, x)− k)

[
f(ρ(t, x))− f(k)

]
ϕx(t, x)

]
dx dt

= k

ˆ
R+

[[
v(k)− v(Rn0 (t))

]
ϕ(t, xn0 (t))−

[
v(k)− vmax

]
ϕ(t, xnn(t))

]
dt

+

n−2∑
i=0

ˆ
R+

sign(Rni (t)− k)

×

[
Rni (t)2

`n

[
v(Rni+1(t))− v(Rni (t))

][ˆ xn
i+1(t)

xn
i (t)

[
ϕ(t, x)− ϕ(t, xni+1(t))

]
dx

]

+ k
[[
v(Rni+1(t))− v(k)

]
ϕ(t, xni+1(t))−

[
v(Rni (t))− v(k)

]
ϕ(t, xni (t))

]]
dt

+

ˆ
R+

sign(Rnn−1(t)− k)

×

[
Rnn−1(t)2

`n

[
vmax − v(Rnn−1(t))

][ˆ xn
n(t)

xn
n−1(t)

[
ϕ(t, x)− ϕ(t, xnn(t))

]
dx

]

+ k
[[
vmax − v(k)

]
ϕ(t, xnn(t))−

[
v(Rnn−1(t))− v(k)

]
ϕ(t, xnn−1(t))

]]
dt.

We already proved, see (♠), that

n−2∑
i=0

ˆ
R+

sign(Rni (t)− k)
Rni (t)2

`n

[
v(Rni+1(t))− v(Rni (t))

]
×

[ˆ xn
i+1(t)

xn
i (t)

[
ϕ(t, x)− ϕ(t, xni+1(t))

]
dx

]
dt

+

ˆ
R+

sign(Rnn−1(t)− k)
Rnn−1(t)2

`n

[
vmax − v(Rnn−1(t))

]
×

[ˆ xn
n(t)

xn
n−1(t)

[
ϕ(t, x)− ϕ(t, xnn(t))

]
dx

]
dt



12 M. DI FRANCESCO, S. FAGIOLI, M. D. ROSINI, AND G. RUSSO

converges to zero as n→ +∞. Hence, to conclude it suffices to observe that

k

[[
v(k)− v(Rn0 (t))

]
ϕ(t, xn0 (t))−

[
v(k)− vmax

]
ϕ(t, xnn(t))

+

n−2∑
i=0

sign(Rni (t)− k)

×
[[
v(Rni+1(t))− v(k)

]
ϕ(t, xni+1(t))−

[
v(Rni (t))− v(k)

]
ϕ(t, xni (t))

]
+ sign(Rnn−1(t)− k)

×
[[
vmax − v(k)

]
ϕ(t, xnn(t))−

[
v(Rnn−1(t))− v(k)

]
ϕ(t, xnn−1(t))

]]

= k

[
n−1∑
i=1

[
sign(Rni−1(t)− k)− sign(Rni (t)− k)

][
v(Rni (t))− v(k)

]
ϕ(t, xni (t))

+
[
1 + sign(Rn0 (t)− k)

][
v(k)− v(Rn0 (t))

]
ϕ(t, xn0 (t))

+
[
1 + sign(Rnn−1(t)− k)

][
vmax − v(k)

]
ϕ(t, xnn(t))

]
≥ 0.

3. The LWR model with Dirichlet boundary conditions

In this section we tackle a new problem in the context of the FTL approximation for traffic flow
models, namely the approximation of the IBVP with time-varying Dirichlet boundary conditions

ρt + [ρ v(ρ)]x = 0, (t, x) ∈ R+ × Ω,

ρ(0, x) = ρ̄(x), x ∈ Ω,

ρ(t, 0) = ρ̄0(t), t ∈ R+,

ρ(t, 1) = ρ̄1(t), t ∈ R+,

(16)

where, for notational simplicity, we let Ω
.
= (0, 1). We assume that the velocity map satisfies (V1);

further we assume that there exists δ > 0 such that the initial datum and the boundary data
satisfy respectively

ρ̄ ∈ L∞ ∩BV(Ω; [δ, ρmax]), (I3)

ρ̄0, ρ̄1 ∈ L∞ ∩ Lip ∩BV(R+; [δ, ρmax]). (B)

We adapt the definition of entropy solution given in [26, Definition 2.1], see also [1, 37], to the
case under consideration.

Definition 3.1. Assume (I3), (B) and (V1). We say that ρ ∈ C0(R+; L∞loc(Ω̄; [0, ρmax])) is an
entropy solution to the IBVP (16) if

• for any test function φ ∈ C∞c (R+ × Ω) with φ ≥ 0 and for any k ∈ [0, ρmax]

0 ≤
¨

R+×Ω

[
|ρ− k|φt + sign(ρ− k) [f(ρ)− f(k)]φx

]
dxdt

+

ˆ
Ω

|ρ̄− k|φ(0, x) dx;

• for a.e. τ ≥ 0 we have ρ(τ, 0+) = u(1, x) for all x > 0, where u is the self-similar Lax
solution to the Riemann problem

ut + f(u)x = 0, (t, x) ∈ R+ × R,

u(0, x) =

{
ρ̄0(τ) if x < 0,

ρ(τ, 0+) if x > 0,
x ∈ R;
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• for a.e. τ ≥ 0 we have ρ(τ, 1−) = w(1, x) for all x < 0, where w is the self-similar Lax
solution to the Riemann problem

wt + f(w)x = 0, (t, x) ∈ R+ × R,

w(0, x) =

{
ρ(τ, 1−) if x < 0,

ρ̄1(τ) if x > 0,
x ∈ R.

3.1. The follow-the-leader scheme and main result. We now introduce rigorously our FTL
approximation scheme for (16). Assume (I3), (B) and (V1). For a given T > 0 and an integer
m ∈ N, we set τm = T/m. We approximate the boundary data ρ̄0, ρ̄1 with ρ̄0,m, ρ̄1,m defined by

ρ̄i,m
.
=

m−1∑
k=0

ρ̄ki 1[k τm,(k+1) τm) with ρ̄ki
.
= ρ̄i(k τm), i ∈ {0, 1}.

Let again L
.
= ‖ρ̄‖L1(Ω) and R

.
= ‖ρ̄‖L∞(Ω). Fix n ∈ N sufficiently large and set `n

.
= L/n. Let

x̄0
0, . . . , x̄

0
n be defined recursively by{

x̄0
0
.
= 0,

x̄0
i
.
= sup

{
x ∈ Ω:

´ x
x̄0
i−1

ρ̄δ(x) dx < `n

}
, i ∈ {1, . . . , n}.

By construction x̄0
n = 1. We introduce the artificial queuing mass Q and the number of queuing

particles N defined by

Q
.
= 2T vmax ρmax, N

.
= dQ/`ne . (17)

Let the initial positions of the queuing particles x̄0
−N , . . . , x̄

0
−1 be defined by{

x̄0
i
.
= i `n

ρ̄00
, i ∈ {−N + 1, . . . ,−1},

x̄0
−N

.
= x̄0

−N+1 −
qn
ρ̄00
,

where qn
.
= Q − `n(N − 1) ∈ [0, `n] and ρ̄0

0
.
= ρ̄0(0). The queuing particles are set in R−, with

equal distances from each other in order to match the density ρ̄0
0, with the only exception of the

leftmost particle x̄0
−N , which carries a mass qn (possibly less than `n) in order to have a fixed total

mass Q for the whole set of queuing particles.
The n+N + 1 positions x̄0

−N , . . . , x̄
0
n are taken as initial conditions of the FTL system

ẋ0
i (t) = v(R0

i (t)), t ∈ [0, τm], i ∈ {−N, . . . , n− 1},
ẋ0
n(t) = v(ρ̄0

1), t ∈ [0, τm],

x0
i (0) = x̄0

i , i ∈ {−N, . . . , n},

where we have denoted{
R0
i (t)

.
= `n

xi+1(t)−xi(t)
, t ∈ [0, τm], i ∈ {−N, . . . , n− 1},

R0
−N (t)

.
= qn

x−N+1(t)−x−N (t) , t ∈ [0, τm].

We then extend the above definitions to [0, T ] recursively as follows. For any k ∈ N with k ≥ 1, we
denote by hk0 the number of particles that strictly crossed x = 0 during the time interval (0, k τm],
and by hk1 the number of particles that crossed x = 1 during the same time interval (counting the
possible particle positioned at x = 1 at time k τm). We rearrange the particles positions at time
t = k τm by setting

x̄ki
.
=



xi(k τm), i ∈ {−hk0 − 1, . . . , n− hk1 + 1},

xn−hk
1+1(k τm) + (i− n+ hk1 − 1)

`n
ρ̄k1
, i ∈ {n− hk1 + 2, . . . , n},

x−hk
0−1(k τm) + (i+ hk0 + 1)

`n
ρ̄k0
, i ∈ {−N + 1, . . . ,−hk0 − 2},

x̄k−N+1 −
qn
ρ̄k0
, i = −N.
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In other words, we maintain the same position for all the particles that are positioned in Ω, plus
the rightmost particle in (−∞, 0] and the leftmost particle in [1,+∞), and we move all the other
particles to make them equidistant in order to match the updated boundary condition for the
density.

Then, the n+N + 1 positions x̄k−N , . . . , x̄
k
n are taken as initial conditions of the following FTL

system 
ẋki (t) = v(Rki (t)), t ∈ [k τm, (k + 1) τm], i ∈ {−N, . . . , n− 1},
ẋkn(t) = v(ρ̄k1), t ∈ [k τm, (k + 1) τm],

xki (k τm) = x̄ki , i ∈ {−N, . . . , n},
(18)

where we have denoted{
Rki (t)

.
= `n

xi+1(t)−xi(t)
, t ∈ [k τm, (k + 1) τm], i ∈ {−N, . . . , n− 1},

Rk−N (t)
.
= qn

x−N+1(t)−x−N (t) , t ∈ [k τm, (k + 1) τm].

We observe that the number of queuing particles N has been chosen in order to guarantee that a
number of particles of the order N/2 (as n → +∞) will not cross x = 0 within the time interval
[0, T ].

Remark 3.1. Our choice for the above particle scheme is motivated as follows. In order to ap-
proach the entropy solution according to Definition 3.1 in the n→ +∞ limit, on each time interval
[k τm, (k+ 1) τm) we tend to the entropy solution with constant boundary conditions by ‘extending’
the discrete particle density at time t = k τm in a way to match said boundary conditions, see a
similar construction in e.g. [26].

The following discrete maximum-minimum principle ensures that the particles strictly preserve
their initial order.

Lemma 3.1 (Discrete maximum-minimum principle). Assume (I3), (V1) and (B). Then, the
solution to (18) satisfies for any t ≥ 0

`n
R
≤ xi+1(t)− xi(t) ≤

`n
δ
, i ∈ {−N, . . . , n− 1}. (19)

Proof. The lower bound on the time interval [0, τm) is a consequence of the result in Lemma 2.1.
We now prove the upper bound on [0, τm). We consider first i = n− 1. By contradiction assume
that there exist t1, t2 ∈ (0, τm) such that t1 < t2, xn(t) − xn−1(t) ≤ `n/δ for t < t1, xn(t1) −
xn−1(t1) = `n/δ and xn(t) − xn−1(t) > `n/δ for t ∈ (t1, t2). Then, for any t ∈ (t1, t2) we have
ρ̄0

1 ≥ δ > R0
n−1(t) and therefore

xn(t)− xn−1(t) = xn(t1)− xn−1(t1) +

ˆ t

t1

[v(ρ̄0
1)− v(R0

n−1(s))] ds

=
`n
δ

+

ˆ t

t1

[v(ρ̄0
1)− v(R0

n−1(s))] ds ≤ `n
δ
,

which gives a contradiction. We prove now the upper bound on [0, τm) for all the other vehicles
inductively. Assume

sup
t∈[0,τm)

[xi+2(t)− xi+1(t)] ≤ `n
δ
,

and by contradiction that there exist t1, t2 ∈ (0, τm) such that t1 < t2, xi+1(t)− xi(t) ≤ `n/δ for
t < t1, xi+1(t1)−xi(t1) = `n/δ and xi+1(t)−xi(t) > `n/δ for t ∈ (t1, t2). Then, for any t ∈ (t1, t2)
we have R0

i+1(t) ≥ δ > R0
i (t) and therefore

xi+1(t)− xi(t) = xi+1(t1)− xi(t1) +

ˆ t

t1

[v(R0
i+1(s))− v(R0

i (s))] ds ≤ `n
δ
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which gives a contradiction. This proves the assertion on [0, τm]. Now, at each time step t = k τm
the set of particles is rearranged outside Ω in such a way that two consecutive particles satisfy

xi+1(k τm)− xi(k τm) = `n
ρ̄k1
≤ `n

δ , i ∈ {n− hk1 + 1, . . . , n− 1},
xi+1(k τm)− xi(k τm) = `n

ρ̄k0
≤ `n

δ , i ∈ {−N + 1, . . . ,−hk0 − 1},
x−N+1(k τm)− x−N (k τm) = qn

ρ̄k0
≤ `n

δ .

Inside the domain Ω, the inequalities in (19) are satisfied due to the maximum-minimum principle
holding on the previous time interval. Hence, we can reapply inductively the above procedure and
easily get the assertion. �

We define the discrete density for t ∈ (0, T ] as

ρn,m(t, x)
.
=

m−1∑
m=0

n−1∑
i=−N

Rki (t) 1[xi(t),xi+1(t))(x) 1(k τm,(k+1) τm](t).

It is easy to verify that ‖ρn,m(t, ·)‖L1(Ω) = Q + L for all t ≥ 0. We state the main result of this
section, as well as the main novel result of this work.

Theorem 3.1. Assume (I3), (V1) and (B). Then, (ρn,m 1Ω)n converges (up to a subsequence)
a.e. and in L1 on R+ × Ω to a weak solution ρ to the IBVP (16) in the interior of Ω.

Our conjecture is that the limit ρ is in fact the unique entropy solution to the IBVP (16) in the
sense of Definition 3.1. This is motivated by the construction of our FTL approximation scheme,
which relies on the Definition 3.1, see Remark 3.1. Moreover, the numerical simulations performed
in Subsection 6.2 suggest it. We can rigorously prove the consistency of the scheme only in simple
cases in Subsection 3.3 below.

The fact that the limit ρ in the statement of Theorem 3.1 is a weak solution to the LWR
equation in the interior of Ω can be easily proven as in the proof of Theorem 2.2, we omit the
details. Hence, we only need to prove convergence of the sequence ρn,m strongly in L1 up to a
subsequence. This task is the goal of the next section.

Remark 3.2. As already explained in the introduction, we recall that the boundary condition does
not need to be updated in time as long as no waves coming from Ω hit the boundary ∂Ω. In
particular, if ρ̄, ρ̄0 and ρ̄1 are constant, the solution is simply obtained as the restriction to Ω of
the entropy solution to the Cauchy problem (9) with initial condition ρ̄0 1(−∞,0) + ρ̄1Ω + ρ̄1 1(1,+∞)

and no update in time of the boundary data is needed. There are other cases in which ρ̄, ρ̄0 and
ρ̄1 are not necessarily constant and such situation occurs. We highlight one of them here in the
special case v(ρ)

.
= 1 − ρ, which yields f(ρ)

.
= ρ (1 − ρ). Indeed, a very simple argument based

on the WFT approximation (see e.g. [26]) shows that for any h ∈ [0, 1], if we denote with ρk the
restriction to Ω of the solution to the Riemann problem with initial datum h1(−∞,1) + k 1(1,+∞),
then ρk = ρ1/2 for all k ∈ [0, 1/2]. Arguing in a similar way for x = 0, it is easy to see that if
the boundary data ρ̄0 and ρ̄1 take values in [1/2, 1] and [0, 1/2] respectively, then no updates of the
boundary data is needed.

3.2. Estimates. Similarly to Section 2.2, the proof of Theorem 3.1 is based on some estimates
which infer suitable space-time compactness. We now prove the following BV estimate for
(ρn 1Ω)n.

Proposition 3.1. Assume (I3), (V1) and (B). Then for any t > 0

TV(ρ(t, ·)) ≤ C,

where C
.
= TV(ρ̄) + TV(ρ̄0) + TV(ρ̄1) + |ρ̄0(0+)− ρ̄(0+)|+ |ρ̄1(0+)− ρ̄(1−)|.
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Proof. We define Υ : (0, T ]→ R+ by letting for any t ∈ (k τm, (k + 1) τm] with k ∈ N

Υ(t)
.
= |Rk−hk+1

0 −2
(t)− ρ̄k0 |+ |Rkn−hk

1+1(t)− ρ̄k1 |+
n−hk

1∑
i=−hk+1

0 −2

|Rki+1(t)−Rki (t)|

+

m−1∑
j=k

[
|ρ̄j+1

0 − ρ̄j0|+ |ρ̄
j+1
1 − ρ̄j1|

]
.

We observe that

Rkn−hk
1+1(t) = Rkn−hk

1+2(t) = . . . = Rkn−1(t) = ρ̄k1 for all t ∈ [k τm, (k + 1) τm],

due to the fact that the above quantities are all equal at time t = k τm and the leader xn travels
with speed v(ρ̄k1) during the whole time interval.

We claim that ∆Υ(t)
.
= Υ(t+) − Υ(t−) ≤ 0 for all t ∈ (0, T ). Let us first consider t ∈

(k τm, (k + 1) τm). In this case

Υ̇(t) = sign
(
Rk−hk+1

0 −2
(t)− ρ̄k0

)
Ṙk−hk+1

0 −2
(t) + sign

(
Rkn−hk

1+1(t)− ρ̄k1
)
Ṙkn−hk

1+1(t)

+

n−hk
1∑

i=−hk+1
0 −2

sign
(
Rki+1(t)−Rki (t)

) (
Ṙki+1(t)− Ṙki (t)

)
=
[
sign

(
Rk−hk+1

0 −2
(t)− ρ̄k0

)
− sign

(
Rk−hk+1

0 −1
(t)−Rk−hk+1

0 −2
(t)
)]
Ṙk−hk+1

0 −2
(t)

+
[
sign

(
Rkn−hk

1+1(t)− ρ̄k1
)

+ sign
(
Rkn−hk

1+1(t)−Rkn−hk
1
(t)
)]
Ṙkn−hk

1+1(t)

+

n−hk
1∑

i=−hk+1
0 −1

[
sign

(
Rki (t)−Rki−1(t)

)
− sign

(
Rki+1(t)−Rki (t)

)]
Ṙki (t) ≤ 0.

The above estimate holds because the quantities[
sign

(
Rk−hk+1

0 −2
(t)− ρ̄k0

)
− sign

(
Rk−hk+1

0 −1
(t)−Rk−hk+1

0 −2
(t)
)]
Ṙk−hk

0−2(t)

=
[
sign

(
ρ̄k0 −Rk−hk+1

0 −2
(t)
)

+ sign
(
Rk−hk+1

0 −1
(t)−Rk−hk+1

0 −2
(t)
)]

×
Rk−hk+1

0 −2
(t)2

`n

[
v(Rk−hk+1

0 −1
(t))− v(Rk−hk+1

0 −2
(t))
]
,

[
sign

(
Rkn−hk

1+1(t)− ρ̄k1
)

+ sign
(
Rkn−hk

1+1(t)−Rkn−hk
1
(t)
)]
Ṙkn−hk

1+1(t)

=
[
sign

(
ρ̄k1 −Rkn−hk

1+1(t)
)

+ sign
(
Rkn−hk

1
(t)−Rkn−hk

1+1(t)
)]Rkn−hk

1+1
(t)2

`n

×
[
v(ρ̄k1))− v(Rkn−hk

1+1(t))
]
,

[
sign

(
Rki (t)−Rki−1(t)

)
− sign

(
Rki+1(t)−Rki (t)

)]
Ṙki (t)

=
[
sign

(
Rki−1(t)−Rki (t)

)
+ sign

(
Rki+1(t)−Rki (t)

)]Rki (t)2

`n

[
v(Rki+1(t))− v(Rki (t))

]
are not positive. Consider now t = (k + 1) τm with k ∈ N. In this case, using that

Rk+1
−hk+2−2(t+) = Rk+1

−hk+2−1(t+) = . . . = Rk+1

−hk+1
0 −2

(t+) = ρ̄k+1
0 ,

Rk+1

n−hk+1
1 +1

(t+) = Rk+1

n−hk+1
1 +2

(t+) = . . . = Rk+1
n−hk

1+1
(t+) = ρ̄k+1

1 ,
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we easily obtain

∆Υ(t) = − |Rk−hk+1
0 −2

(t)− ρ̄k0 | − |Rkn−hk
1+1(t)− ρ̄k1 |

+ |Rk+1

n−hk+1
1 +1

(t)−Rn−hk+1
1

(t)| − |Rk
n−hk+1

1 +1
(t)−Rn−hk+1

1
(t)|

−
hk+1
1 −hk

1∑
j=1

|Rk
n−hk+1

1 +j+1
(t)−Rk

n−hk+1
1 +j

(t)|

+ |R−hk+1
0 −1(t)−Rk+1

−hk+1
0 −2

(t)| − |R−hk+1
0 −1(t)−Rk−hk+1

0 −2
(t)|

− |ρ̄k+1
0 − ρ̄k0 | − |ρ̄k+1

1 − ρ̄k1 |

=
[
|R−hk+1

0 −1(t)− ρ̄k+1
0 | − |R−hk+1

0 −1(t)−Rk−hk+1
0 −2

(t)| − |Rk−hk+1
0 −2

(t)− ρ̄k0 |

− |ρ̄k0 − ρ̄k+1
0 |

]
+
[
|Rn−hk+1

1
(t)− ρ̄k+1

1 | − |ρ̄k1 − ρ̄k+1
1 | − |Rkn−hk

1+1(t)− ρ̄k1 |

−
hk+1
1 −hk

1∑
j=0

|Rk
n−hk+1

1 +j+1
(t)−Rk

n−hk+1
1 +j

(t)|
]
≤ 0,

where the last inequality follows by a simple triangular inequality. In conclusion we have that

TV(ρn,m(t, ·)) ≤ Υ(t) ≤ Υ(0+) =

∣∣∣∣ `n
1− x̄0

n−1

− ρ̄0
1

∣∣∣∣
+

n−2∑
i=−1

∣∣∣∣ `n
x̄0
i+2 − x̄0

i+1

− `n
x̄0
i+1 − x̄0

i

∣∣∣∣+

m−1∑
j=0

[
|ρ̄j+1

0 − ρ̄j0|+ |ρ̄
j+1
1 − ρ̄j1|

]

≤

∣∣∣∣∣
 1

x̄0
n−1

ρ̄(x) dx− ρ̄1(0)

∣∣∣∣∣+

n−2∑
i=0

∣∣∣∣∣
 x̄0

i+2

x̄0
i+1

ρ̄(x) dx−
 x̄0

i+1

x̄0
i

ρ̄(x) dx

∣∣∣∣∣
+

∣∣∣∣∣
 x̄0

1

0

ρ̄(x) dx− ρ̄0(0)

∣∣∣∣∣+ TV(ρ̄0) + TV(ρ̄1) ≤ C.

�

We provide now a uniform time continuity estimate with respect to the rescaled 1-Wasserstein
distance WQ+L,1 defined in (8).

Proposition 3.2. Assume (I3), (V1) and (B). Then the sequence (ρn,m)n,m satisfies (H2), which
in the present framework writes

lim
h↓0

[
sup

n,m∈N

[ˆ T−h

0

WQ+L,1(ρn,m(t+ h), ρn,m(t)) dt

]]
= 0. (20)

Proof. For simplicity we drop the indexes n,m in the notation and use W1 instead of WQ+L,1.
The above Wasserstein distance is computed via the pseudo-inverse variable

Xρ(t,·)(z)
.
=
[
x−N (t) + z R−N (t)−1

]
1[0,qn)(z)

+

n−1∑
i=−N+1

[
xi(t) +

(
z −

(
qn + (i+N − 1) `n

))
Ri(t)

−1
]
1[qn+(i+N−1) `n,qn+(i+N) `n)(z).

We recall that, for all t ≥ 0, Xρ(t,·) is a strictly increasing function on [0, Q+ 1].
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For k τm < s < t < (k + 1) τm we compute

W1(ρ(t, ·), ρ(s, ·)) = ‖Xρ(t,·) −Xρ(s,·)‖L1([0,Q+1])

=

ˆ qn

0

∣∣x−N (t)− x−N (s) + z (R−N (t)−1 −R−N (s)−1)
∣∣ dz

+

n−1∑
i=−N+1

ˆ `n

0

∣∣xi(t)− xi(s) + z
(
Ri(t)

−1 −Ri(s)−1
)∣∣ dz

≤ qn |x−N (t)− x−N (s)|+ |R−N (t)−1 −R−N (s)−1|
ˆ qn

0

z dz

+

n−1∑
i=−N+1

`n |xi(t)− xi(s)|+
n−1∑

i=−N+1

∣∣Ri(t)−1 −Ri(s)−1
∣∣ˆ `n

0

z dz

≤ (Q+ L) vmax |t− s|+
q2
n

2

ˆ t

s

∣∣∣∣ d

dτ

[
1

R−N (τ)

]∣∣∣∣dτ +
n−1∑

i=−N+1

`2n
2

ˆ t

s

∣∣∣∣ d

dτ

[
1

Ri(τ)

]∣∣∣∣dτ
= (Q+ L) vmax |t− s|+

qn
2

ˆ t

s

|v(R−N+1(τ))− v(R−N (τ))|dτ

+

n−2∑
i=−N

`n
2

ˆ t

s

|v(Ri+1(τ))− v(Ri(τ))|dτ +
`n
2

ˆ t

s

|v(ρ̄k1)− v(Rn−2(τ))|dτ

≤ 3

2
(Q+ L) vmax (t− s). (21)

As a consequence of the above computation, the curve [0, T ] 3 t 7→ ρn,m(t, ·) is equi-continuous in
the W1-topology on open intervals of the form (k τm, (k + 1) τm) and

W1(ρ(((k + 1) τm)−, ·), ρ((k τm)+, ·)) ≤ C τm, k ∈ N, (22)

where C is some positive constant independent of n, m, and h. On the other hand, due to
the rearrangements of the particles outside Ω at each time step, such curve may feature a jump
discontinuity. Let t = (k + 1) τm. We estimate the jump

W1(ρ(t+, ·), ρ(t−, ·)) = ‖Xρ(t+,·) −Xρ(t−,·)‖L1([0,1]) ≤ qn |x−N (t+)− x−N (t−)|

+

−hk+1
0 −2∑

i=−N+1

`n |xi(t+)− xi(t−)|+
n−1∑

i=n−hk+1
1 +2

`n |xi(t+)− xi(t−)|

+
∣∣(ρ̄k+1

0 )−1 −R−N (t−)−1
∣∣ `2n

2
+

−hk+1
0 −2∑

i=−N+1

∣∣(ρ̄k+1
0 )−1 −Ri(t−)−1

∣∣ `2n
2

+

n−1∑
i=n−hk+1

1 +1

∣∣(ρ̄k+1
1 )−1 −Ri(t−)−1)

∣∣ `2n
2
, (23)

where we have use the fact that t 7→ Ri(t)
−1 is continuous for all i ∈ {−hk+1

0 − 1, . . . , n− hk+1
1 }.

We claim that for any i ∈ {−N, . . . ,−hk+1
0 − 2} we have the estimate

|xi(t+)− xi(t−)| ≤
[
2 vmax +

Q

δ2
Lip(ρ̄0)

]
τm. (24)
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Indeed, for any i ∈ {−N + 1, . . . ,−hk+1
0 − 2} we have

|xi(t+)− xi(t−)| ≤ |xi(t+)− xi((t− τm)+)|+ |xi((t− τm)+)− xi(t−)|

=

∣∣∣∣x−hk+1
0 −1(t) + (i+ hk+1

0 + 1)
`n

ρ̄k+1
0

− x−hk+1
0 −1((t− τm)+)− (i+ hk+1

0 + 1)
`n
ρ̄k0

∣∣∣∣
+

ˆ t

t−τm
v(Ri(s)) ds

≤
ˆ t

t−τm
v(R−hk+1

0 −1(s)) ds+ `n
∣∣i+ hk+1

0 + 1
∣∣ ∣∣∣∣ 1

ρ̄k+1
0

− 1

ρ̄k0

∣∣∣∣+

ˆ t

t−τm
v(Ri(s)) ds

≤ 2 τm vmax +Q

∣∣∣∣ 1

ρ̄k+1
0

− 1

ρ̄k0

∣∣∣∣ ≤ [2 vmax +
Q

δ2
Lip(ρ̄0)

]
τm,

and analogously

|x−N (t+)− x−N (t−)| ≤ |x−N (t+)− x−N ((k τm)+)|+ |x−N ((k τm)+)− x−N (t−)|

=

∣∣∣∣∣x−hk+1
0 −1(t) + (i+ hk+1

0 + 1)
`n

ρ̄k+1
0

− qn

ρ̄k+1
0

− x−hk+1
0 −1((t− τm)+)− (i+ hk+1

0 + 1)
`n
ρ̄k0

+
qn
ρ̄k0

∣∣∣∣∣+

ˆ t

t−τm
v(Ri(s)) ds

≤
ˆ t

t−τm

[
v(R−hk+1

0 −1(s)) + v(Ri(s))
]

ds+
[
`n
∣∣i+ hk+1

0 + 1
∣∣+ qn

] ∣∣∣∣ 1

ρ̄k+1
0

− 1

ρ̄k0

∣∣∣∣
≤ 2 τm vmax +Q

∣∣∣∣ 1

ρ̄k+1
0

− 1

ρ̄k0

∣∣∣∣ ≤ [2 vmax +
Q

δ2
Lip(ρ̄0)

]
τm.

Moreover, for all i ∈ {−N + 1, . . . ,−hk+1
0 − 2},

∣∣(ρ̄k+1
0 )−1 −Ri(t−)−1

∣∣ ≤ ∣∣(ρ̄k+1
0 )−1 − (ρ̄k0)−1

∣∣+
∣∣(Ri((t− k τm)+)−1 −Ri(t−)−1

∣∣
≤
∣∣(ρ̄k+1

0 )−1 − (ρ̄k0)−1
∣∣+

1

`n

ˆ t

t−τm
|v(Ri+1(s))− v(Ri(s))| ds

≤
[
vmax

`n
+

1

δ2
Lip(ρ̄0)

]
τm, (25)

and the same estimate holds for i = −N with qn replacing `n. For any i ∈ {n−hk1 + 2, . . . , n− 1},
we estimate

|xi(t+)− xi(t−)| ≤ |xi(t+)− xi((t− τm)+)|+ |xi((t− τm)+)− xi(t−)|

=

∣∣∣∣∣xn−hk+1
1 +1(t) + (i− n+ hk+1

1 − 1)
`n

ρ̄k+1
1

− xn−hk
1+1(t− τm)− (i− n+ hk1 − 1)

`n
ρ̄k1

∣∣∣∣∣+

ˆ t

t−τm
v(Ri(s))ds

≤
∣∣∣xn−hk+1

1 +1(t)− xn−hk
1+1(t− τm)

∣∣∣+ (Q+ L)

∣∣∣∣ 1

ρ̄k+1
1

− 1

ρ̄k1

∣∣∣∣
+
(
hk+1

1 − hk1
) `n

ρ̄k+1
1

+ τm vmax
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≤
∣∣∣xn−hk+1

1 +1(t)− xn−hk+1
1 +1(t− τm)

∣∣∣+

n−hk
1∑

i=n−hk+1
1 +1

|xi+1(t− τm)− xi(t− τm)|

+ (Q+ L)
τm
δ2

Lip(ρ̄1) +
τm
δ
vmax ρmax + τm vmax

≤
[
Q+ L

δ2
Lip(ρ̄1) + 2

vmax ρmax

δ
+ 2 vmax

]
τm, (26)

where we have used the minimum principle Ri(t) ≥ δ for all t ≥ 0 in Lemma 2.1, and (twice) the
estimate

hk+1
1 − hk1 ≤

τm vmax

`n/ρmax
,

which expresses the fact that the total number of particles crossing a given point on a time
interval of size τm is bounded by the maximum distance covered, i.e. τm vmax, divided by the
smallest possible distance between two consecutive vehicles, i.e. `n/ρmax. Finally, by a similar

procedure as in (25), we estimate for i ∈ {n− hk+1
1 + 1, . . . , n− 1}∣∣∣(ρ̄k+1

1 )−1 −Ri(t−)−1
∣∣∣

≤
∣∣∣Ri(t−)−1 −Ri((t− τm)+)−1

∣∣∣+
∣∣∣Ri((t− τm)+)−1 − (ρ̄k+1

1 )−1
∣∣∣

≤ 1

`n

ˆ t

t−τm

∣∣∣v(Ri+1(s))− v(Ri(s))
∣∣∣ds+

∣∣∣Ri((t− τ)+)−1 − (ρ̄k+1
1 )−1

∣∣∣
≤ vmax

`n
τm +

∣∣∣Ri((t− τ)+)−1 − (ρ̄k+1
1 )−1

∣∣∣.
Now the last term on the right-hand-side of the above last estimate can be controlled in the case
i ≥ n− hk1 + 1 by∣∣∣Ri((t− τ)+)−1 − (ρ̄k+1

1 )−1
∣∣∣ =

∣∣∣(ρ̄k+1
1 )−1 − (ρ̄k1)−1

∣∣∣ ≤ 1

δ2
Lip(ρ̄1) τm, (27)

while in the case i < n− hk1 + 1 by∣∣∣Ri((t− τ)+)−1 − (ρ̄k+1
1 )−1

∣∣∣ ≤ i∑
j=n−hk+1

1 +1

∣∣∣Rj+1((t− τ)+)−1 −Rj((t− τ)+)−1
∣∣∣

≤
(
hk+1

1 − hk1
) ρmax

δ2
≤ vmax ρ

2
max

`n δ2
τm. (28)

Hence, substituting (24), (25), (26), (27) and (28) into (23), using qn ≤ `n and the arbitrariness
of t = (k + 1) τm, we can easily find a positive constant C = C(δ, ρmax, vmax, T, ρ̄, ρ̄0, ρ̄1) ≥ 0 such
that

W1(ρ(t+, ·), ρ(t−, ·)) ≤ C τm, t ∈ (N + 1) τm. (29)

Now, we use the two estimates (22) and (29) to obtain (20). Let h > 0 be fixed. Let t ∈ [0, T − h]
and assume for simplicity that t, t + h 6∈ {kτn}m−1

k=0 . We first assume τm < h. More precisely, let
t ∈ (k τm, (k + 1)τm) and t+ h ∈ (r τm, (r + 1) τm) for some k < r < m. We have

W1(ρ(t+ h), ρ(t)) ≤W1

(
ρ(t+ h), ρ((r τm)+)

)
+W1

(
ρ((r τm)+), ρ((r τm)−)

)
+

r−1∑
j=k+1

[
W1

(
ρ((j + 1) τm)−, ρ(j τm)+

)
+W1

(
ρ(j τm)+, ρ((j τm)−

)]
+W1

(
ρ(((k + 1)τm)−), ρ(t)

)
≤ 2C τm + 2C (r − k − 1) τm + C τm

≤ C [2 (r − k) + 1] τm ≤ 5C h,

because by assumption τm < h and (r − k)τm ≤ h+ τm ≤ 2h. Since C is some positive constant
independent of n, m, and h, we have (H2′), hence (20). Let us now assume τm ≥ h. In this case
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we have by (21) and (29)ˆ T−h

0

W1(ρ(t+ h), ρ(t)) dt =

ˆ T−h

(m−1)τm

W1(ρ(t+ h), ρ(t)) dt

+

m−1∑
k=1

[ˆ kτm−h

(k−1)τm

W1(ρ(t+ h), ρ(t)) dt+

ˆ kτm

k τm−h
W1(ρ(t+ h), ρ(t)) dt

]

≤
ˆ T−h

(m−1)τm

W1(ρ(t+ h), ρ(t)) dt+

m−1∑
k=1

ˆ kτm−h

(k−1)τm

W1(ρ(t+ h), ρ(t)) dt

+

m−1∑
k=1

[ˆ kτm

k τm−h

(
W1(ρ(t+ h), ρ((k τm)+)) +W1(ρ((k τm)+), ρ((k τm)−))

+W1(ρ((k τm)−), ρ(t))
)

dt

]

≤ 3

2
(Q+ L) vmax h τm + 3

m−1∑
k=1

[
3

2
(Q+ L) vmax h τm

]
+

m−1∑
k=1

[C h τm]

≤
[

9

2
(Q+ L) vmax + C

]
T h,

for some positive constant C independent of n, m, and h. Hence, (20) is proven. �

In order to conclude the proof of Theorem 3.1, we can proceed exactly as in Theorem 2.2 by
using Theorem 1.1. We observe that condition (H2) of Theorem 1.1 is used in this case in order
to get a uniform continuity estimate in time.

3.3. Convergence to entropy solutions. In this subsection we briefly point out that the scheme
introduced in Subsection 3.1 is consistent in some simple cases.

Theorem 3.2. Assume (I3) and (V1). If ρ̄0 and ρ̄1 are constant and

• either also ρ̄ is constant,
• or f ′(ρ̄0(t)) < 0 and f ′(ρ̄1(t)) > 0 for t ≥ 0,

then (ρn,m)n,m converges (up to a subsequence) to the unique entropy solution of the IBVP (16)
in the sense of Definition 3.1.

Proof. The proof easily follows from the fact that in both cases the unique entropy solution
to (16) on [0, τ ] is the restriction of the solution to the Cauchy problem with initial condition
ρ̄0 1(−∞,0) + ρ̄1Ω + ρ̄1 1(1,+∞). This can be easily seen via a WFT argument, see e.g. [26] and
Remark 3.2. Hence, one can restart the Cauchy problem on [τ, 2τ ] with the same construction
and proceed iteratively for all times. The above claim proves that for any fixed m, the limit ρm of
ρn,m as n→ +∞ is an entropy solution to (16). The assertion then easily follows by the continuity
with respect to the boundary conditions proven in [26, Theorem 2.3.5b]. �

4. The Hughes model

In this section we apply the Hughes model [50] to simulate the evacuation of a one-dimensional
corridor Ω

.
= (−1, 1) ending with two exits. The resulting model is expressed by the following

IBVP with Dirichlet boundary conditions
ρt −

[
ρ v(ρ) φx

|φx|

]
x

= 0, x ∈ Ω, t > 0,

|φx| = c(ρ), x ∈ Ω, t > 0,

(ρ, φ)(t,−1) = (ρ, φ)(t, 1) = (0, 0), t > 0,

ρ(0, x) = ρ̄(x), x ∈ Ω.

(30)

We assume that the initial density ρ̄ and the velocity map v satisfy (I1) and (V1) respectively,
where ρmax is the maximal crowd density and vmax is the maximal speed of a pedestrian. Let
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L
.
= ‖ρ̄‖L1(Ω) and R

.
= ‖ρ̄‖L∞(Ω). The maximum principle in [38] shows that ρ never exceeds the

range [0, R]. We assume also what follows.

There exists a ρ̂ ∈ (0, ρmax) such that for any ρ ∈ (0, ρmax) \ {ρ̂}
[v(ρ) + ρ v′(ρ)](ρ̂− ρ) > 0.

(V3)

c : [0, ρmax]→ [1,+∞] is C2, c′ ≥ 0, c′′ > 0, c(0) = 1, and c(R) < +∞. (C)

Example 4.1. In the literature, see [2, 3, 19, 33, 50, 51, 67], the usual choice for the cost function
is c(ρ)

.
= 1/v(ρ). In this case, in order to bypass the technical issue of c blowing up at ρ = ρmax,

it is assumed that R
.
= ‖ρ̄‖L∞(Ω) ∈ (0, 1). This assumption, together with the maximum principle

obtained in [38], ensures that the cost computed along any solution of (30) is well defined.

As observed in [2, 3, 38], the differential equations in (30) can be reformulated as{
ρt + F (t, x, ρ)x = 0, x ∈ Ω, t > 0,´ ξ(t)
−1

c(ρ(t, y)) dy =
´ 1

ξ(t)
c(ρ(t, y)) dy, x ∈ Ω, t > 0,

(31)

with F (t, x, ρ)
.
= sign(x− ξ(t)) f(ρ), see [32] for the details.

The form (31) clearly suggests that Hughes’ model can be seen as a two-sided LWR model,
with the turning point ξ(t) splitting the whole interval Ω into two subintervals. For this reason,
under appropriate assumptions that guarantee the presence of a persistent vacuum region around
ξ(t), we can apply the results obtained in Section 2 to (30).

Hence, the notion of solution in the case of a vacuum region around t 7→ ξ(t) is as follows

Definition 4.1. Assume (I1), (V1), (V3) and (C). A map ρ ∈ L∞(R+ × R; [0, R]) is a (well-
separated) entropy solution to (30) if

• There exists ε > 0 such that ρ is equal to zero on the open cone

C .
=
{

(t, x) ∈ R+ × R : |x− ξ̄| < ε t
}
.

• ρ1(−∞,ξ̄) is the entropy solution to (9) with initial datum ρ̄1(−∞,ξ̄) in the sense of Defi-
nition 2.1.

• ρ1(ξ̄,+∞) is the entropy solution to (9) with initial datum ρ̄1(ξ̄,+∞) in the sense of Defi-
nition 2.1.

• The turning curve T .
= {(t, x) ∈ R+ × Ω: x = ξ(t)} is continuous and contained in C.

Moreover (0, ξ̄) ∈ T and

ˆ ξ(t)

−1

c(ρ(t, y)) dy =

ˆ 1

ξ(t)

c(ρ(t, y)) dy, for a.e. t ≥ 0.

The next theorem collects the main existence result obtained in [3].

Theorem 4.1 ([3, Theorem 3]). If v(ρ)
.
= 1 − ρ, c(ρ)

.
= 1/v(ρ) and the initial datum ρ̄ ∈

BV(Ω; [0, 1)) satisfies the estimate 3R+TV(c(ρ̄))+[c(ρ̄(−1+))−c(1/2)]+ +[c(ρ̄(1−))−c(1/2)]+ <
2, then there exists an entropy solution to (30) defined globally in time.

In Section 6.4 we show the numerical simulations of our particle methods in simple Riemann-
type initial conditions. We stress here that, although the analytical results concerning our deter-
ministic particle method are restricted to cases in which each particle keeps the same direction for
all times, the numerical simulations also cover cases with direction switching.

4.1. The follow-the-leader scheme and main result. We now introduce our FTL scheme
for (30). Assume (I1), (V1), (V3) and (C). Fix n ∈ N sufficiently large and set `n

.
= L/n. Let

x̄n0 , . . . , x̄
n
n be defined recursively by{

x̄n0
.
= min {supp(ρ̄)} ,

x̄ni
.
= inf

{
x > x̄ni−1 :

´ x
x̄n
i−1

ρ̄(y) dy ≥ m
}
, i ∈ {1, . . . , n} .
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It follows that −1 ≤ x̄n0 < x̄n1 < . . . < x̄nn−1 < x̄nn ≤ 1 and
ˆ x̄n

i+1

x̄n
i

ρ̄(y) dy = `n, i ∈ {0, . . . , n− 1} .

In particular, this implies that

`n
R

=
1

R

ˆ x̄n
i+1

x̄n
i

ρ̄(y) dy ≤ x̄ni+1 − x̄ni , i ∈ {0, . . . , n− 1} .

We denote the local discrete initial densities

R̄ni
.
=

`n
x̄ni+1 − x̄ni

∈ (0, R], i ∈ {0, . . . , n− 1} ,

and introduce the discretized initial density ρ̄n : R→ [0, ρmax] by

ρ̄n(x)
.
=

n−1∑
i=0

R̄ni 1[x̄n
i ,x̄

n
i+1)(x).

We implicitly define the initial approximate turning point ξ̄n ∈ Ω via the formula
ˆ ξ̄n

−1

c (ρ̄n(y)) dy =

ˆ 1

ξ̄n
c (ρ̄n(y)) dy.

The next step is the definition of the evolving particle scheme. Roughly speaking, ξ̄n splits
the set of particles into left and right particles, the former moving according to a backward FTL
scheme, the latter according to a forward one. By a slight modification of the initial condition,
we may always assume that there exists I0 ∈ {0, . . . , n} such that ξ̄n ∈ (x̄nI0 , x̄

n
I0+1). We then set

ẋn0 (t) = −vmax,

ẋni (t) = −v
(

`n
xn
i (t)−xn

i−1(t)

)
, i ∈ {1, . . . , I0},

ẋni (t) = v
(

`n
xn
i+1(t)−xn

i (t)

)
, i ∈ {I0 + 1, . . . , n− 1},

ẋnn(t) = vmax,

xni (0) = x̄ni , i ∈ {0, . . . , n}.

(32)

We consider the corresponding discrete densities{
Rni (t)

.
= `n

xn
i+1(t)−xn

i (t) , i ∈ {0, . . . , n− 1} \ {I0},
Rni (t)

.
= 0, i ∈ {−1, I0, n}.

Notice that in view of Remark 3.2, we do not impose any boundary condition in (32), and we
follow the movement of each particle whether or not they are in Ω. Moreover, the density has been
set to equal zero outside [xn0 (t), xnn(t)) and around the turning point, namely in [xnI0(t), xnI0+1(t)).
The latter in particular is simply due to a consistency with the numerical simulations, in which
the computation of the turning point is made simpler in this way. This clearly introduces an error
`n in the total mass.

Finally, the (unique) solution to the system (32) is well defined and the density RnI0(t) is equal
to zero until the turning point does not collide with a particle.

The approximated turning point ξn(t) is implicitly uniquely defined by
ˆ ξn(t)

−1

c(ρn(t, y)) dy =

ˆ 1

ξn(t)

c(ρn(t, y)) dy,

where ρn : R+ × R→ [0, ρmax] is the discretized density defined by

ρn(t, x)
.
=

n−1∑
i=0

Rni (t) 1[xn
i (t),xn

i+1(t))(x). (33)

Clearly ξn(t) ∈ Ω for all t ≥ 0 and ξn(0) does not necessarily coincide with ξ̄n.
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In the next theorem we state our main result, which deals with a class of small initial data in
BV. For further use, we define the function Υ(ρ)

.
= c(ρ)− c′(ρ) ρ, which is strictly decreasing in

view of assumption (C) above. We then set

L .
= Lip[Υ|[0,R]] = max {c′′ (ρ) ρ : ρ ∈ [0, R]} ,

C
.
= c′(R)R = max {c′(ρ) ρ : ρ ∈ [0, R]} .

Theorem 4.2. Assume (I1), (I2), (V1), (V3) and (C). If the initial datum ρ̄ satisfies

R
.
= ‖ρ̄‖L∞(Ω) < ρmax,

vmax

2

[
LTV(ρ̄) + 3C

]
< v(R). (34)

then there exists a unique entropy solution ρ to (30) in the sense of Definition 4.1 defined globally
in time. Such a solution is obtained as a strong L1-limit of the discrete density ρn constructed via
the FTL particle system (32).

We omit the proof of Theorem 4.2 and we refer to [32, Section 2.3] for the details. Let us only
remark that the assumption R < ρmax above is essential in order to have the right-hand-side in
the inequality (34) strictly positive.

5. The ARZ model

Consider the Cauchy problem for the ARZ model [9, 70]
ρt + (ρ v)x = 0, t > 0, x ∈ R,
(ρw)t + (ρ v w)x = 0, t > 0, x ∈ R,
(v, w)(0, x) = (v̄, w̄)(x), x ∈ R,

(35)

where v is the velocity, w is the Lagrangian marker and (v̄, w̄) is the corresponding initial da-
tum. Moreover, (v, w) belongs to W .

=
{

(v, w) ∈ R̄2
+ : v ≤ w

}
and ρ

.
= p−1(w − v) ≥ 0 is the

corresponding density, where p ∈ C0(R̄+; R̄+) ∩C2(R+; R̄+) satisfies

p(0+) = 0, p′(ρ) > 0 and 2 p′(ρ) + ρ p′′(ρ) > 0 for every ρ > 0. (P)

The typical choice is p(ρ)
.
= ργ , γ > 0. By definition, we have that the vacuum state ρ = 0

corresponds to the half line W0
.
=
{

(v, w)T ∈ W : v = w
}

and the non-vacuum states ρ > 0 to
Wc

0
.
=W \W0.

Definition 5.1 ([5, Definition 2.3.] and [6, Definition 2.2]). Let (v̄, w̄) ∈ L∞(R; W). We say
that a function (v, w) ∈ L∞(R̄+ × R; W) ∩ C0(R̄+; L1

loc(R; W)) is a weak solution of (35) if
it satisfies the initial condition (v(0, x), w(0, x)) = (v̄(x), w̄(x)) for a.e. x ∈ R and for any test
function φ ∈ C∞c (R× R)¨

R̄+×R
p−1(v, w) (φt + v φx)

(
1
w

)
dx dt =

(
0
0

)
.

We refer to [41] for the existence of solutions to (35) away from vacuum, and to [44] for the
existence with vacuum. Let us briefly recall the main properties of the solutions to (35). If the
initial density ρ̄

.
= p−1(w̄ − v̄) has compact support, then the support of ρ has finite speed of

propagation. The maximum principle holds true in the Riemann invariant coordinates (v, w), but
not in the conserved variables (ρ, ρw) as a consequence of hysteresis processes. Moreover, the
total space occupied by the vehicles is time independent:

´
R ρ(t, x) dx = ‖ρ̄‖L1(R) for all t ≥ 0.

5.1. The follow-the-leader scheme and main result. We introduce our atomization scheme
for the Cauchy problem (35). Let (v̄, w̄) ∈ BV(R;W) be such that ρ̄

.
= p−1(w̄ − v̄) belongs to

L1(R) and ρ̄ is compactly supported. Denote by x̄min < x̄max the extremal points of the convex
hull of the compact support of ρ̄, namely⋂

[a,b]⊇supp(ρ̄)

[a, b] = [x̄min, x̄max] .
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Fix n ∈ N sufficiently large. Let L
.
= ‖ρ̄‖L1(R) > 0 and `n

.
= L/n. Set recursively{

x̄n0
.
= x̄min,

x̄ni
.
= sup

{
x ∈ R :

´ x
x̄n
i−1

ρ̄(x) dx < `n

}
, i ∈ {1, . . . , n}.

(36)

It is easily seen that x̄nn = x̄max for all i = 0, . . . , n. We approximate then w̄ by taking

w̄ni
.
= ess sup

[x̄n
i ,x̄

n
i+1]

(w̄), i ∈ {0, . . . , n− 1}. (37)

We have then

`n =

ˆ x̄n
i+1

x̄n
i

ρ̄(x) dx ≤
(
x̄ni+1 − x̄ni

)
ρni,max, i ∈ {0, . . . , n− 1},

with ρni,max
.
= p−1(w̄ni ). We take the values x̄n0 , . . . , x̄

n
n as the initial positions of the [n+1] particles

in the n–depending FTL model
xnn(t) = x̄max + w̄nn−1 t,

ẋni (t) = vni

(
`n

xn
i+1(t)−xn

i (t)

)
, i ∈ {0, . . . , n− 1},

xni (0) = x̄ni , i ∈ {0, . . . , n},
(38)

where

vni (ρ)
.
= w̄ni − p(ρ), i ∈ {0, . . . , n− 1}. (39)

The quantity w̄ni = vni (0) is the maximum possible velocity allowed for the i-th vehicle. Clearly,
only the leading vehicle xnn reaches its maximal velocity, as the vacuum state is achieved ahead of
xnn. The existence of a global solution to (38) follows from [29, Lemma 2.3], which generalises the
discrete maximum principle of Lemma 2.1.

Finally, since vni is decreasing, and its argument `n/[x
n
i+1(t)− xni (t)] is always bounded above

by ρni,max, we have xn0 (t) ≥ x̄min + v0(Rn0 ) t = x̄min. By introducing in (38)

Rni (t)
.
=

`n
xni+1(t)− xni (t)

, i ∈ {0, . . . , n− 1}, (40)

we obtain 
ẏnn−1 = − (Rn

n−1)2

`n
p(Rnn−1),

ẏni = − (Rn
i )2

`n

[
vni+1(Rni+1)− vni (Rni )

]
, i ∈ {0, . . . , n− 2},

Rni (0) = R̄ni
.
= `n

x̄n
i+1−x̄n

i
, i ∈ {0, . . . , n− 1}.

(41)

Observe that `n/[x̄max− x̄min + w̄nn−1 t] ≤ Rni (t) ≤ ρni,max for all t ≥ 0 in view of the discrete max-
imum principle. The quantity Rni can be seen as a discrete version of the density ρ in Lagrangian
coordinates, and (41) is the discrete Lagrangian version of the Cauchy problem (35).

Define the piecewise constant (with respect to x) Lagrangian marker

Wn(t, x)
.
=


w̄n0 if x ∈ (−∞, xn0 (t)) ,

w̄ni if x ∈
[
xni (t), xni+1(t)

)
, i ∈ {0, . . . , n− 1},

w̄nn−1 if x ∈ [xnn(t),+∞) ,

(42)

and the piecewise constant (with respect to x) velocity

V n(t, x)
.
=


w̄n0 if x ∈ (−∞, xn0 (t)) ,

vni (Rni (t)) if x ∈
[
xni (t), xni+1(t)

)
, i ∈ {0, . . . , n− 1},

w̄nn−1 if x ∈ [xnn(t),+∞) .

(43)

We are now ready to state the main result proved in [29].



26 M. DI FRANCESCO, S. FAGIOLI, M. D. ROSINI, AND G. RUSSO

-1 -0.5 0 0.5 1 1.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
time=0

Discretized densitiy
Particles

-1 -0.5 0 0.5 1 1.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
time=0.245

Discretized densitiy
Particles

-1 -0.5 0 0.5 1 1.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
time=0.5

Discretized densitiy
Particles

Figure 1. The evolution of ρn given by (13) and corresponding to the initial
datum (44). The circles in the bottom (in blue in the electronic version) denote
particle location, while the stars in the top (in red in the electronic version) denote
the computed density.

Theorem 5.1. Assume (P). Let (v̄, w̄) ∈ BV(R ; W) be such that ρ̄
.
= p−1(w̄ − v̄) is compactly

supported and belongs to L1(R). Fix n ∈ N sufficiently large and let `n
.
= L/n, with L

.
= ‖ρ̄‖L1(R).

Let x̄n0 < . . . < x̄nn be the atomization constructed in (36). Let xn0 (t), . . . , xnn(t) be the solution
to the FTL system (38). Let w̄n0 , . . . , w̄

n
n−1 be given by (37). Set Wn and V n as in (42) and

(43) respectively, where vni and Rni are defined by (39) and (40) respectively. Then, (V n,Wn)n
converges (up to a subsequence) in L1

loc(R̄+×R;W) as n→ +∞ to a weak solution of the Cauchy
problem (35) with initial datum (v̄, w̄) in the sense of Definition 5.1.

We omit the proof of Theorem 5.1 and we refer to [29, Theorem 3.2] for the details. For
completeness, we point out that the corresponding discrete density is

ρn(t, x)
.
= p−1(Wn(t, x)− V n(t, x)) =

n−1∑
i=1

Rni (t)χ[xn
i (t),xn

i+1(t)[(x).

6. Numerical simulations

In this section we present numerical simulations for the particle method described above. We
compare the numerical simulations with the exact solutions obtained by the method of character-
istics and that with the Godunov method. The particle system is solved by using the Runge-Kutta
MATLAB solver ODE23, with the initial mesh size determined by the total number of particles
N and the initial density values.

6.1. The Cauchy problem for the LWR equation. We first furnish one example for the
Cauchy problem for the LWR equation (9) with flux given by f(ρ)

.
= ρ (1 − ρ). In Figure 1 we

take N = 200 particles, final time T = 0.5 and initial datum

ρ̄(x) =


0.4 if − 1 ≤ x ≤ 0,

0.8 if 0 < x ≤ 1,

0 otherwise.

(44)

In Figure 2 we compare the result of the simulation with N = 400 and final time t = 0.5 with the
exact solution.

6.2. The Cauchy-Dirichlet problem for the LWR equation. More interesting situations
can be illustrated in the case of LWR with Dirichelet boundary conditions (16), see Figure 3 and
Figure 4. As pointed out in Section 3, the atomization algorithm introduces artificial queuing
particles to mimic the left boundary condition. In x < 0 we arrange N queuing particles (the
ones that are going to enter in the domain at time T ), with N given by (17). Again we take
f(ρ)

.
= ρ(1 − ρ). For N = 100 particles we consider, according to the notation in Section 3,
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Figure 2. Comparison between the exact solution (continuous green line in the
electronic version) and ρn (“− · −” in red in the electronic version) for N = 400
and initial datum (44).

ρ̄(x) = 0.2 in Figure 3 and Figure 4 with left boundary condition ρ̄0 = 0.4 and right boundary
conditions ρ̄1 = 0 and ρ̄1 = 1 respectively. In Figure 5 we set

ρ̄0 = 0.3, ρ̄(x) =

{
0.8 if x ∈ [0, 0.5],

0.1 if x ∈ (0.5, 1],
ρ̄1 = 0.1. (45)

The latter example is chosen in such way that the actual entropy solution does not match the
solution obtained without reupdating the boundary condition at x = 0 at every time step. A
comparison between discretized densities and numerical solutions obtained via Godunov scheme is
also plotted in Figure 3 and Figure 4. We set the spatial discretization according to the number of
particles N ; the time step is the same for both methods and is selected so that the CFL condition
for the Godunov method holds. Empirically, the observed time step restriction for the FTL method
is much less severe than for the Godunov method applied to the Eulerian descriprion of the flow.

Time-dependent piecewise constant boundary data are considered in Figure 6, where for N =
400, we set

ρ̄(x) = 0.3, ρ̄0(t) =

{
0.1 if t ∈ [0, 1],

0.6 if t ∈ (1, 2],
ρ̄1(t) =

{
0.9 if t ∈ [0, 1],

0.1 if t ∈ (1, 2].
(46)

Using these conditions one can built the exact solutions at time T = 2

ρex(2, x) =


0.5(1− x) if x ∈ [0, 0.8] ,

0.1 if x ∈ (0.8, 0.2(9− 2
√

5)],

0.5(2− x) if x ∈ (0.2(9− 2
√

5), 1].

(47)

A comparison with the exact solution ρex is given in Figure 7.

6.3. The ARZ model. For the ARZ model, we consider two example of Riemann problems. The
first one coincide with that one done in [22, Section 4] and is used to check the ability of the scheme
to deal with contact discontinuities. The second one is the example given in [8, Section 5] and is
used to check the ability of the scheme to deal with vacuum. The qualitative results corresponding
to N = 200 and final time T = 0.2 for the Test 1 and T = 1 for Test 4 are presented on Figure 8.

6.4. The Hughes model for pedestrian movements. In this section we compare our discrete
density for the Hughes model (30) with approximate solutions obtained via Godunov scheme.
About the boundary conditions, as pointed out in Section 4.1, we do not impose any boundary
condition in the particle method. For the Godunov method we create two extra ghost cells, one
just at the left of −1 and one just at the right of 1, setting ρ = 0 in those cells, to mimic ‘perfect
exits’. In the example reported, the choice for the cost function is c(ρ)

.
= 1/v(ρ), with v(ρ)

.
= 1−ρ,

and we show time evolution of the discrete density ρn given in (33) in the domain (−1, 1). In order
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Figure 3. Circles in the bottom are now divided in two groups: particles that
are initially inside the domain (blue in the electronic version) and the queuing
particles (green in the electronic version). Line in the top (in red in the electronic
version) denotes the computed density. Vertical black lines denote the boundary of
[0, 1]. The initial-boundary setting produces two rarefaction waves both travelling
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Figure 4. In this situation a shock wave travels backward.
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Figure 5. Simulation for initial-boundary data given in (45).
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Figure 6. Time evolution for initial-boundary values problem in (46).

to compare our method with the tests performed in [33, 43], in Figure 9 we consider the three-step
initial condition

ρ̄(x) =


0.8 if − 0.8 < x ≤ −0.5,

0.6 if − 0.3 < x ≤ 0.3,

0.9 if 0.4 < x ≤ 0.75,

0 otherwise.

(48)

As shown in Figure 9 and Figure 10, this example features the typical mass transfer phenomenon
occurring when the turning point ξ(t) is not surrounded by a vacuum region. In such a case,
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Figure 7. Comparison with exact solution to (47).

particles are crossing ξ(t), and a non-classical shock starts from ξ(t), see [2, Remark 5]. In the
example we set N = 200 particles and plot the particle positions and the discrete densities. In
Figure 10 we compare the particle method and a classical Godunov scheme. It is evident that
the two methods, though conceptually different, produce approximate solutions are in a good
agreement.
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